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Introduction

We first consider

−u′′(t) = λ (u(t) + g(u(t))) , t ∈ I := (−1, 1), (1.1)

u(t) > 0, t ∈ I, (1.2)

u(−1) = u(1) = 0, (1.3)

where λ > 0 is a parameter, and in what follows, we assume that g(u)

satisfies the following conditions.

(A.1) g(u) ∈ C1(R) and u+ g(u) > 0 for u > 0.

(A.2) g(u+ 2π) = g(u) for u ∈ R.
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How to construct a solution and a bifurcation curve

It is well known (cf. [T. Laetsch, 1970]) that if

u+ g(u) > 0 for u > 0,

then by time-map method, we find that λ is parameterized by using

α = ∥u∥∞, such as λ = λ(α) and is a continuous function of α > 0. Since

λ depends on g, we sometimes write

λ = λ(g, α).
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How to construct a solution and a bifurcation curve

We put

f(u) := u+ g(u), F (u) :=

∫ u

0
f(s)ds.

If (u, λ) is a solution of (1.1)–(1.3) with ∥u∥∞ = α > 0, then by (1.1), we

have

{u′′(t) + λf(u(t))}u′(t) = 0.

So for −1 ≤ t ≤ 0,

1

2
u′(t)2 + λF (u(t)) = constant = λF (α).

Since u′(t) ≥ 0 for −1 ≤ t ≤ 0, we have

u′(t) =
√
2λ
√
F (α)− F (u(t)) (−1 ≤ t ≤ 0).
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How to construct a solution and a bifurcation curve

Then by putting u(t) = θ, we obtain

√
2λ =

∫ 0

−1

u′(t)√
F (α)− F (u(t))

dt =

∫ α

0

1√
F (α)− F (θ)

dθ. (1.4)

Therefore, for any given constant α > 0, we define λ(α) by (1.4). Then

the equation

(t+ 1)
√

2λ(α) =

∫ u

0

1√
F (α)− F (θ)

dθ

defines a one-to-one relation between t and u for −1 ≤ t ≤ 0 and

0 ≤ u ≤ α so that t = −1 if u = 0 and t = 0 if u = α. Then by the

function u(t) so defined and using a reflection with respect to t = 0, we

can construct a C2-solution of (1.1)–(1.3).
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Purpose

・The study of the structures of the bifurcation curves is one of the main

topics in bifurcation analysis, and there are quite many works concerning

the properties of bifurcation diagrams.

・In particular, the qualitative properties of the oscillatory bifurcation

diagrams have been studied intensively.

・In this talk, we focus on the study whether λ(g, α) inherits the

oscillatory properties of g(u) or not if g(u) is a periodic function.
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Example

To clarify our intention, we first consider the typical example

g0(u) = (1/2) sinu,

which satisfies (A.1)–(A.2). Recently, the following asymptotic formula for

λ(g0, α) as α→ ∞ has been obtained in [S, 2016].

Theorem 1.0 ([S, 2016]). Let g0 = (1/2) sinu. Then as α→ ∞,

λ(g0, α) =
π2

4
− π

2α

√
π

2α
sin

(
α− 1

4
π

)
+O(α−2). (1.5)

We see from Theorem 1.0 that λ(g0, α) satisfies the following oscillatory

property (OP).
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Property (OP)

(OP) λ(g, α) → π2/4 as α→ ∞, and it intersects the line λ = π2/4

infinitely many times for α≫ 1.

π2/(4(1 + g′(0)))

α

λ

o
Fig. 1: λ(g, α) with (OP) (g(0) = 0)

π2/4

λ(g, α)
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Example

Since g(u) is bounded in R by (A.2), it is clear that λ(g, α) → π2/4 as

α→ ∞. Therefore, the essential point is to find the condition whether

λ(g, α) intersects the line λ = π2/4 infinitely many times for α≫ 1. For

example, we have

・g(u) =
1

2
sin2n+1(u) =⇒ (OP)

・g(u) =
1

2
sin2n(u) =⇒ Not (OP)

Indeed,
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First Results

Theorem 1.1 ([S, 2016]). (i) Let k = 2n (n ≥ 1). Then as α→ ∞

λ(2n, α) =
π2

4
− π

22n+1α

(
2n

n

)
− π3/2

22n+1α3/2

n−1∑
r=0

(−1)n−r

(
2n

r

)
× 1√

n− r
sin
(
(2n− 2r)α+

π

4

)
+O(α−2). (1.6)

(ii) Let k = 2n+ 1 (n ≥ 0). Then as α→ ∞

λ(2n+ 1, α) =
π2

4
− π3/2

22n+1α3/2

n∑
r=0

(−1)n+r

(
2n+ 1

r

)
(1.7)

×

√
1

2(2n− 2r + 1)
sin

(
(2n− 2r + 1)α− 1

4
π

)
+O(α−2).
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when k = 2n

α

λ

o Fig.1 bifurcation curve for λ(2n, α)

π2/4

λ(2n, α)
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when k = 2n+ 1

α

λ

o Fig.2 bifurcation curve for λ(2n+ 1, α) (n ≥ 1)

π2/4

λ(2n+ 1, α)
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Delicate Example

・For instance, we consider the following typical example. Let δ, ϵ > 0 be

small fixed constants. We consider ψ ∈ C1(R) satisfying

ψ(t) > 0, t ∈ Iδ := (π/2− δ, π/2 + δ),

ψ(t) = 0, [−π, π] \ Iδ,

and

gϵ(u) := sinu+ ϵψ(u) for u ∈ [−π, π],

gϵ(u+ 2π) = gϵ(u) for u ∈ R.

