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Introduction

1. Introduction

In this lecture, we consider the following Cauchy problem:
u=u(t,z),y =Yt z), t >0,z € R?

Ou=Au—V-(uVy), t>0, r€R%

(KS), { —Av =u, t>0, z R
ult=o = uo, z € R?

Y(t,z) == (N xu)(t,z) = ” N(z —y)u(t,y)dy

VY =VN xu

u(t,z) >0, up(x) >0, t>0, v R
@ A simplified version of a usual chemotaxis system by Keller
and Segel
@ A model of self-attracting particles



Introduction

The Keller-Segel model

Keller-Segel, J. Theor. Biol., 1970

u = u(t,x) : the population density of amoebae at time ¢ and
position ,

1 = (t,x) : the concentration of a chemical attractant

du= Au —V-(uVi), t >0, :I:GR%
N e —
diffusion chemotaxis
B B 2
TOW = é}_f}/ ap  + NG t>0, z € R,

diffusion  consumption  Production

where 7 > 0 and a > 0.
Letting 7 — 0 and @ = 0 in this system leads to (KS),,.
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e Basic properties of nonnegative solutions u to (KS)
© Mass conservation law:

/ u(t,z)dx = / uo(x) dx
R2 R2
@ The conservation of the center of mass:

/]1%2 zu(t,z) dx = /R? zug(z) dz

© The second Moment identity: M := [, up(x) dz

M

2 2

t,x)dr = de +4M(1— — | ¢
- || “u(t, z) dz /}R2 |z|“uo(x) dz ( 87r> ,

We prove these formally.
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Ou=Au—V - (uVe) = V- (Vu — uV))

e Mass conservation law

d
— dx = d
dt o udx - Oyudx
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e The conservation of the center of mass: i =1,2

4 xiudx:/ zi0udr = z;V - (Vu —uV) dex
dt R2 RQ RQ
:—/ (Vz;, Vu—uVi)dx
RZ
ou ON
——/]R2 8:Cid;zH—/Wu(axi *u) dx
=0
( sw)(t :(:)——i u(t )xi_yi d
ox; 27 Jpe Y |z — y|? 4
ON 1
de = —— t t * dyd
LG wde == [ ] eyt 2 b s

Replacing x and y of the integrand on the right-hand side, we have

/ / u(t,x)u(t,y) 2alyda:—/ / u(t,y)u(t, ) Yi~ dedy
R? JR? ! yl R? JR? |y — x|




By this,
N
‘/ u(gxl*u)dx
// (t, z)u(t,y) 2dydac
R2 JR?2 ’ y|

i — Yi Y — &
- ¢ ( )d d
Cor 2/szmz ult,y)ult; =) !w—y!2+!y o2 )

=0

=0

Hence

d
— uwdr =
t/2xux 0
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e The second moment identity

d/ ]:U|2udac:/ ]:U|26tudx:/ 2|2 Au dx
dt R2 R2 R2

—/ |22V - (uVY) dx
R2

= A\x|2udx+/ (V]z|*, uV1) dx
R2\\,—/ R2

:4/ udw—i—Z/ (x,uV1) dx
R2 R2
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/}RQ@UUVI/J /R?/R? u(t,x)u ty<| |2>dyd1

Replacing x and y of the integrand on the right-hand side, we have

Yy
/ / (t,z) <| |2> dydz
R2 JR? -y



By this,

R? R2 ] ’2

<x x— y> <y,y—$>
2/RQXR2 ult, yyut, @) ( e S e ) dady

=1
1 . ,
- 5 /RQ><R2 u(t’ y)U(t’ 33) dyd:n - 5 ( /Rg u(tv JJ) d.fl)) .
Hence
1 2
< \$|2ud1::4/ udr —— (/ udm)
dt Jre R? o o



Introduction

Mass conservation law

/ u(t,x)dx—/ uo(z)dx, t>0
R2 R?

@ The global existence and large-time behavior of nonnegative

solutions heavily depend on the total mass / ug dx:
R2

o Supercritical case: / uo dx > 8
R2
Finite-time blowup

e Subcritical case: / ug dr < 87
]RZ
Global existence and boundedness of nonnegative solutions,

Forward self-similar solutions

o Critical case: uodr = 87
]R2

Global existence of nonnegative solutions, Stationary solutions
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Remark 1.1

Ou=Au—V-(uVy), t>0, x€R?
(KS)y { —A¢ =u, t>0, z €R?,
Ul¢=0 = o, z € R?,

where

Y(t,x) = (N *u)(t,z) = % /R2 logkcl_mu(t,y) dy,

1 r—y

V¢(ta$) = u(t7y) dy

o Rz |2 — y[?

o () € L, (R?), t >0 <= u(t)log(1+ |z|) € L, t >0
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In what follows, we consider the following Cauchy problem:
u=u(t,z), t >0,z € R?

Ou=Au—V - (u(VN xu)), t>0, z€R?
(KS)

uli—o = up, z € R2.

