知能機械工学科

Intelligent Mechanical Engineering 知能機械創成コース 知能機械設計コース



福岡工業大学 工学部

知能機械工学科では モノを創ることを 学びます。

創造力を養うこと。これこそキミの一生の武器 になります。2年生のエンジニアリングデザイン 教育「ものづくり工学実習」では6名1チームに 分かれ、与えられた予算の中で自分たちの決め た「モノづくり」にチャレンジします。例えば、「江 戸時代のカラクリ人形を復活させるリというテー マの場合、図書館にある古文書を元に作成して いきます。先生にアドバイスを受けることもでき ますが、あくまでも主役は学生自身。自分達で調 べ、失敗し、相談、解決することで創造力を磨いて ください。「モノづくり」の成果は発表会でプレゼ ンし、論文にまとめます。4年生では1年間「卒業 研究」でさらに「モノづくり」を体験をします。

豊かな発想をカタチにする

知能機械工学科では即戦力の エンジニアリングデザイン能力 を磨きます。

どんなに素晴らしい発想でも、それをカタチに するエンジニアリングデザイン能力がないと成り 立ちません。2年~3年生では、機械の専門科目 「材料力学」「機械力学」「流体力学」「熱力学」な どをしっかりと習得。「知能機械設計」では、具体 的にスクリュージャッキを取り上げ、機械要素の 統合化やシステム化の実践的な設計手法を学び ます。さらに、CAD製図や3次元CADにもチャレ

社会で成功するチカラとなる

知能機械工学科では プレゼン能力を 身に付けます。

自分の考えを分かりやすく上手にアピールす る能力。これは社会で成功するポイントのひとつ です。本学科では、多くの授業科目で学生による プレゼンテーションの場を取り入れています。「モ ノづくりと科学技術表現」では、理科系の文書作 成も学習します。4年間の総まとめとして、卒業

研究の発表会などで今まで身に付けた表現能力 を披露。学生達は自信と確信を持って社会に巣 つの力を手に入れて

越エンジニアの シャリストになる!!

研究リポート

小さな好奇心と 努力の積み重ねが、 研究への大きなエネルギー!

社会に役立つロボットシステムの研究

私の研究分野は「ロボット工学」で す。具体的な研究テーマとしては、ロボ ット操作用スーツの開発、福祉介護ロボ ット、地雷撤去ロボット、災害救助ロボッ トなど、社会に役立てるロボットシステ ムの研究開発を目指しています。高齢 比社会·福祉社会と呼ばれる日本にとっ 、これらのロボットは今後ますます重要性を増してくると思います。

単純化・コンパクト化・軽量化

21世紀の自動車は、環境に優しいテクノロジー作りが大切となり、 環境を汚さないクリーンなエネルギーで走るものでなければなりま せん。そこで、将来の乗り物(電気自動車、ソーラーカーなど)を考え ると、懸架装置も改善も重要です。Suciu研究室では、圧縮コイルば ねを使用せず、従来の油圧ダンパーに変わってコロイダルダンパー を用いて、自動車用懸架装置の単純化・コンパクト化・軽量化を行いま す。従って、油圧ダンパーのオイルの代わりに多孔質シリカゲル(人 工砂)と水からなるコロイド溶液を使用した高性能で環境に優しい二 ロイダルダンパーは、ばねの機能を有するので、懸架装置の単純 な構造を設計・製作し、自動車の乗り心地を実験より評価します。

の飛行法を真似た羽ばたき飛行機の研究 写真は翼幅10cm、重さ2g

の世界最小・最軽量の羽ばたき 飛行機です。携帯電話の振動モ 一夕を動力源としています。昆 中の持つ飛行能力を発揮し易 くするために、更に小型・軽量を 目指し、セミやトンボのサイズ にしたいと考えています。

バイオ材料の力学特性評価

人間の体内に利用できる人工骨の研究をしてい ます。人工骨は病気・怪我などで失った部位の再生医 **瘤として注目されています。このようなバイオ材料** は、生体骨の力学的な特性との類似性、生体組織と

の結合能力、手術現場での加工容易性等をもつこと が望ましく、私の研究室では、人工骨に繰返し荷重を与えた際の亀裂や破断面の観 察を行い、損傷の機構および環境の影響について調査しています。今後、医療分野 にとどまらず、ますますバイオ材料が社会で活躍すると思われます。

技能検定 2級・3級

CAD利用技術者 2級

機械設計技術者

修習技術者(技術士補)