Clearly, gϵ(u) satisfies (A.1)–(A.2). However, it seems difficult to

distinguish whether g(u) satisfies (OP) or not.
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Graph of gϵ

O

y

x
π

−π

Fig.2: graph of sinx+ ϵψ(x)

π/2

ϵψ(x)

Now we state our main results.
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Global behavior of bifurcation curve

Theorem 1.2. Assume that g(u) satisfies (A.1)–(A.2). Then as α→ ∞,

λ(g, α) =
π2

4
− πa0

2α
− 1

α

√
π

2α

∞∑
n=1

cn

n3/2
+O(α−2), (1.8)

where

a0 :=
1

π

∫ π

−π
g(θ)dθ, (1.9)

cn :=

∫ π

−π
g′(θ) cos

(
n(θ − α) +

3

4
π

)
dθ, (n ∈ N). (1.10)
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Corollary

As a corollary of Theorem 1.2, we obtain a meaningful result for the

asymptotic property of λ(g, α).

Corollary 1.3. Assume that g(u) satisfies (A.1)–(A.2). If a0 ̸= 0, then

λ(g, α) does not satisfy (OP).

We apply Corollary 1.3 to λ(gϵ, α). In this case, we have

a0 =
1

π

∫ π

−π
gϵ(θ)dθ =

1

π

∫ π

−π
(sin θ + ϵψ(θ))dθ =

ϵ∗
π

∫ π

−π
ψ(θ)dθ > 0.

By this, λ(gϵ, α) does not satisfy (OP).
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Local behavior of bifurcation curve

Remark. Theorem 1.2 is also useful to determine g(u) satisfies (OP). For

instance, let g1(u) = (sinu+ sin 2u)/4. We show that λ(g1, u) satisfies

(OP) in Example 2.2 in Section 2.

Local behavior of λ(g, α).

The method to study the local behavior of λ(α) has been already

established in [S, 2014,2016], since the time map method and Taylor

expansion work very well in this case. To understand the total structure of

λ(g, α), we show the following asymptotic formulas for completeness.
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Local behavior of bifurcation curve

Theorem 1.4. Assume (A.1)–(A.2). Furthermore, assume that g ∈ C2

near u = 0.

(i) Assume that g(0) ̸= 0. Then as α→ 0,

λ(g, α) =
2α

g(0)

{
1 +A1α+A2α

2 + o(α2)
}
, (1.11)

where

A1 = − 5

6g(0)
(1 + g′(0)), A2 =

32

45

(1 + g′(0))2

g(0)2
− 11

30

g′′(0)

g(0)
. (1.12)

(ii) Assume that g(0) = 0 and g′(0) > −1. Then as α→ 0,

λ(g, α) =
1

1 + g′(0)

(
π2

4
− πg′′(0)

3(1 + g′(0))
α+ o(α)

)
. (1.13)
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Rough graph of λ(α) with (OP)

π2

4(1+g′(0))

α

λ

o
Fig. 3: λ(g, α) with (OP)

π2/4

λ(g, α)
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Proof of Theorem 1.2: Global behavior of λ(α)

・The proof of Theorem 1.2 is given by the combination of time-map

method, Fourier expansion and the asymptotic formulas for some

special functions.

・In this section, let α≫ 1. For simplicity, we write λ = λ(g, α).

Furthermore, we denote by C the various positive constants independent

of α. We put

G(u) :=

∫ u

0
g(s)ds. (2.1)

It is known that if (uα, λ) ∈ C2(Ī)× R+ satisfies (1.1)–(1.3), then

uα(t) = uα(−t), 0 ≤ t ≤ 1, (2.2)

uα(0) = max
−1≤t≤1

uα(t) = α, (2.3)

u′α(t) > 0, −1 < t < 0. (2.4)
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time-map

We construct the well known time-map. By (1.1), we have{
u′′α(t) + λ (uα(t) + g(uα(t)))

}
u′α(t) = 0.

By this and putting t = 0, we obtain

1

2
u′α(t)

2 + λ

(
1

2
uα(t)

2 +G(uα(t))

)
= constant = λ

(
1

2
α2 +G(α)

)
.