1

1
5 log — (the Newtonian potential),
T

||
ON ON 1 =z
VN(@) = (G- (@) 5 (@) = “2r P
1 r—y
_% R? |I — y|2U(t, y) dy

u(t,z) >0, ug(x) >0, t>0, zc R

(VN xu)(t,x) =
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The purpose of this lecture

@ In the subcritical and critical cases, under a very general
condition on the nonnegative initial data ug we discuss the
following:

e Large-time behavior of nonnegative solutions
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The subcritical case

1.1. The subcritical case [, ugdz < 87

Global existence of nonnegative solutions

@ Biler-Karch-Laurencot-Nadzieja, Math. Meth. Appl. Sci., 2006

ug > 0, radial, up € L'  (radial solutions)
@ Blanchet-Dolbeault-Perthame, Electron. J. Differential Equations,
2006
ug > 0, wug, uglogug, ]az\Quo e L}
@ N’, Differential Integral Equations, 2011
ug >0, ug € i

Notation For 1 < p < oo,

LP := LP(R?) : the usual Lebesgue space on R? with norm || - ||z
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The subcritical case

The equation in the system (KS)
Ou=Au—V-(u(VN xu)), t>0, zecR> (1.1)
is invariant under the similarity transformation
ux(t, ) := N2u(\%t, A\x) (A>0),

namely
e 1 : solution of (1.1) = u, : solution of (1.1)

Given M > 0, conseder a forward self-similar solution Ups(t, x)
such that

1 T
Unm(t, ) = Eq)(ﬁ)v /R2 Unm(t,x)dv = M,

where
ed>0, e L'nL>®.
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The subcritical case

Existence and uniqueness of forward self-similar solutions

Biler, Applicationes Mathematicae (Warsaw), 1995
Biler-Karch-Laurencot-Nadzieja, Math. Meth. Appl. Sci., 2006
Naito-Suzuki, Taiwanese J. Math, 2004

Q@ @ is radially symmetric.

@ & exists if and only if 0 < M < 8.

© For each 0 < M < 8, the uniqueness of ® up to the
translation of the space variable holds.

@ For 0 < M < 8, let Uy be the radially symmetric with
respect to the origin. Then

C
0< Uplt,z) < ?e—lmﬁ/t, t>0, z € R2
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The subcritical case

Convergence to a forward self-similar solution

@ Biler-Karch-Laurencot-Nadzieja, Math. Meth. Appl. Sci., 2006
u: nonnegative radial solution to (KS)
M = [go uo(x) dz < 8.

atr) = [ ult,z)de, Ou(tr) = / Uni(t, z) da

|| <r || <r

Jim [[a(t) — Ung (8)]| e 0,00y = O
@ u: nonnegative solution to (KS), M := fR2 uo(z) de < 8w
lu(t) — Upns()|lzr = o(t71FYP) as t 500 (1<p<o0)
Blanchet-Dolbeault-Perthame, Electron. J. Differential Equations,

2006 p=1, uglogug,|z|*ug € L'
N', Adv. Differential Equations, 2011 1<p<oo, upe Lt
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Critical case

1.2. The critical case [p, ugdz = 8 |

@ Biler-Karch-Laurencot-Nadzieja, Math. Meth. Appl. Sci.,

2006
radial solutions

o Global existence
e Convergence to a stationary solution

8b
’LUb(Z‘) = W, b>0
Stationary solutions:
8b
= . b>0, o€ R?
wb,xo(x) (’(L’ - .%'0’2 ¥ b)2 Zo

/ Wh, 2 (x) dx = 87
R2
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Critical case

1.2. The critical case [g, ugdz = & Il

@ Blanchet-Carrillo-Masmoudi, Comm. Pure Appl. Math., 2008
ug log ug, |z|?ug € L.
lim u(t,z)dr = 8mdz,(x) in the sense of measure
t—o0

1

a 87'(' R2

@ Senba, Adv. Differential Equations, 2009
Jup > 0: radial  [po uodz = 87, |z[*ug € L' N L™

@l u(t0)
twoo (logt)2  t—oo (logt)?

Zo xug(z)dz : the center of mass of ug

=C>0
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Critical case

1.2. The critical case [g, uodz = 87 Il

@ Naito-Senba, preprint.
Let 0 < b1 < by < oo.
Then Jug > 0 : radial, fRQ ugdr = 8, |r|*ug & L' s.t.
Wh,, Wh, € w(ug),
(2) 80 (stati lution)
wp(r) = —5—5 stationary solution
" (2P0 ’
w(ug) : w—limit set of ug with respect to L topology
@ For some choices of ug, the solution goes to a stationary
solution as t — oc.

In the critical case, the dynamics of (KS) is complicated.



Local existence, uniqueness and regularity

2. Local exitence, uniqueness and regularity of mild
solutions

ou=Au—V - (u(VN xu)), t>0, xR

(KS) 2
uly=o = uo, z € R2.
1 1 1 =z
N(z)= —log —, VN(z)= ——



Local existence, uniqueness and regularity

The equation in (KS) is very similar to the vorticity equation in R?:

Ow=Aw -V - (w(VEN xw)), t>0, z€R?
(VE)

wlt=0 = wo, x € R2.