造力

知能機械工学科では モノを創ることを 学びます。

創造力を養うこと。これこそキミの一生の武器 になります。2年生のエンジニアリングデザイン 教育「ものづくり丁学実習」では6名1チームに 分かれ、与えられた予算の中で自分たちの決め た「モノづくり」にチャレンジします。例えば、「江 戸時代のカラクリ人形を復活させる!」というテー マの場合、図書館にある古文書を元に作成して いきます。先生にアドバイスを受けることもでき ますが、あくまでも主役は学生自身。自分達で調 べ、失敗し、相談、解決することで創造力を磨いて ください。「モノづくり」の成果は発表会でプレゼ ンし、論文にまとめます。4年生では1年間「卒業 研究 | でさらに「モノづくり | を体験をします。

豊かな発想をカタチにする

知能機械工学科では即戦力の エンジニアリングデザイン能力 を磨きます。

どんなに素晴らしい発想でも、それをカタチに するエンジニアリングデザイン能力がないと成り 立ちません。2年~3年生では、機械の専門科目 「材料力学」「機械力学」「流体力学」「熱力学」な どをしっかりと習得。「知能機械設計」では、具体 的にスクリュージャッキを取り上げ、機械要素の 統合化やシステム化の実践的な設計手法を学び ます。さらに、CAD製図や3次元CADにもチャレ ンジします。

社会で成功するチカラとなる

知能機械工学科では プレゼン能力を 身に付けます。

自分の考えを分かりやすく上手にアピールす る能力。これは社会で成功するポイントのひとつ です。本学科では、多くの授業科目で学生による プレゼンテーションの場を取り入れています。「モ ノづくりと科学技術表現」では、理科系の文書作 成も学習します。4年間の総まとめとして、卒業 研究の発表会などで今まで身に付けた表現能力 を披露。学生達は自信と確信を持って社会に巣 立ちます。

つの力を手に入れて エンジニアの シャリストになる!!

2007年5月14日 公表

福岡工業大学知能機械工学科〈知能機械創成コース〉

プログラムに

(2006年度卒業生から認定有効)

JABEE

日本技術者教育認定機構(JABFF)は、技術系学協会と 密接に連携しながら技術者教育プログラムの審査・認定を行う非政府団体です。

大学などで実施されている技術者教育プログラムが、社会の要求水準を満たしてい るかどうかを外部機関が公平に評価し、要求水準を満たしている教育プログラムを認 定する専門認定制度です。

Point 1 学生支援充実の証拠

演習、小テストの結果に応じ 個人指導も行い、 時間外の質問も歓迎します。

相互評価ならびに認証評価で 「大学基準に適合している」と

*

ACCREDITED 2006 4-2013 X

Point 3

教育水準の第三者保証

本校は(財)大学基準協会による

Point 2 最先端研究の証拠

産学連携研究推進事業など

就職に有利 多くの企業では、JABEE認定修了者を優先的に採用する傾向にあります。

修習技術者の資格

BEE認定修了者には修習技術者(技術士補)の資格を登録できます。

技術士の1次試験免除

技術十は弁護士、医師と同様の国家資格であり、技術十はエンジニア(技術者)としては 最高の資格と言われています。JABEE認定修了者は技術士の1次試験が免除されます。

夢をカタチにできる創造空間「モノづくりセンター」

人ひとりの創作意欲やチャレンジ精神をバックアップ

知的好奇心を刺激する最新の創造空間で、モノを作る楽しみや喜びを体験してみよう。

分の夢を実現するプロジェクトテーマを課外活動として立ち上げることができます。

●ソーラーカー ●ロボコン ●ロボカップ ●ロボット相撲

JABEE

Unce 2006

知能機械 創成コース

Point 4

教育施設充実

の証拠

AN-PERE

Curriculum メカを創造る 君のためのカリキュラムはコレ!

●コミュニケーション能力の高い機械技術者の育成●社会に貢献する機械エンジニアの育成

●機械制御を設計し、創ることのできるエンジニアの育成

「数学基礎演習」「物理基礎演習」 などを中心に、機械設計に必要な 数学・物理能力の育成を行います。

「ものづくり基礎実習」では、ロボッ コンテスト、エンジン分解、機械加工をとおして、実際のモノづくりに必要 は、スケッチの基礎、機械構造、工作 機械の基礎操作などを学びます。

「材料力学」「基礎製図及びCAD

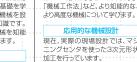
演習」「知能機械設計I」を通じて機 充実した設備で、3次元CADの 械設計の基礎を学びます。 操作もわかりやすく学習できます。

「知能機械制御言語及び演習」で

は、機械を知能的に動かす上で必

的に動かす仕組みを学びます。

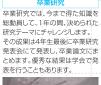
い. 学生自身が主役にな



学」など機械工学の専門基礎を学 びます。これらの講義は機械を設 計する上で基礎となる知識です。 「機械制御工学」では機械を知能

「知能機械設計」「では、具体的な機 械装置としてスクリュージャッキを 取り上げて、主要部品の設計計画 書、計画図、部品図、組立図等で構 成される設計書の作成を行い、機械設計の手法を総合的に学びます。