This along with (2.4) implies that for −1 ≤ t ≤ 0,

u′α(t) =
√
λ
√
α2 − uα(t)2 + 2(G(α)−G(uα(t))). (2.5)

It follows from (A.2) that |g(u)| ≤ C for u ∈ R. Then for 0 ≤ s ≤ 1,∣∣∣∣G(α)−G(αs)

α2(1− s2)

∣∣∣∣ = ∣∣∣∣
∫ α
αs g(t)dt

α2(1− s2)

∣∣∣∣ ≤ Cα(1− s)

α2(1− s2)
≤ Cα−1. (2.6)
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time map

By (2.5), (2.6), putting s := uα(t)/α and Taylor expansion, we obtain

√
λ =

∫ 0

−1

u′α(t)√
α2 − uα(t)2 + 2(G(α)−G(uα(t)))

dt (2.7)

=

∫ 1

0

1√
1− s2 + 2(G(α)−G(αs))/α2

ds

=

∫ 1

0

1√
1− s2

1√
1 + 2(G(α)−G(αs))/(α2(1− s2))

ds

=

∫ 1

0

1√
1− s2

{
1− G(α)−G(αs)

α2(1− s2)
+O(α−2)

}
ds

:=
π

2
− 1

α2
K(α) +O(α−2),

where

K(α) :=

∫ 1

0

G(α)−G(αs)

(1− s2)3/2
ds. (2.8)
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time map

We calculate K(α) by using the asymptotic formulas for some special

functions. It is known that under the conditions (A.1)–(A.2),

g(x) =
1

2
a0 +

∞∑
n=1

an cosnx+

∞∑
n=1

bn sinnx (2.9)

holds for x ∈ R and the right hand side of (2.9) converges to g(x)

uniformly on R. Here,

an =
1

π

∫ π

−π
g(θ) cosnθdθ = − 1

nπ

∫ π

−π
g′(θ) sinnθdθ (2.10)

:= − 1

n
ãn (n ∈ N0),

bn =
1

π

∫ π

−π
g(θ) sinnθdθ =

1

nπ

∫ π

−π
g′(θ) cosnθdθ (2.11)

:=
1

n
b̃n (n ∈ N).
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Asymptotic behavior of K(α)

We obtain (2.10) and (2.11) by using integration by parts, since

g(−π) = g(π) by (A.2).

Lemma 2.1. As α→ ∞,

K(α) =
1

2
a0α+

1

π

√
πα

2

∞∑
n=1

cn

n3/2
+O(α−1/2). (2.12)

Proof. We put s = sin θ in (2.8). Then by integration by parts, we obtain

K(α) =

∫ π/2

0

1

cos2 θ
(G(α)−G(α sin θ))dθ (2.13)

=

∫ π/2

0
(tan θ)′(G(α)−G(α sin θ))dθ

= [tan θ(G(α)−G(α sin θ))]
π/2
0 + α

∫ π/2

0
g(α sin θ) sin θdθ.
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Asymptotic behavior of K(α)

By l’Hôpital’s rule, we obtain

lim
θ→π/2

G(α)−G(α sin θ)

cos θ
= lim

θ→π/2

αg(α sin θ) cos θ

sin θ
= 0. (2.14)

For n = N, we put

Un :=

∫ π/2

0
cos(nα sin θ) sin θdθ, (2.15)

Vn :=

∫ π/2

0
sin(nα sin θ) sin θdθ. (2.16)

By (2.13)–(2.16), we obtain
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K(α) = α

∫ π/2

0
g(α sin θ) sin θdθ (2.17)

= α

∫ π/2

0

{
1

2
a0 +

∞∑
n=1

an cos(nα sin θ)

+
∞∑
n=1

bn sin(nα sin θ)

}
sin θdθ

= α

{
1

2
a0 +

∞∑
n=1

an

∫ π/2

0
cos(nα sin θ) sin θdθ

+
∞∑
n=1

bn

∫ π/2

0
sin(nα sin θ) sin θdθ

}

= α

{
1

2
a0 −

∞∑
n=1

1

n
ãnUn +

∞∑
n=1

1

n
b̃nVn

}
.
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Asymptotic behavior of K(α)

Put θ = π/2− ϕ in (2.15). Then by (2.9)–(2.12), (2.14), (2.15) and [I. S.

Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products,

p.425], we obtain (Eν(z): Weber functions, Yν(z): Neumann functions)

Un =

∫ π/2

0
cos(nα cosϕ) cosϕdϕ (2.18)

=
π

4
(E1(nα)− E−1(nα))

=
π

4
(−Y1(nα) + Y−1(nα) +O((nα)−2)

=
π

4

(
−
√

2

nπα
sin

(
nα− 3

4
π

)
+

√
2

nπα
sin

(
nα+

1

4
π

))
+O((nα)−3/2)

= −
√

π

2nα
sin

(
nα− 3

4
π

)
+O((nα)−3/2),
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Asymptotic behavior of K(α)

Vn =

∫ π/2

0
sin(nα cosϕ) cosϕdϕ (2.19)

=
π

4
{J1(nα)− J−1(nα)}

=
π

4
{J1(nα)− J−1(nα)}

=
π

4

{√
2

nπα
cos

(
nα− 3

4
π

)
−
√

2

nπα
cos

(
nα+

1

4
π

)}
+O((nα)−3/2)

=

√
π

2nα
cos

(
nα− 3

4
π

)
+O((nα)−3/2).