1
1z 1

VLN(SC) = ‘27 r = (3727 —r1), * = (21,T2)

Com|w

Giga, Miyakawa and Osada, Arch. Rational Mech. Anal.,
96(1986)

Kato, Differential Integral Equations, 7 (1994)
Ben-Artzi, Arch. Rational Mech. Anal., 128 (1994)
Brézis, Arch. Rational Mech. Anal., 128 (1994)
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Definition 2.1 (mild solutions)

Let 0 < T < oco. Given ug € L', a function u : [0,T) x R? = R is
said to be a mild solution of (KS) on [0,T) if

@ u e C([0,7); L) N C((0,T); LY/3),
@ sup (#/4u(®)llas) < oo,

o<t<T

()@ /Gtx— () dy,

G(t,xz) = g texp( 4t

A function u : [0,00) x R? — R is said to be a global mild solution
of (KS) with initial data ug if u is a mild solution of (KS) on
[0,T) for any T € (0, 00).
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Proposition 2.1 (Local existence, uniqueness and regularity)

Suppose ug € L. Then there exists T = T(ug) € (0, 0) such that
the Cauchy problem (KS) has a unique mild solution w on [0,T).
Moreover, u satisfies the following properties:

Q u(t) > wuy in L' ast — 0.
Q Foreveryl <g<oo, uc C.’l_l/%T(Lq), that is,

sup tH9u(t)]lq < oo, lim 7 V9|ju(t)]|4 = 0.
0<t<T =0

(3 ) ForeveryEEZJr,ani and 1 < g < o0,

sup i~ 1/atlel/2+ oloey(¢)||, < oo,
0<t<T




Local existence, uniqueness and regularity

Proposition ctd.

Q Forevery { € Zy, a € Z2 and 2 — min{1, |a|} < ¢ < oo,

sup /27 Yatel/2H) 9L50 (TN % u)(t)l < oo,
0<t<T

@ u is a classical solution of dyu = Au — V- (u(VN xu)) in
(0,7) x R2.

(5] / u(t, z) dx = / up(z)dr, 0<t<T.
R2 R2

@ If up > 0 but uy # 0, then u(t,z) > 0 for all
(t,z) € (0,T) x R2.

Q If uglog(1 + |z|) € LY, then
u(t)log(l+|z]) € LY, 0<t<T.




Decreasing rearrangements

3. Decreasing rearrangements

f: R% — R : measurable, 0 € R,

{f>0:={zeR?: f(z)> 0},
[f >0l = {z eRY: f(z) > 0},
where |A| stands for the Lebesgue measure of a measurable set A.

Let f : R® — R be a measurable function vanishing at infinity in
the sense that

| f] > 6] < for all 6 > 0.



Decreasing rearrangements

Definition 3.1 (Decreasing rearrangements)

The distribution function iy of f is defined by

pr(0) == IfI>0], 620,

the decreasing rearrangement f* of f is defined through

f*(s):==inf {0 >0: pup(0) < s}, >0

(it is a generalized inverse of jiy),
the symmetric rearrangement, or Schwarz symmetrization of f,
denoted by f*: R? — R, is defined by

i) = f*(calel?),

where ¢4 is the volume of the unit ball in R?.




Decreasing rearrangements

1
o 0 (<0, 2>2)
0.6
0.4 x 0<z<l)
o2 Ja) = :
( 1 (1<z< é)
i 05 T 15 2 3 2
Figure 1: function f( 202-a) (5 <#<?
2|
15
1
0.5
0.2
05 T T5 % 0.5 i 5 z

Figure 2: distribution function Figure 3: decreasing rearrange-
ment

0.8

0.6

0.4

0.2

1 T0.5 0.5 T

Figure 4: Schwarz symmetrization
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Some basic properties about rearrangements are the following:
Q |If| >0 =If*>6]=I[{s>0|f*(s) >0}, 6>0.
@ f* is non-increasing and right-continuous on [0, c0).
Q@ f(0) = [|fllpee(may, f*(o0) =0.
Q If f is continuous and bounded on R?, then f* and f* are
continuous and bounded on [0, 00) and R?, respectively.
Q@ (f+9)"(s1+s2) < f*(s1)+ g (s2) for all s1,s2 > 0.
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Proposition 3.1

@ For every Borel measurable function ® : R — [0, 00),
[ 20s@hde= [ a(fia)de= [~ e )ds
R4 R4 0
Q Let f,g: R* — R be integrable on R® such that

/ f*(o)do </ g* (o) do for all s > 0.
0 0

Then
/ (| ()]) dr < / B(lg(x)]) dx
R4 Rd

for all convex functions ® : [0,00) — [0, 00) with ®(0) = 0.
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Proposition ctd.

© (The Hardy-Littlewood inequality) Let p,q € [1, o0] with
1/p+1/q=1. Then, for every f € LP(R%) and g € LI(R?),

/ Fllglde < / figh do = / f*g" ds.
R4 R4 0

Q (Contraction property) For every p € [1, 00] and
f,g € LP(RY),

I1£* = 9"l Le0,00) = IF* — Gl Lo(ray < If = 9llo(may-

@ (The Poélya-Szego inequality) For every p € [1, c0] and
f € WLP(RY), one has that f# € W1P(R?) and

vaﬁHLP(Rd) < IV fllzrmay-
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For the properties of decreasing rearrangements, see the following,
for example.

© C. Bandle, Isoperimetric Inequalities and Applications,
Pitman, London, 1980.

@ E. H. Lieb and M. Loss, Analysis, Graduate Studies in
Mathematics, 14, Ameri. Math. Soc., Providence, RI, 2001.

