- ●工学部(電子情報工学科/電気工学科)
- ●情報工学部(情報工学科/情報通信工学科/システムマネジメント学科)

1	1)	2	3	4	(5)	6	7	8	9	10
	(a, a-2)	-2	19	$\frac{4\sqrt{5}}{9}$	189	378	4096	84	-2	0

2	1)	2	2 3		(5)	6
	1.6811	34	1.6990 または 1.699	16	84	9

- **3** (1) f(x) g(x) = 2(x-2)(x+a)(x-a) であるので、方程式f(x) g(x) = 0の解はx = 2, -a, a である。 したがって、求めるx座標は、x = 2. -a, a である。
 - (2) $a \ge 3$ より -a < 2 < a である。2 つの曲線 y = f(x), y = g(x) で囲まれた部分は、2 つの曲線 y = f(x) ($-a \le x \le 2$), y = g(x) ($-a \le x \le 2$) で囲まれた部分と、

2つの曲線 y = f(x) ($2 \le x \le a$), y = g(x) ($2 \le x \le a$) で囲まれた部分とからなる。

区間 $-a \le x \le 2$ において $f(x) - g(x) \ge 0$ であり、区間 $2 \le x \le a$ において $f(x) - g(x) \le 0$ であるので、

求める面積Sは

$$\begin{split} S &= \int_{-a}^{2} (f(x) - g(x)) \, dx - \int_{2}^{a} (f(x) - g(x)) \, dx \\ &= \left[\frac{1}{2} x^{4} - \frac{4}{3} x^{3} - a^{2} x^{2} + 4 a^{2} x \right]_{-a}^{2} - \left[\frac{1}{2} x^{4} - \frac{4}{3} x^{3} - a^{2} x^{2} + 4 a^{2} x \right]_{2}^{a} \\ &= a^{4} + 8 a^{2} - \frac{16}{3} \end{split}$$

- (3) $h(x) = x^4 + 8x^2 \frac{16}{3}$ とすると、 $h'(x) = 4x^3 + 16x = 4x(x^2 + 4)$ である。したがって、x > 0 のとき h'(x) > 0 であるので、h(x) は区間 x > 0 において単調増加である。いま、 $a \ge 3$ であるので、S が最小となるのは a = 3 のときである。
- 4 [A]
 - (1) 点 P の座標を (x, y, z) とすると、点 P は線分 OC を 7:3 に外分することから、

$$x = \frac{-3 \cdot 0 + 7 \cdot 3}{7 - 3} = \frac{21}{4}$$
, $y = \frac{-3 \cdot 0 + 7 \cdot 1}{7 - 3} = \frac{7}{4}$, $z = \frac{-3 \cdot 0 + 7 \cdot \sqrt{6}}{7 - 3} = \frac{7\sqrt{6}}{4}$ であり,

$$\begin{split} |\overrightarrow{\mathrm{CP}}| &= \sqrt{\left(\frac{21}{4} - 3\right)^2 + \left(\frac{7}{4} - 1\right)^2 + \left(\frac{7\sqrt{6}}{4} - \sqrt{6}\right)^2} \\ &= \sqrt{\left(\frac{9}{4}\right)^2 + \left(\frac{3}{4}\right)^2 + \left(\frac{3\sqrt{6}}{4}\right)^2} \\ &= \sqrt{81 + 9 + 54} \\ &= 2 \end{split}$$

である。球面Sの半径は、 $|\overline{CP}|$ に等しいので、求める半径は3である。

(2) (1)より、球面 S の半径は 3 であるから、S の方程式は

$$(x-3)^2 + (y-1)^2 + (z-\sqrt{6})^2 = 9$$

である。 $\triangle A(\alpha, 0, 0)$ はS上の点であるから、この方程式を満たす。したがって、

 $(\alpha-3)^2+(0-1)^2+(0-\sqrt{6})^2=9$, すなわち, $(\alpha-3)^2=2$ を満たす。このことは、点 B $(\beta,0,0)$ についても同様であり、 β は $(\beta-3)^2=2$ を満たす。これらの等式を α 、 β について解くと、 $|\overline{OA}|<|\overline{OB}|$ より $\alpha<\beta$ なので、 $\alpha=3-\sqrt{2}$ 、 $\beta=3+\sqrt{2}$ である。

4 [A]

(3) 点 A の座標は $(3-\sqrt{2}, 0, 0)$ であるから,

$$\overrightarrow{CA} = \overrightarrow{OA} - \overrightarrow{OC} = (3 - \sqrt{2}, 0, 0) - (3, 1, \sqrt{6}) = (-\sqrt{2}, -1, -\sqrt{6})$$

であり、 $|\overline{CA}|$ は球面 S の半径に等しいので、 $|\overline{CA}|$ = 3 である。また、点 B の座標は $(3+\sqrt{2},0,0)$ であるから、 $\overline{CB} = \overline{OB} - \overline{OC} = (3+\sqrt{2},0,0) - (3,1,\sqrt{6}) = (\sqrt{2},-1,-\sqrt{6})$

であり、 $|\overrightarrow{CB}|$ も球面Sの半径に等しいので、 $|\overrightarrow{CB}|$ =3である。したがって、

$$\overrightarrow{\mathrm{CA}} \cdot \overrightarrow{\mathrm{CB}} = (-\sqrt{2}) \cdot \sqrt{2} + (-1) \cdot (-1) + (-\sqrt{6}) \cdot (-\sqrt{6}) = 5$$