(Jν(z): Anger functions, Jν(z): Bessel functions)

Tetsutaro Shibata (Hiroshima University) Bifurcation Problems 2019/5/11,12 29 / 77



Asymptotic behavior of K(α)

By (2.15)–(2.19), we obtain

K(α) = α

{
1

2
a0 +

√
π

2α

∞∑
n=1

(
ãn sin

(
nα− 3

4
π

)
+b̃n cos

(
nα− 3

4
π

))
1

n3/2

}
+O

(
α−1/2

∞∑
n=1

1

n5/2

)

= α

{
1

2
a0 +

1

π

√
π

2α

∞∑
n=1

cn

n3/2

}
+O(α−1/2).

Thus the proof is complete.

By (2.7) and Lemma 2.1, we obtain Theorem 1.2.
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Special functions and their asymptotic behavior

Jν(z): Bessel functions, Yν(z): Neumann functions,

Jν(z): Anger functions, Eν(z): Weber functions

Γ(z): Gamma functions.

For z ≫ 1, we have (cf. [I. S. Gradshteyn and I. M. Ryzhik, Table of

integrals, series, and products, p. 929, p. 958])

J1(z) =

√
2

πz

{
[1 +R1] cos

(
z − 3

4
π

)
−

[
1

2z

Γ
(
5
2

)
Γ
(
1
2

) +R2

]
sin

(
z − 3

4
π

)}
, (2.20)
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Special functions and their asymptotic behavior

J−1(z) =

√
2

πz

{
[1 +R1] cos

(
z +

1

4
π

)
−

[
1

2z

Γ
(
5
2

)
Γ
(
1
2

) +R2

]
sin

(
z +

1

4
π

)}
, (2.21)

Y1(z) =

√
2

πz

{
[1 +R1] sin

(
z − 3

4
π

)
+

[
1

2z

Γ
(
5
2

)
Γ
(
1
2

) +R2

]
cos

(
z − 3

4
π

)}
, (2.22)

Y−1(z) =

√
2

πz

{
[1 +R1] sin

(
z +

1

4
π

)
+

[
1

2z

Γ
(
5
2

)
Γ
(
1
2

) +R2

]
cos

(
z +

1

4
π

)}
, (2.23)

Tetsutaro Shibata (Hiroshima University) Bifurcation Problems 2019/5/11,12 32 / 77



Special functions and their asymptotic behavior

where

|R1| <

∣∣∣∣∣ Γ
(
7
2

)
8Γ
(
−1

2

)
z2

∣∣∣∣∣ , |R2| <

∣∣∣∣∣ Γ
(
9
2

)
48Γ

(
−3

2

)
z3

∣∣∣∣∣ , (2.24)

J±1(z) = J±1(z), (2.25)

E±1(z) = −Y±1(z)∓
2

πz2
+O(z−4). (2.26)
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Example

Example 2.2. Let

g1(u) =
sinu+ sin(2u)

4
.

Then g1(u) satisfies (OP). Indeed, in this case, it is clear that an = 0

(n ∈ N0) and bn = 0 (n ≥ 3). Therefore, we see from (3.18) that

b̃1 =
1

π

∫ π

−π

1

4
(cos θ + 2 cos 2θ) cos θdθ =

1

4
, (2.27)

b̃2 =
1

π

∫ π

−π

1

4
(cos θ + 2 cos 2θ) cos 2θdθ =

1

2
. (2.28)

By this, (2.17) and [I. S. Gradshteyn and I. M. Ryzhik, Table of integrals,

series, and products, pp. 30], we obtain
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Example

K(α) = α

{
b̃1V1 +

1

2
b̃2V2

}
=

1

4
α(V1 + V2) (2.29)

=
α

4

{√
π

2α
cos

(
α− 3

4
π

)
+

√
π

4α
cos

(
2α− 3

4
π

)
+O(α−3/2)

}
=

√
απ

8

{√
2 cos

(
α− 3

4
π

)
+ cos

(
2α− 3

4
π

)
+O(α−1)

}
.

By this and (2.7), we obtain

λ(α) =
π2

4
− π3/2

8α3/2

{√
2 cos

(
α− 3

4
π

)
+ cos

(
2α− 3

4
π

)}
+O(α−2).

For instance, if we put α = nπ + (3π)/4 (n ∈ N, n≫ 1), then we can

easily check that λ(α) satisfies (OP).
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Local behavior of λ(g, α)

The local behavior of λ(α) = λ(g, α) is easy to calculate, since Taylor

expansion and the time-map method work very well. We only prove

Theorem 1.4 (i) for completeness.

Proof of Theorem 1.4 (i). Since g(0) ̸= 0, by (A.1), we see that

g(0) > 0. By (1.1), (2.5) and Taylor expansion, for 0 < u≪ 1 and

−1 ≤ t ≤ 0, we have

u′α(t) =
√
λ(α)Mα(uα(t)),

where

Mα(u) := 2g(0)(α− u) + (1 + g′(0))(α2 − u2) (3.1)

+
1

3
(1 + o(1))g′′(0)(α3 − u3).