© J. Mossino, Inégalités Isopérimétriques et Applications en
Physique, Hermann, Paris, 1984.

@ J.M. Rakotoson, Réarrangement Relatif: un instrument

d'estimation dans les problemes aux limites, Springer-Verlag,
Berlin, 2008.
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Lemma 3.1

v:(0,T) x R? = R smooth, radially symmetric in z, such that
v(t) € LN L™ forallt € (0,T) and

O =Av—V-(v(VN *v)) in (0,T) x R%

Define (t,s) :=v(t,z), s=m|z|?, ®(t,s):= / o(t, o) do.
0
Then ~
u(t, z) dx :/ o(t, s)ds, tel0,7), (3.1)
R2 0

Bup(t, 5) = 4mdy(s0sp(t, 5)) + ( /0 ot o da> (3.2)

01 ®(t, s) = 4ws0>®(t, s) + B(t,5)0sD(t, 5). (3.3)
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Proof of Lemma 3.1

We observe that

Ow=~0Av—=V-(v(VNxv))=Av— (Vu,VN xv) —oV - (VN xv)
—_——
= Av — (Vo, VN xv) + 02
By v(t,x) = ¢(t,s), s = m|z|?, we have

0w — Av = Opp — 4mw0s(s05).

Next, —(Vv, VN % v) is rewritten as

— (Vu, VN % 0)(t, ) = dsp(t, 5) /R Wso(tmyIQ) dy.
(34)
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Let |x| # 0. Put y = Oz, where O is an orthogonal matrix with
x = |z|Oe1, e1 = (1,0). Then

=) myyay = [ Bl
ST o wlylP)dy = [ ETIERELE g 212) .
Ly ay = [z

Introducing the polar coordinate z; = rcos#, zo = rsin@ gives

z|? — |z|{e1, =
/R2’ ‘ ‘ ’< >g0(t,7T’Z‘2)dZ

||z]er — z[?
o0 2T z)? — |x|rcos 6
= t, mr? do | rdr.
/0 SD(JT)(/O |z|2 — 2|z|r cos O + r? >T "

Putting 7 = r/|z|, we have

/27r |z|2 — |z|r cos O d@—/% 1—7cosf 40
o |z =2|z|rcosf+r2""  J; 1—27cosh+ 72

B ™ d )2 (r<1), -
_/0 1—T6i9_{0 (1>1). (i=v-1)

(3.5)
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2

Then, by 0 = 7r*,s = 7?\:13\2.

2 _ ||
/ 21" = fel{er, 2) o(t,m|z*) dz = 27r/ o(t, mr?)rdr
R2 0

||zfer — 2[?
S
:/ o(t, o) do.
0

Therefore

—(Vv, VN %) + 1% = ds0(t, 5) (

o (ot

(t.0)do ) + (0.5

J #e
/ﬂ)
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Hence,

Dup(t, 5) = Ards(sDsp(t, 5)) + s (g@(t, 5) /O " o(t, o) da> .

Integrating this equation from 0 to s with respect to the variable s,
we obtain

O1®(t,s) = 4ws0°D(t, s) + O(t, 5)0:sD(1, 5).
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For the nonnegative initial data ug € L', let u be a nonnegative
mild solution of (KS) in [0,7) and let u* denote its decreasing
rearrangement with respect to x, and set

H(t,s) :—/ u*(t,o)do, 0<t<T, s>0.
0

e If w is radially symmetric in 2 and non-increasing in |z|, then
u(t,z) = u*(t,7|z)?), 0<t<T, xcR?

and
O H — 4ns0>H — HO,H = 0.

In the general case, we give the following propositions about the
regularity and a differential equation of H.
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Proposition 3.2

It hold that for every p € (1, 00),
Q@ H(t,0) =0 and H(t,00) = [pougdx forall0 <t <T,
Q@ H € BC([0,T) x [0,00)) and H(0,s) = [, ugdo for all
s> 0,

Q@ 0.H € BO((Ty, T) x (0,00)) N L>(0,T; L*(0,00)) for all
0<Ty<T,

Q@ 02H € L>™(Ty,T; LP(sg,0)) for all 0 < Ty < T and sq > 0,
Q@ 0:H € L>(Ty,T;LP(0,R)) for all 0 < Ty < T and R > 0.
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Proposition 3.3

It holds that for almost all t € (0,T),
O H — 4ms0°H — HO,H <0 a.a. s >0, (3.6)

where

S
H(t,s)::/ u*(t,o)do, 0<t<T, s>0.
0

To prove (5) of Proposition 3.2 and the differential inequality (3.3)
in Proposition 3.3, we need to study the regularity of u* with
respect to the time variable ¢.
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Proposition 3.4 (Comparison principle)

u : a nonnegative mild solution of (KS) in [0,T") with nonnegative
initial data ug € L',

v : a nonnegative radially symmetric mild solution to (KS) with
nonnegative radially symmetric initial data vg € L'. Set

vo(z) = po(lal?), v(t,z) = (t,7lzf?).