「ものづくり工学実習」では、6名1 グループに分かれ、学生自身が決 めた[モノづくり]にチャレンジします。先生はアドバイスしかしまも を創造することを体験します。


ニングセンタを使った3次元形状 加工を行っています。

「CAMシステム及び演習 」では、コ ンピュータ上で設計を行い、CAM システムの操作と実機による演習 を行います。

実験による機械知識

机の Fの論議だけでは、実際の機 械は製作できません。「知能機械 工学総合実験」では、実際の機械 設計に必要な知識のうち、教科書 だけでは学べないテーマを実際に 実験を行って体験します。

いて実際に企業の現場で活躍されている技術者の方々をお招きし、講義していただきます。

際的に通用する技術者育成を目指し 企業現場での最先端技術 て、英語ブレゼンテーション方法を紹 先端基盤技術」ではロケット・自動 介します。技術英語独特の表現法や 車·ロボットなど、最先端技術につ 科学技術用語の特別の意味を理解・

」 学な教育を実践!! 知能機械工学科、独自の勉強法で学生をサポートします!

数学・物理の基礎教育を重視!

数学と物理は、機械工学の専門知識を学ぶ上で、大切な土台となりま す。知能機械工学科では、「数学基礎演習」と「物理基礎演習」を設け、学生

プ。さらに、習熟度に合わせた クラス編成を組み、少人数数 育によるきめ細かな指導を実 施。苦手な箇所を克服し、得意 な面を伸ばすよう、毎日の授業 や課題を通して徹底的に習 得。専門科目に直結した基礎 学力の充実化を図ります。

オフィスアワーを活用!

オフィスアワーとは、授業以外にも教員に質問や相談ができる時間のこ と。全教員が、研究室に在室している日時を公表し、個別に演習や授業の質

問などに応じます。あらかじめ 教員のスケジュールが分かる ので、学生側も予定を立てやす いのが特徴です。研究室が並 ぶ本学科の4階フロアはゆった りとしたスペースで、デスクや 椅子、パソコンなども設置。研 究室だけではなく、このフロス も活用されています。

OB·OG Message OB·OGからキミたちにメッセージ!!

道 J 部品の加工を効率化する業務 に携わっています。工作機械に 用まれています。工作機械に 囲まれて生活している私にとって 本学科の講義や実習で学んだ 機械加工技術が日々の業務に 生かされています。また弊社では 技術士の受験が必須です。本学 ■ 科のJABEEコースを修了したこ とでこの一次試験が免除され、 人 こでこの一次試験が免除され、 修 資格取得へ大きな近道になった と感じています。経験豊富な教授 、と充実した設備を有した本学科 では技術者として大きく成長でき ると確信しています。大学時代は 大きな視野を持って苦手なことに

もどんどんチャレンジしてください。

少工 (株)本田技術研究所 勤務 ・ 平成20年卒業 ・ (福岡県 筑前高校)

(株)全田技術研究所 東京区9年至 (福岡県 筑前高校) 制 フ フ フ と 現在、本田技術研究所 現在、本田技術研究所 現在、本田技術研究所 現在、本田技術研究所 発を行っています。仕事約 現在、本田技術研究所四輪 R&Dセンターで4WDの研究開 発を行っています。仕事を進めて 発を行っています。仕事を進めて にく中で、本学科で学んだことが 様々な場面で役に立っています。 て 様々な場面で役に立っています。 し)成 本学科は、少人数制の授業なの た長で行き届いた教育が受けられます。ものづくり基礎実習では、通 て一から設計を行う知能機械設 計という授業ではかなり鍛えられ ました。厳しく、辛いこともありまし たが、とても達成感がありましたし 仲間との絆も深くなりました。本 学科で築かれたものが今の私を 支えてくれています。エンジニアと

りが近いアットホームな環境は、専 を 門知識を学ぶ場所として最高の 環境だと思います。この環境を生 かして自分の能力を高めましょう。

知能機械工学科の卒業生が多くの場所で活躍しています!

刷/大分キヤノン/日鉄ハード/不二輸送機工業/富士古河 E & C /本田技研工業

※ (株) は全て省略 ※順不同

して、さらに人間としても成長とし

ていける場だと思います。

FIT 福岡工業大学

工学部/情報工学部/社会環境学部(文系)

〒811-0295 福岡市東区和白東3丁目30番1号
TEL092-606-0634(入試課) E-mail:imasugu@fit.ac.jp
ホームページ http://www.fit.ac.jp/

TEL 092-606-4286(直) FAX 092-606-0747 (E-mail)kikjim@fit.ac.jp (URL)http://www.fit.ac.jp/sogo/kougaku/chino/original/index.html