By this and putting s = uα(t)/α, we obtain
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Local behavior of λ(g, α)

√
λ(α) =

∫ 0

−1

u′α(t)√
Mα(uα(t))

dt (3.2)

=

√
α

2g(0)

∫ 1

0

1√
1− s

× 1√
1 + 1+g′(0)

2g(0) α(1 + s) + (1+o(1))g′′(0)
6g(0) α2(1 + s+ s2)

ds

=

√
α

2g(0)

∫ 1

0

1√
1− s

×
[
1− (1 + g′(0))

4g(0)
α(1 + s)− g′′(0)

12g(0)
α2(1 + s+ s2)

+
3

32g(0)2
(1 + g′(0))2α2(1 + s)2 + o(α2)

]
ds
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Local behavior of λ(g, α)

=

√
α

2g(0)

[
2− 5(1 + g′(0))

6g(0)
α

+

(
43

80

(1 + g′(0))2

g(0)2
− 11

30

g′′(0)

g(0)

)
α2 + o(α2)

]
.

This implies (1.11). Thus the proof is complete.
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Bifurcation curve with nonlinear diffusion

In this section, we consider

[D(u(t))u(t)′]′ + λf(u(t)) = 0, t ∈ I := (0, 1), (4.1)

u(t) > 0, t ∈ I, (4.2)

u(0) = u(1) = 0, (4.3)

where

D(u) = uk,

f(u) = u2n−k−1 + sinu,

and λ > 0 is a bifurcation parameter. Here,

n ∈ N and k (0 ≤ k < 2n− 1) are constants.
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Bifurcation curve with nonlinear diffusion

・(4.1)–(4.3) has been introduced by H. Lee, L. Sherbakov, J. Taber, J.

Shi (2006). Especially, the case D(u) = uk (k > 0) has been derived from

a model equation of animal dispersal and invasion. In this situation, λ is a

parameter which represents the habitat size and diffusion rate. Such model

also appears as the porous media equation in material science.

・On the other hand, there are several papers which treat the asymptotic

behavior of oscillatory bifurcation curves.

・Our equation (4.1)–(4.3) contains both nonlinear diffusion term and

oscillatory nonlinear terms. The purpose of this talk is to find the

difference between the structures of bifurcation curves of the equations

with only oscillatory term and those with both nonlinear diffusion term and

the oscillatory term in (4.1).
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Example

To clarify our intention, let k = 2 and n = 2. Then (1.1) is given as

(u2u′)′ + λ(u+ sinu) = 0. (4.4)

The corresponding equation without nonlinear diffusion is the case k = 0

and n = 1, namely,

u′′ + λ(u+ sinu) = 0. (4.5)

・As before, by the time-map argument, for any given α > 0, there exists

a unique classical solution pair (λ, uα) of (4.1)–(4.3) satisfying

α = ∥uα∥∞. Furthermore, λ is parameterized by α as λ = λ(α) and is

continuous in α > 0. For (4.5), the following asymptotic formula for λ(α)

as α→ ∞ has been obtained.
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Example

Theorem 4.1. ([S, 2016]) Consider (4.5) with (4.2)–(4.3). Then as

α→ ∞,

λ(α) = π2 − 4
π

α

√
π

2α
sin
(
α− π

4

)
+ o(α−3/2). (4.6)

For (4.5) with (4.2)–(4.3), the asymptotic behavior of λ(α) as α→ 0 is as

follows. For a solution pair (λ(α), uα) satisfying ∥uα∥∞ = α, put

vα(t) := uα(t)/α and let α→ 0. Then we easily obtain the function

v0 ∈ C2(I) which satisfies −v′′0(t) = 2λ(0)v0(t), v0(t) > 0 for t ∈ I with

v0(0) = v0(1) = 0. This implies λ(0) = π2/2. By this fact and Theorem

4.1, the bifurcation curve λ(α) starts from π2/2 and tends to π2 with

oscillation and intersects the line λ = π2 infinitely many times for α≫ 1.
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Rough Graph of λ(α)

α

λ

o
The graph of λ(α) for (4.6) (k = 0, n = 1)

π2

λ(α)
π2/2

Since (4.4) includes both the nonlinear diffusion function and oscillatory

term, it seems interesting how the nonlinear diffusion functions give effect

to the structures of bifurcation curves.
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Main Theorem

Theorem 4.2. Consider (4.1) with (4.2)–(4.3). Then as α→ ∞,

λ(α) = 4nα2k+2−2n (4.7)

×
{
A2

k,n − 2Ak,n

√
π

2n
αk+(1/2)−2n sin

(
α− π

4

)
+ o(αk+(1/2)−2n)

}
,

where

Ak,n =

∫ 1

0

sk√
1− s2n

ds. (4.8)
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Rough Graph of λ(α)

By Theorem 4.2, we obtain the global behavior of λ(α) as α→ ∞ for

n = k = 2, and see that the asymptotic behavior of λ(α) are completely

different from that for k = 0, n = 1 by comparing the figures.