/ug(a)da</ vo(o)do, Vs> 0,
0 0

then

/u*(t,a)dag/t o(t,o)do, YO<t<Ts>0.
0 0
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Proof of Proposition3.4

S S
Put H(t,s) = / u*(t,o)ds, ®(t,s)= / o(t,o)ds
0 0
Q ForO<t<T, s>0,
O H — 4Ans0?H — HO,H <0, 0® — 47ws0°® — $9® = 0.

Q@ H(t,0)=®(t,00=0, 0<t<T.
Q@ ForO<t<T,

H(t,oo):/Ooou*(t,a)da:/RQu(t,m)dm:/RQuo(x)dm

_ /0 " (o) do.

O(t,00) = /000 wo(o) do.

Hence H(t,00) < ®(t,00), 0 <t <T.
Q H(0,s) <®(0,s), s> 0.



Subcritical case: Convergence to a self-similar solution

4. Subcritical case: Convergence to a forward
self-similar solution

Given M > 0, consider a forward self-similar solution Ujs of (KS)

such that
T

1
UM(t,x):;@<\/%>, [ Uu(tz)de = M,

where ® >0, ® € L' nL>®.
® satisfies the following:

V- (V®P-®(VN+®)+d=0 in R?

1 T —y
Nx«®)(z)=—— [ —2 @ .
(VN x @) () o7 Jur o=y (v) dy



Subcritical case: Convergence to a self-similar solution

Existence, uniqueness

Biler, Applicationes Mathematicae (Warsaw), 1995
Biler-Karch-Laurengot-Nadzieja, Math. Meth. Appl. Sci., 2006

Naito-Suzuki, Taiwanese J. Math, 2004
@ @ is radially symmetric
@ @ exists if and only if 0 < M < 8,

© For each 0 < M < 8m, the uniqueness of ® up to the
translation of the space variable holds.

Remarks (i) ®(z) >0 (z € R?), |z|~ ®(x)is decreasing.

(i) 0 < Uni(t,2) < %e—lzP/(u)



Subcritical case: Convergence to a self-similar solution

In what follows, we discuss the following for the subcritical case:
M = ug dx < 8w,
RQ

Ups : the forward self-similar solution with / Uni(t,z) de = M.
R2

o u(t,) = Upm(t,-) in L (t 5> 00) (1<p<o0)

o Convergence rates



Subcritical case: Convergence to a self-similar solution

Approach by entropy method

4.1. Approach by entropy method

u: nonnegative solution to (KS)

Theorem 4.1

Blanchet-Dolbeault-Perthame, Electron. J. Differential Equations, 2006
(2006)

Assume uglogug, |z[*ug € LY(R?), M := up(x) de < 8.
R2
Then
Jim [fu(t) — Ung(8)1 1 = 0.

Their proof relies on
@ rescaled transformations

@ entropy method.



Subcritical case: Convergence to a self-similar solution
Approach by entropy method

Free energy inequality

Free energy:

1
Flu] ::/ ulogudx—/ wp de,
R2 2 R2

entropy potential energy
1 1
= N % N = — log —.
¥ t (z) o 0B ||

Lemma 4.1 (Free energy inequality)

For the nonnegative solution of (KS), it holds that

Flu(t)] —i—/o /R2 u|V logu — Vop|? deds < Flug] (t > 0).




Subcritical case: Convergence to a self-similar solution
Approach by entropy method

Formal proof of the free energy inequality

jt/ulogudx:/(atu)logudx—&-/Gtudac
:/(Au) logudx—/{v-(uvw)}logudx

+/V'(Vu—uV1/1)da:

=0

_ _/ [Vuf? d:c+/<Vu,V1/)> dz.

U

Next

d
o7 wp dr = /(8tu)1,/) dr + /u@t@/) dr = 2/(8tu)w dz,



Subcritical case: Convergence to a self-similar solution
Approach by entropy method

because, by —Ay = u,

/ wdpp dr = — / Ay da = — / VO AY dx = / o da.

Then

%% uwda:—/(@tu)wd:c
~ [@uds~ [19- @Vo)wds

= _/<vu, Vi) dﬂ:+/u!V1/1\2dx.



Subcritical case: Convergence to a self-similar solution
Approach by entropy method

Hence

d 1
el 1 _z
7 (/u ogudr Q/uwdx)

= / (W — 2(Vu, V1)) +u|v¢y2) dx

/(3
o i

= —/u|Vlogu—V1M2 dx.

2
— 2(Vu, Vib) + \\/&vw) dz

2
dr = —/ |VuV logu — uVy|* dx

This implies

1
jt(/ulogudx—2/u¢d:€>—|—/u|Vlogu—V¢|2d:U:0. O



Subcritical case: Convergence to a self-similar solution
Approach by entropy method

Outline of Proof of Theorem 4.1

Rescaled transformations

t.3) = (o)

T=1ogR(t), y=—=—, R({):=v1+2t

ov=~Av -V -(w(Vw—-1y)), 7>0, ycR2

(KS)p qw= —logl
2 [y

v(0,y) = uo(y), y € R

>0, y R

self-similar solutions of (KS) <= stationary solutions of (KS)g
Un(t, ) Va(y)
Jim [[u(t) — U ()l =0 <= lim [[o(r) ~ Varlli = 0



Subcritical case: Convergence to a self-similar solution
Approach by entropy method

Entropy method

Rescaled free energy:

1 1
FEy] ::/ vlogv dy — 2/ vw dy +2/ ly|*v dy,
]RQ RQ ]RQ

entropy potential energy second moment
1 1
w:=—log — *xv
2m 7yl

o (Free energy inequality for F'%[v])
FRu(1)] +/ / v|Vlogv — (Vw — y) > dyds < F¥[v]
0o Jr2



Subcritical case: Convergence to a self-similar solution
Approach by entropy method

lim FR[U(T)] = FR[VM],

T—00

1 1
FRVy] ::/ VMlogVMdy—2/2VMQMdy+2/2|y|2VMdy,
R R

1
Q= —log * V.
2m |y

FR[U(T)}—FR[VM}:/ o(r )log—d —/ Veo(r) — V|2 dy

—0

By the Csisz'ar-Kullback inequality

v(7)

lo(m) = Varlis <2M/ 7)log 5= dy 0 (r = o0)
M

relative entropy
Therefore,
lu(t) = Uns(t)||zr — 0 (t — 00).



Subcritical case: Convergence to a self-similar solution
Approach by rescaling method

4.2. Approach by rescaling method

Theorem 4.2
N’, Adv. Differential Equations, 16 (2011)
Assumption : ug > 0, ug € LI(RQ), M = ug dr < 8

RZ
Forl <p< oo,

lu(®) — Unr ()| r = o(t™FP) as t — 0

Remarks
@ The entropy method requires

u(t) logu(t), |z[*u(t) € L', ¢t > 0.
e uglogug, |x|?ug € L' are not assumed in this theorem, so we

need a different method from the entropy method to prove
Theorem 4.2.



Subcritical case: Convergence to a self-similar solution
Approach by rescaling method

Outline of Proof of Theorem 4.2

The proof relies on the rescaling method:

lim [Jux(1) — Upr (1) = 0
A—00

for 1 < p < o0, where
uy(t, z) := Nu(N\t, \x)
e Put A =+/t. Then

HYPu()=Un ()0 = [[uyz(1) = Un(Dllr = 0 (t = 00)



Subcritical case: Convergence to a self-similar solution

Approach by rescaling method

Proposition 4.1

N', Integral Differential Equations 24 (2011)

1<p<oo, M:= uo dx < 8.
RQ
Q |ul®)|lr < Um(t)|lze, t>0,

Uy is the radially symmetric self-similar solution with
/ Unp(t,x)de =M
R2

@ supt'P|lu(t)]» < C(M,p)
t>0

Remark By 0 < Ups(t,x) < %e—\x|2/(4t)’

|Un(t)| e < C(M, p)t=F1/P



Subcritical case: Convergence to a self-similar solution
Approach by rescaling method

Proposition 4.2

1<p<oo, £>0,n>0.

sup VP24 1 920l (8) || e < C(M, p, 4, n)
>

Proof

t) =et? uo—/V (=B (u(s)(VN % u)(s)) ds
Vd >0,

t
Su(t) = 5/ =2 (97 1y (s)) ds
0

— /Ot V- 98 (Ou(s) (VN xu)(s)) ds

By this expression of u, we derive Proposition 6.2 by induction on
£n.



Subcritical case: Convergence to a self-similar solution
Approach by rescaling method

o uy(t,z) := AN2u(\%*t, \x) is the solution of (KS) with the
initial data ug () := Aug(Az).
By [pe o (%) dx = [po uo(x) dx = M,
for1<p<oo, £>0,n>0,

iulgtl_l/”“/“”llafaﬁm(t)HLP < C(M,p,t,n).
>

Remark The constants C'(M, p,¢,n) are independent of A




Subcritical case: Convergence to a self-similar solution
Approach by rescaling method

e For any {\;} satisfying A; 0o (j " 00), there exist
a subsequence of {);}, denote it by {);} again, and
U € C*°((0,00) x R?) such that

lim 9}0%buy, (t,2) = 0;'0LU (t, x)

J—00

locally uniformly in (0,00) x R2. U >0



Subcritical case: Convergence to a self-similar solution
Approach by rescaling method

° / uy, (t,z)dr = M = U(t,z)dx
R2 R2

e lim HU)\j (t)=U({)||pr =0, t>0.
J—00

© By 0zun; (t)ll1e, 10:U (1) 1» < C(M, p)t ™ /#HP (1 < Vp <
o0) and the Sobolev inequalities,

Hm luy, (t) = U(t)|[r =0, V>0, 1<Vp<oo
j—00 :
A crucial part of the proof is to show

o U(t,z) =Up(t,x)

Once we get this relation, we conclude

|lux(®) = Upr(t)|lr =0, Vt>0

lim
A—00



Subcritical case: Convergence to a self-similar solution

Approach by rescaling method

To prove U(t,z) = Ups(t, ), we use the following result.

Gallagher-Gallay-Lions(Math. Nachr., 278(2005))
f,g:R% = [0,4+00) : continuous, |z|?f, |z|%g € L' (RY).

