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du = /|uldt +dB,  u(0)=0.




e 1D quintic NLS with white noise dispersion

idu + 0%u o dB(t) = Mul*u dt, (1)
t >0, zeR
u(0,z) = ug(z). (2)

u ; slowly varying envelope of electiric field,
B(t) ; real Brownian motion starting at 0 with
mean O,

A = 1 (defocusing) or A = —1 (focusing)

0%u o dB(t) ; Stratonovich product



Remark 1 Stratonovich integral ensures the
L? norm conservation, though the L? norm is
not conserved by the |t0 integral. Both of
them are regarded as a stochastic version of

Riemann-Stieltjes integral.
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e In the context of nonlinear fiber optics,
variable ¢ corresponds to the distance along a
fiber and variable x corresponds to the time.
But we keep the conventional notation.

e Equation (1) may be thought of as the
diffusion limit of NLS with random dispersion,

which describes the propagation of a signal in
an optical fiber with managed dispersion.



The carrier fiber has positive dispersion value.
For dispersion control, one arranges negative
dispersion fibers between positive fibers so
that the overall distortion is very small.
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Microscopic Model Equation

10U i (t/e?)07u = Au|*u.  (3)

m(t); stationary (continuous or smooth)
random process with zero mean,

e > 0; size of correlation length for 2m(Z%),
Limit as € — 0 is called “diffusion limit" or
“diffusion approximation”



For more details of physical model, see the
following two books:

G.P. Agrawal, “Nonlinear Fiber Optics’, 3rd
Edition, Academic Press, 2001.

G.P. Agrawal, “Applications of Nonlinear
Fiber Optics’, Academic Press, 2001.



e Deterministic Case (02 o d3 is replaced by 9?)
A = 1 (defocusing) Dodson, 2010

Yug € L* = 3 unique global solution u of
(1)-(2) in C([0, 00); L?).

A = —1 (focusing)

Yug € L* = 3T > 0 and 3 unique local
solution u of (1)-(2) in C([0,T); L?).

Jug € H'; solution u blows up in finite time.

T. Cazenave, “Semilinear Schrodinger
Equations’, Amer. Math. Soc., 2003.



Remark 2
i0u + Au= NulPlu, zeR* (4)

Scaling u, (t,z) = n*/ P~ YDu(n?t,nz), n > 0
leaves equation (4) invariant, and when
p=1+44/d, L* norm of u, is also invariant.

p=1+4/d; L*-critical
Eg., d=1and p=5 — 1 D quintic NLS,

1 <p<1+4/d; L*-subcritical



e (deterministic Strichartz’ estimate)
d=1,U(t) = e T >0,

[UC)uol| 1 o.17.00) < CT o]l 22 (5)
2 1 1
o= - (2 q)zo, 2 < q,r < 00.(6)

Remark 3 (i) Strichartz’ estimate (5) with
o = 0 is needed for the proof of unique local
existence theorem of solution for the L?
critical case. In the L?-subcritical case, (5)

with a > 0 1s sufficient.



(i) In the L? subcritical case, existence time
T can be estimated by the size of L? norm of
initial data only. But this is not the case with
1 D quintic NLS because of its L? criticality.

e Stochastic Case

Theorem 1 (Debussche-Y.T, 2011)

Yug € L?, 3 unique global solution w of
(1)-(2) satisfying u € C([0,00); L?) a.s. and
Hu(t)HLz = ||u0||L2, t >0 a.s.




Remark 4 In sharp contrast to the
deterministic case, 1 D quintic NLS (1) with
white noise dispersion has global solution a.s.
for each ug € L?, no matter whether ) is
negative or positive: Regularization by Noise

e Known Results
R. Marty, 2006, Equation (1) with
nonlinearity f(|ul?)u, f € C}([0,00); R),
Yug € L? = 3 unique global solution of

(1)-(2) a.s.



A. de Bouard and A. Debussche, 2010,
nonlinearity A|lulP~1u, 1 <p < 1+4/d,

Yug € L* = 3 unique global solution u of
(1)-(2) satisfying u € C([0,00); L?) a.s. and
lu(t)|z2 = |luollzz, t >0 as.