α

λ

o
Fig. 2. The graph of λ(α) for k = n = 2

λ(α)

λ = 8A2
2,2α

2
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Local Behavior of λ(α)

Now we establish the asymptotic behavior of λ(α) as α→ 0 to obtain a

complete understanding of the structure of λ(α). Let

B0 :=

∫ 1

0

sk√
1− sk+2

ds, (4.9)

B1 :=
k + 2

12(k + 4)

∫ 1

0

sk(1− sk+4)

(1− sk+2)3/2
ds, (4.10)

B2 =
k + 2

2n

∫ 1

0

sk(1− s2n)

(1− sk+2)3/2
ds, (4.11)

B3 =
n

k + 2

∫ 1

0

sk(1− sk+2)

(1− s2n)3/2
ds. (4.12)
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Local Behavior of λ(α)

Theorem 4.3. Consider (4.1) with (4.2)–(4.3). Then the following

asymptotic formulas hold as α→ 0.

(i) Assume that k + 4 < 2n. Then

λ(α) = 2(k + 2)αk{B2
0 + 2B0B1α

2 + o(α2)}. (4.13)

(ii) Assume that 2n = k + 4. Then

λ(α) = 2(k + 2)αk{B2
0 − 10B0B1α

2 + o(α2)}. (4.14)

(iii) Assume that k + 2 < 2n < k + 4. Then

λ(α) = 2(k + 2)αk{B2
0 −B0B2α

2n−k−2 + o(α2n−k−2)}. (4.15)
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Rough Shape of λ(α)

(iv) Assume that 2n = k + 2. Then

λ(α) = (k + 2)αk{B2
0 +B0B1α

2 + o(α2)}. (4.16)

(v) Assume that k + 1 < 2n < k + 2. Then

λ(α) = 4nα2(k+1−n){A2
k,n − 2Ak,nB3α

k+2−2n + o(αk+2−2n)}. (4.17)

α

λ

o
Fig. 3. The graph of λ(α) for k = 1, n = 2

π2/2

λ(α)
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Rough Shape of λ(α)

α

λ

o
Fig. 4. The graph of λ(α) for k = n = 2

λ(α)

λ = 8A2
2,2α

2
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Rough Shape of λ(α)

α

λ

o
Fig. 5. The graph of λ(α) for k = 1, n = 3

λ(α) λ = 12A2
1,3α

−2 (α≫ 1)

Tetsutaro Shibata (Hiroshima University) Bifurcation Problems 2019/5/11,12 50 / 77



Sketch of the proofs

The proofs depend on the generalized time-map argument and stationary

phase method (cf. Lemma 5.1 below). It should be mentioned that, if we

apply Lemma 5.1 to our situation, careful consideration about the

regularity of the functions is necessary.

By the generalized time-map obtained in [16] (cf. (5.7) below) and the

standard time-map argument, we see that for any given α > 0, there exists

a unique classical solution pair (λ, uα) of (4.1)–(4.3) satisfying

α = ∥uα∥∞. Furthermore, λ is parameterized by α as λ = λ(α) and is

continuous in α > 0.
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Fundanental tools

For u ≥ 0, we put

G(u) :=

∫ u

0
f(y)D(y)dy =

1

2n
u2n +G1(u) (5.1)

:=
1

2n
u2n +

∫ u

0
yk sin ydy.

It is known that if (uα, λ(α)) ∈ C2(Ī)× R+ satisfies (4.1)–(4.3), then

uα(t) = uα(1− t), 0 ≤ t ≤ 1, (5.2)

uα

(
1

2

)
= max

0≤t≤1
uα(t) = α, (5.3)

u′α(t) > 0, 0 < t <
1

2
. (5.4)

For 0 ≤ s ≤ 1 and α≫ 1, we have∣∣∣∣G1(α)−G1(αs)

α2n(1− s2n)

∣∣∣∣ =
∣∣∣∣∣
∫ α
αsw

k sinwdw

α2n(1− s2n)

∣∣∣∣∣ ≤ Cαk+1−2n ≪ 1. (5.5)
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Fundanental tools

By (4.1), we have

{[D(u(t))u(t)′]′ + λf(u(t))}[D(u(t))u(t)′] = 0.

Namely, by putting t = 1/2,

d

dt

[
1

2
[D(u(t))u(t)′]2 + λG(u(t))

]
= 0,

1

2
[D(u(t))u(t)′]2 + λG(u(t)) = const. = λG(α),

D(u(t))u(t)′ =
√

2λ(G(α)−G(u(t)), 0 ≤ t ≤ 1

2
.