(i) g: radially symmetric, non-increasing with respect to |z|,

(ii) / f(z d:x—/ g(x) dx,

(iii) /0 f*(a)da§/0 g*(0)do, Ys>0,

i d = z|%(x) dx
() [ lol'f@)dz= [ lat'o(e)d

Then f =g.

f* is the decresing rearrangement of f.
We apply this result as f(x) = U(t,z), g(x) = Upy(t,z) (v € R?),



Subcritical case: Convergence to a self-similar solution
Approach by rescaling method

Claim / U*(t,a)dag/ Uxi(t,o)do, ¥Ys>0
0 0

s — U*(t, s) : decreasing rearrangement of x — U (t, z)
s — Uj(t,s) . decreasing rearrangement of z — Ups(t, x)
Proof of Claim The proof of this claim relies on the following:

@ N'(2011) M := [z, ugdz. Let u be the nonnegative solution
of (KS). Then

/u*(t,a)dag/ Ul (o) do, ¥s >0
0 0

Since uy; is the nonnegative solution of (KS) with the initial data
g\, and [po uo )\, dr = [po uodz = M, we also have

/uij(t,a)d(fg/ Un(t,o)do, ¥Ys>0
0 0

By [lu, (t) = U (O)llL1(0,00) < llur; (1) = U@)]lzr = 0 (j — 00),
the claim is deduced.



Subcritical case: Convergence to a self-similar solution
Approach by rescaling method

Claim / 22U (t, = dac—/ 2 2Up (t, ) da

Proof of Claim We note that U and Uj; are the solutions of the
Cauchy problem (KS) with the initial data My, where dy is the
Dirac 6—function at the origin:

Ow = Aw — V- (w(VN xw)), t>0, xR
(KS)
w‘t:(] = My, r € R?

By the second moment identity,

M
2 _ 2 —
/R? |z|*w(t, z) dx = /R2 |z|“ M o (z )da:+4<1 87r>t

=0

Hence the claim is deduced.
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5. Dynamics of (KS) with critical mass 87

In this section, we consider the case fR2 uo dx = 8.
By the conservation of mass and the second moment identity,

/u(t,x)da::/ ugdr = 8w, t >0,
R2 R2

M
/ 2t z) do = / o) o+ 4M (1= - )1, 150
R2 R2 87T
=0
(M = ug dx)
R2

@ The second moment of u is conserved.

@ The large-time behavior of u heavily depends on whether the
second moment of ug is finite or not.
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In the case where the second moment of ug is finite,
Blanchet-Carrillo-Masmoudi proved the following.

Theorem 5.1

Let ug be in L' and nonnegative on R? and fR2 uo dx = 8.
Suppose that
ug logug, |z|?ug € L.

Then there exists a nonnegative weak solution of (KS)w globally in
time such that

tlim u(t, z)dx = 8mdz,(x) in the sense of measure,
—00

where 6, is the Dirac distribution at xo and x is the center of
mass of ug, namely

1

=% - zug(z) dz.

Lo




Dynamics of (KS) with critical mass

Remark 5.1

@ For their construction of the weak solution, assumption
ug logug € L' is required.

@ Theorem 5.1 holds for the nonnegative mild solution u
without uglogug € L', because

u(t)logu(t) € L* for t> 0.

In fact, by Proposition 2.1,
u(t) € LP for t>0, 1 <p < 0.

By this and

(1+u)log(1+u)§(]x{
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we obtain

/ (1 4+ u(t,z))log(l + u(t,x)) dz < oo.

R2
Next, by the second moment identity,
z|?u(t, z) de = / 2[2ug(x) dz < 0o for t> 0.
R2 R2
From this and u(t) € L*,
/ u(t,z)log(l + |z|)dx < 0o for t > 0.
R2

Then Lemma 5.1 mentioned below ensures that

u(t)logu(t) € L' for t > 0.
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If a nonnegative function f € L' satisfies
flog(1 +|a), (1 + f)log(1 + f) € L',

then
/fllogfld:vé/ (14 f)log(1+ f)dx
R2 R2

+2a/ flog(2+ |z|) dz
R2

+1/ éda@
e Jrz 2+ [z)*

where 2 < o < 0.
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Proof of Lemma 5.1

We claim that for a > 0,5 > 0,
allogal < (14 a)log(1 4 a) + 2a|logb| + e 'b. (5.1)
In fact, since |(a/b)log(a/b)| < e~! for a/b < 1, we have
allogal < e b+ allogh).
By [log(a/b)| < |log((a + 1)/b)| for a/b > 1,
|loga| <log(l+ a)+ 2|logb|.

Hence a|logal < (14 a)log(l+ a) 4+ 2a|logb.
Thus we obtain (5.1).
Putting a = f(x),b= 2+ |z])7 (2 < @ < 00) in (5.1) yields that
f(@)|log f(z)] < (14 f(x))log(l + f(x)) + 2af (x)log(2 + |z[)
+eH 2 fal)

Integrating this inequality on R? completes the proof.
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We next consider large-time behavior in the case

/2 |z|?ug () dz = oco.
R

We recall that the stationary solutions

8b

CEEET

wbvl‘o (x) =

satisfy the following:

(1) / |z |wp 4, () dz < 00, / |2 wp () dz = 0.
R2 R2

1
o [ wa@dr=sr, L [ u@)de =
R2 7 8 R2 ’
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To study convergence to a stationary solution,
Blanchet-Carlen-Carrillo, J. Funct. Anal., 262 (2012) introduced
the following Lyapunov functional Hj , :

Moo lf =/ (F W) wy a2 (x) (5.2)

for fe LY, f>0.
When z is the origin, we denote wy, 5, and Hy 4, [f] by wy, and
Hp[f], respectively, namely,
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Remark 5.2

If Hpuolf] < oo for f € LY, f >0, then

[ Jalf@)dz <,

RZ

/ |z|? f(z) dz = oo.
R2

(See Lemma 5.2 mentioned below)
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Theorem 5.2 (Lopez Gomez-Nagai-Yamada)

Let uy € L' be a nonnegative initial data satisfying
Jge2 uo dz = 8m. Assume that

Hp[ug) < oo for some b > 0.