Remark 5 The L? critical case is excluded in
the paper by de Bouard and Debussche. Their
proof is based on a stochastic version of
Strichartz’ estimate. But their Strichartz
estimate does not cover the case



e Difficulties to prove stochastic Strichartz
Let s > 0 be fixed.

idu + AuodfB(t) =0, t>s, x€RY,
u(s) = us.
Ul(t,s)us = F! [€i|£|2(ﬁ(t)—ﬁ(s))ﬁ8(§)}7
t> s > 0.



1. Zse ={s+ec>t>s| B(t) — B(s) =0},
s>0,e>0,
Zs - has the cardinality of continuum a.s.

2. Duality argument does not work as well as
in the deterministic case.

Lemma 1 (Debussche-Y.T)
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< CTQ/BZE[HfHéjl;l([o,T];p)}7 1> 0.




Remark 6 Lemma 1 almost corresponds to
thecasea::%—(%—%) = 0 with ¢ = 10
and » = 5, compared with deterministic
Strichartz (5). Moreover, the power of T is
positive In Lemma 1, while o = 0 In the
determinisitic case. In this respect, the
stochastic Strichartz estimate is better than

the deterministic one.

bilinear (or sesquilinear) Strichartz estimate by
Ozawa and Y.T (1998) — Lemma 1



e Bilinear Strichartz Estimate
Sesquilinear mapping:

(ug, vg) > (eitaz uo) (eitag vo)

Lemma 2 (Ozawa-Y.T, 1998)

(—82)1/4{ ( 6z‘t8§uO) (6ita§vo)]
L?(RxR)

< Cllug||L2{[vol| 2 (8)




Remark 7 Estimate (8) fails if the term

(eitaﬁ Uo) (eitag ‘Uo)
Is replaced by
( eitai Uo) ( eitai Uo)

on the left hand side of (8). Estimate (8)
implies the smoothing effect of Schrodinger

equation.



e Stochastic Version of Bilinear Strichartz
Estimate

Lemma 3

- pl
4 /
JO

D1/2(/0 Ul(t,s)f(s)ds

)

dt
L%(R)

< 427 TY?E {||f||%1(O,T;L2(R))] '




Remark 8 Factor T'/2 appears on the right
hand side of the above inequality, which is the
difference between the deterministic and the
stochastic bilinear Strichartz estimates. The
integration with respect to variable w of
probablity space (2, B, P) yields a kind of
stochastic smoothing effect. For other
equations, see [Flandori, LNM 2015 (2011)].

Lemma 3 + Sobolev =— Lemma 1l
Lemma 1 + Contraction = Theorem 1




Diffusion Limit
(Macroscopic Model)

idu 4+ 02u o dfB(t) = Mul*u dt. (1)

(Microscopic Model)

10ru + 1m(t/5 )0zu = Aul*u.  (3)

Problem: As ¢ — +0, does the solution of
(3) converge to the solution of (1)7?



Theorem 2 (Debussche and Y.T, 2011)
m(t); continuous random process, ‘“ergodic”.

Ve >0, Vug € H', 3 7.(ug) > 0, I unique
solution u. of (3) in C([0, 7 (ug)); H') a. s.
Moreover, for any T' > 0,

lim P(7-(ug) <T) =0,

e—0
u€1{7-€>T} — U (6%0)

in distribution of C'(|0,T]; H 1)7

where u is the solution of (1).



Remark 9 We note that Theorem 2 holds for
nonlinearity A|u|?~!u, 1 < p < 5. Even in the
subcritical case p < 5, Theorem 2 Is an

Improvement over previous results concerning

the topology of convergence:

Marty, 2003,

F(juP)u, f € CL(0, 005 R), up € H?
— u. — u (¢ —0)

in distribution of C'([0,T]; H?).



de Bouard and Debussche, 2010,
p<b5 wucH' — u. - u (¢—0)
in distribution of C'(|0,T]; H?), s < 1.

Remark 10 The ergodic assumption on m
ensures that

t

/ e tm(e%s)ds — B(t) (e = 0)
0

in distribution of C'(|0,T|;R), VT > 0.

m(t), m(s), t > s need not be independent.



e M. Rosenblatt, A central limit theorem and a

strong mixing condition, Proc. Nat. Acad.
Sci. U.S.A., 42 (1956), 43-47.

e P. Billingsley, “Convergence of Probability
Measures”, 2nd Edition, 1999.

(see, Chapter 5)