By putting u = u(t),

1

2

√
2λ =

∫ 1/2

0

D(u(t)u′(t)√
2λ(G(α)−G(u(t))

dt =

∫ α

0

D(u)√
G(α)−G(u)

du.
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Fundanental tools

By this, (5.2) and Taylor expansion, we see that√
λ(α)

2
=

∫ α

0

D(u)√
G(α)−G(u)

du (5.6)

=

∫ α

0

uk√
1
2n(α

2n − u2n) +G1(α)−G1(u)
du

=
√
2nαk+1−n

∫ 1

0

sk√
1− s2n + 2n

α2n (G1(α)−G1(αs))
ds

=
√
2nαk+1−n

∫ 1

0

sk√
1− s2n

{
1− n

α2n

G1(α)−G(αs)

(1− s2n)
(1 + o(1))

}
ds

=
√
2nαk+1−n

{∫ 1

0

sk√
1− s2n

ds− n

α2n
L(α)(1 + o(1))

}
,

where
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Fundanental tools

L(α) :=

∫ 1

0

sk

(1− s2n)3/2
(G1(α)−G1(αs))ds. (5.7)

We see from (5.6) and (5.7) that if we obtain the precise asymptotic

formula for L(α) as α→ ∞, then we obtain Theorem 4.2. To do this, we

apply the stationary phase method to our situation. Indeed, we have the

following equality.
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stationary phase method

Lemma 5.1. Assume that the function f(r) ∈ C2[0, 1], w(r) ∈ C3[0, 1]

and

w′(r) < 0, r ∈ (0, 1], w′(0) = 0, w′′(0) < 0. (5.8)

Then as µ→ ∞∫ 1

0
f(r)eiµw(r)dr =

1

2
ei(µw(0)−(π/4))

√
2π

µ|w′′(0)|
f(0) +O

(
1

µ

)
. (5.9)

In particular, by taking the imaginary part of (5.9), as µ→ ∞,∫ 1

0
f(r) sin(µw(r))dr =

1

2

√
2π

µ|w′′(0)|
f(0) sin

(
w(0)µ− π

4

)
+O

(
1

µ

)
.(5.10)
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Key Lemma

Lemma 5.2. As α→ ∞,

L(α) =

√
π

2

1

n3/2
αk+(1/2) sin

(
α− π

4

)
+O(αk). (5.11)
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Key Lemma

Proof. We put s = sin θ and

Y (θ) := Y1(θ)(G1(α)−G1(α sin θ)) (5.12)

:=
sink θ

(1 + sin2 θ + · · ·+ sin2n−2 θ)3/2
(G1(α)−G1(α sin θ)).

By integration by parts, we have

L(α) =

∫ 1

0

sk(G1(α)−G1(αs))

(1− s2)3/2(1 + s2 + · · ·+ s2n−2)3/2
ds (5.13)

=

∫ π/2

0

1

cos2 θ

sink θ(G1(α)−G1(α sin θ))

(1 + sin2 θ + · · ·+ sin2n−2 θ)3/2
dθ

:= L1(α)− L2(α)

= [tan θY (θ)]
π/2
0 −

∫ π/2

0
tan θ{Y1(θ)(G1(α)−G1(α sin θ))}′dθ.
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Proof of Key Lemma

By l’Hôpital’s rule, we obtain

lim
θ→π/2

G1(α)−G1(α sin θ)

cos θ
(5.14)

= lim
θ→π/2

α cos θ(α sin θ)k sin(α sin θ)

sin θ
= 0.

This implies that L1(α) = 0. Next,

L2(α) =

∫ π/2

0
tan θ{Y ′

1(θ)(G1(α)−G1(α sin θ)} (5.15)

− Y1(θ)α cos θ(α sin θ)k sin(α sin θ)}dθ.

:= L21(α)− L22(α).
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Proof of Key Lemma

We first calculate L21(α). Assume that k > 0. Then

Y ′
1(θ) =

sink−1 θ cos θ

(1 + sin2 θ + · · ·+ sin2n−2 θ)3/2
(5.16)

×
[
k − 3(sin2 θ + 2 sin4 θ + · · ·+ (n− 1) sin2n−2 θ)

1 + sin2 θ + · · ·+ sin2n−2 θ

]
.

This implies that for α≫ 1,

| tan θY ′
1(θ)| ≤ C| sink θ| ≤ C. (5.17)

By direct calculation, we also obtain (5.17) for the case where k = 0. By

integration by parts, we obtain
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Proof of Key Lemma

|G1(α)−G1(α sin θ)| =

∣∣∣∣∫ α

α sin θ
wk sinwdw

∣∣∣∣ (5.18)

≤
∣∣∣[−wk cosw

]α
α sin θ

∣∣∣+ ∣∣∣∣∫ α

α sin θ
kwk−1 coswdw

∣∣∣∣
≤ Cαk.