であり,

$$\cos \angle ACB = \frac{\overrightarrow{CA} \cdot \overrightarrow{CB}}{|\overrightarrow{CA}||\overrightarrow{CB}|} = \frac{5}{3 \cdot 3} = \frac{5}{9}$$

である。

4 [B]

- (1) $f'(x) = \frac{2x(x-2)}{(x-1)^2}$ $rac{1}{2}$ $rac{1}{2}$
- (2) (1)より、増減表は以下の表のようになる。

x		0		1		2	
f'(x)	+	0	_		_	0	+
f(x)	1	1	7		7	9	1

したがって、関数f(x)はx=0で極大値1、x=2で極小値9をとる。

(3) 曲線 y=f(x)と x 軸との交点は、 $2x^2+x-1=(2x-1)(x+1)$ より、x=-1と $x=\frac{1}{2}$ である。このことと (2) の増減表より、曲線と x 軸で囲まれる部分の面積を S とすると

$$S = \int_{-1}^{\frac{1}{2}} \frac{2x^2 + x - 1}{x - 1} dx$$

$$= \int_{-1}^{\frac{1}{2}} \frac{(2x + 3)(x - 1) + 2}{x - 1} dx$$

$$= \int_{-1}^{\frac{1}{2}} \left\{ (2x + 3) + \frac{2}{x - 1} \right\} dx$$

$$= \left[x^2 + 3x + 2\log|x - 1| \right]_{-1}^{\frac{1}{2}}$$

$$= \frac{15}{4} - 4\log 2$$

2月10日 実施分

- ●工学部(生命環境化学科/知能機械工学科)
- ●情報工学部(情報システム工学科)
- ●社会環境学部(社会環境学科)

1	1)				2	3	4	(5)	6
	(3x +	2y) $(4x -$	- 3 <i>y</i>)	(2x - 2y+5)(x+y+1)		1/9	13 216	5	7
	7	8	9	10					
	- 2	1	13	96					

2	1)	2	3	4	(5)	6
	13	$3\sqrt{3}$	$14\sqrt{3}$	$39\sqrt{3}$	196	$294\sqrt{3}$

3(1) 対数法則を用いると

$$(\log_5 x)^2 - \log_5 x^2 = 0$$

- $\Leftrightarrow (\log_5 x)(\log_5 x 2) = 0$
- $\Leftrightarrow \log_5 x = 0, 2$

よって、方程式の解はx = 1,25

(2) $\log_5 x = t$ とおくと,

$$t^2 - 2t = k$$

$$\Leftrightarrow t^2 - 2t - k = 0$$

この方程式の判別式 D は

$$D = 4 + 4k$$

よって、 $t^2 - 2t = k$ がただ1つの解をもつときのkの値は

$$k = -1$$

 $y = \log_5 x$ は増加関数であるから、 $p = q \Leftrightarrow \log_5 p = \log_5 q$ したがって、元の方程式がただ 1 つの解を持つときの k の値も

$$k = -1$$

(3) $\log_5 x = t$ とおくと,

$$y = t^2 - 2t \ (0 \le t \le 3)$$

yは t = 3のとき最大値 3,

t = 1 のとき最小値 -1 をとる。

したがって、

x = 125のとき 最大値3,

x = 5 のとき 最小値 – 1

をとる。

4 [A]

$$a_{n} = \begin{cases} 2^{k} \cdot 3^{k-1} & (n = 2k - 1) \\ 2^{k} \cdot 3^{k} & (n = 2k) \end{cases}$$

- (1) $7776 = 2^5 \cdot 3^5$ \$\mathre{b}\$ \$\mathre{h}\$, n = 10
- (2) $2023 = 2 \cdot 1012 1$ なので、 $a_{2023} = 2^{1012} \cdot 3^{1011}$ したがって、p = 1012, q = 1011
- (3) $a_{2m-1}=2^m\cdot 3^{m-1}$ であるから、 a_{2m-1} の正の約数は $2^p\cdot 3^q$ $(p=0,\cdots,m,q=0,\cdots,m-1)$ したがって、正の約数の個数は $(m+1)\left\{(m-1)+1\right\}=m\left(m+1\right)$ である。

4 [B]

(1)
$$f'(x) = 3x^2 e^{-x} - x^3 e^{-x}$$

= $x^2 (3 - x) e^{-x}$

(2) (1)より、増減表は以下のようになる。

x		0		3	
f'(x)	+	0	+	0	_
f(x)	1	0	1	$\frac{27}{e^3}$	Ä

したがって、関数f(x)はx=3で極大値 $\frac{27}{e^3}$ をとる。

- (3) $f''(x) = x(x^2 6x + 6) e^{-x}$
- (4) f''(x) = 0 の解は x = 0, $3 \sqrt{3}$, $3 + \sqrt{3}$ である。 f''(x) の符号を調べると、以下のようになる。

x		0		$3-\sqrt{3}$	•••	$3 + \sqrt{3}$	•••
f''(x)	_	0	+	0	_	0	+

したがって、変曲点のx座標は、

$$x = 0$$
, $3 - \sqrt{3}$, $3 + \sqrt{3}$