By (5.17) and (5.18), for α≫ 1, we obtain

|L21(α)| = | tan θY ′
1(θ)(G1(α)−G1(α sin θ))| ≤ Cαk. (5.19)
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Proof of Key Lemma

Since

L22(α) = αk+1

∫ π/2

0
Y1(α) sin

k+1 θ sin(α sin θ)dθ, (5.20)

by putting θ =
π

2
(1− r), we obtain

L22(α) =
π

2
αk+1

∫ 1

0

cos2k+1 π
2 r

(1 + cos2 π
2 r + · · ·+ cos2n−2 π

2 r)
3/2

× sin
(
α cos

π

2
r
)
dr. (5.21)

Let

f(r) =
cos2k+1 π

2 r

(1 + cos2 π
2 r + · · ·+ cos2n−2 π

2 r)
3/2

, w(r) = cos
π

2
r, µ = α.(5.22)
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Proof of Key Lemma

Case 1. Assume that k > 1/2 or k = 0. Then clearly f(r) ∈ C2[0, 1], and

we are able to apply Lemma 5.1 to (5.21). Then we obtain

L22(α) =

√
π

2

1

n3/2
αk+(1/2) sin

(
α− π

4

)
+O(αk). (5.23)

By this, (5.16) and (5.19), we obtain (5.11).

Case 2. Assume that 0 < k < 1/2. Then f(r) ∈ C1+2k[0, 1] with

0 < 2k < 1. Therefore, f(r) does not satisfy the condition in Lemma 5.1.

However, by the modefication of the argument, we find that we can still

apply Lemma 5.1 to (5.21) in this situation and obtain (5.23). Thus the

proof is complete.

By (5.6) and Lemma 5.2, we obtain Theorem 4.2 immediately. Thus the

proof is complete.
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Local Behavior of λ(α)

In this section, let 0 < α≪ 1. The proofs of Theorem 4.3 (i)-(v) are

similar. Therefore, we only prove (i).

Proof of Theorem 4.3 (i). We assume that 2n > k + 4. Then by Taylor

expansion, for 0 ≤ s ≤ 1, we have

G(α)−G(αs) =
1

2n
α2n(1− s2n) +

1

k + 2
αk+2(1− sk+2) (6.1)

− 1

6(k + 4)
αk+4(1− sk+4)(1 + o(1)).

By this, Taylor expansion and putting u = αs, we obtain
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Local Behavior of λ(α)

√
λ(α)

2
=

∫ α

0

ukdu√
1
2n(α

2n − u2n) + 1
k+2(α

k+2 − uk+2)− 1
6(k+4)(α

k+4 − uk+4)(1 + o(1))

=
√
k + 2αk/2

∫ 1

0

sk

√
1− sk+2

√
1− k+2

6(k+4)
1−sk+4

1−sk+2α2 + o(α2)
ds

=
√
k + 2αk/2

∫ 1

0

sk√
1− sk+2

(
1 +

k + 2

12(k + 4)

1− sk+4

1− sk+2
α2 + o(α2)

)
ds

=
√
k + 2αk/2{B0 +B1α

2 + o(α2)}. (6.2)

This implies (4.13). Thus the proof is complete.
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Stationary Phase Method with Less Regularity

In this section, we show that Case 2 in Lemma 5.2 holds for completeness.

We put

f(x) = f1(x)f2(x) := cos2k+1 π

2
x

1

(1 + cos2 π
2x+ · · ·+ cos2n−2 π

2x)
3/2

.(7.1)

Note that 0 < 2k < 1. We see that f2(x) ∈ C2[0, 1]. The essential point

of the proof of Lemma 5.1 in this case is to show [Korman, (2012),

Lemmas 2.24 and 2.25] holds with less regularity. Namely, as µ→ ∞,

Φ(µ) :=

∫ 1

0
f(x)e−iµx2

dx =
1

2

√
π

µ
e−i(π/4)f(0) +O

(
1

µ

)
. (7.2)

We put h(x) = (f(x)− f(0))/x. Then we have f(x) = f(0) + xh(x). We

know from [Korman (2012), Lemmas 2.24] that for µ≫ 1,∫ 1

0
e−iµx2

dx =
1

2

√
π

µ
e−iπ/4 +O

(
1

µ

)
. (7.3)
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Stationary Phase Method with Less Regularity

By (7.2) and (7.3), we obtain

Φ(µ) = f(0)

∫ 1

0
e−iµx2

dx+

∫ 1

0
xe−iµx2

h(x)dx (7.4)

=
1

2
f(0)

√
π

µ
e−iπ/4 +O

(
1

µ

)
+

∫ 1

0
xe−iµx2

h(x)dx.

We put

Φ1(µ) :=

∫ 1

0
xe−iµx2

h(x)dx. (7.5)

Now we prove that h(x) ∈ C1[0, 1], because if it is proved, then by

integration by parts, we easily show that Φ1(µ) = O(1/µ) and our

conclusion (7.2) follows immediately from (7.4) and (7.5). For 0 ≤ x ≤ 1,

we have
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h(x) =
f(x)− f(0)

x
(7.6)

= f2(x)
f1(x)− f1(0)

x
+ f1(0)

f2(x)− f2(0)

x
:= f2(x)h1(x) + f1(0)h2(x).

Then we have h2(x) ∈ C1[0, 1]. Furthermore, by direct calculation, we can

show that h1(x) ∈ C1[0, 1]. It is reasonable, because by Taylor expansion,

for 0 < x≪ 1, we have

h1(x) = −(2k + 1)π2

8
x+O(x3). (7.7)

Thus the proof is complete.
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Thank you very much

Thank You for Your Attention
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