Then, the unique (nonnegative) mild solution u of (KS) is globally
defined in time and for any T > 0 there exists b, > 0 such that for
every 1 < p < o0,

lu®llp < oy, Il for all ¢ 7. (5.3)

If, in addition, ug € L°°, then there also exists by > 0 such that for
every 1 < p < oo,

[u(@)lp < llwsollp  for all ¢ > 0.
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Theorem 5.3 (Lopez Gomez-Nagai-Yamada)

Let uy € L' be a nonnegative initial data satisfying
Jge2 w0 dz = 8w, and assume that

Hplug) < 0o for some b > 0.

Then for the unique nonnegative mild solution u of (KS), it holds
that

tll)rgo lu(t) — wpzollp =0 forall 1<p<oo,
where x is the center of mass of ug, namely

1

Tro = —
8 R2

xup(x) dz.
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Such results as Theorems 5.2 and 5.3 were first proved by
Blanchet-Carlen-Carrillo, J. Funct. Anal., 262 (2012).
They assumed

Fluy) ::/ uo(z) log ug(z) dz
R2
1
+ L / / wo(w)uo(y) log |+ — y| dady < oo,
41 R2 JR2
Hp[up) < oo for some b > 0,
and proved that
sup |[u(t)]|, < oo forall 7>0and 1<p < o0,
t>1

i [fu(t) = w1 = 0.
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@ To prove their results by Blanchet-Carlen-Carrillo, they used,
for constructing the solution of (KS), an involved discrete
variational scheme (called the JKO scheme), attributable to
Jordan-Kinderlehrer-Otto, SIAM J. Math. Anal., 29 (1998).

@ Our proofs in Lopez Gomez-N'-Yamada rely on an appropriate
treatment of the functional H; through some classical
rearrangement techniques and energy methods. So, our
methods are radically different from those used by
Blanchet-Carlen-Carrillo.
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Summary: The dynamics of (KS) with critical mass
known so far |

Lli:={feL'lf>0o0on ]RQ,/ fda = 8},
RQ

M= {f € Uil [ laff(a)do < o0},

Heinite := {f € LLey | Ho[f] < 400 for some b > 0},
Moy = {f € Lo f & Mo, Hylf] = +oo for all b> 0},

Then
LY i = Mo U Heinite U MH oo
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Summary: The dynamics of (KS) with critical mass
known so far |l

Q If up € My, then u converges to 8md,, as t — oo, where zg is
the center of mass of ug.
(Blanche-Carrillo-Masmoudi)

@ If up € Hfinite, then u converges to a stationary solution wy, 4,
as t — oo.
(Blanchet-Carlen-Carrillo, Lopez Gémez-N'-Yamada)

© There exists an initial data ug € MH, for which the omega
limit set of ug with respect to L°°-topology contains two
different stationary solutions.
(Naito-Senba)
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Some properties of the entropy functional

5.1. Some properties of the entropy functional Hy 4,

e Forb >0, zg € R?,

Wh 20 () = 8 (stationary solutions)
bao ) = 1z = 202 + b)2 Y ’
@) — / ~1/2
Hb,xo = / ( Wp :1:0 ) bwé
]RQ
@ When z¢ = 0,

8b
wy(x) 1= W 4o () = W’

M) i= o] = [ (V@) ~ V@), o) do
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Some properties of the entropy functional

Suppose b > 0, o € R? and f € L' satisfies f > 0. Then,

Wh o] = 0 and Hp o [Wa,z] = 00 for all a > 0, a # b,
f] < oo implies Hp. 1, [f] < oo for all 71 € R?,

f] < oo implies Hg o, [f] = 00 for all a >0, a # b,

f] < oo implies

/ b+]m (z) dz
< 167" + (86)Y4(|| FI1V2 + l[ws)3/®) v/ Ho ]

and, in particular,
Q Hpuo[f] < 00 implies |z|*f & L*.
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Some properties of the entropy functional

Theorem 5.4 (the entropy-entropy dissipation inequality)

Let uy be such that
ug > 0 on R?, ug € LY, / ug = 8, (5.4)
R2

and Hplup] < oo for some b > 0. Then the mild solution u of (KS)
in [0,T) satisfies

/ Dlu(s)]ds < Hplup] forall 0 <t <T, (5.5)

where D[u] is defined by

Dlu] ::8/ |Vu1/4|2d:n—/ u?? d. (5.6)
R2 R2
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Some properties of the entropy functional

We give a remark about the entropy dissipation Dlu]:

Lemma 5.3

Suppose f € L', f >0, [g. f =87 and V /4 € L2 Then
D[f] := 8/ IV Y42 da —/ 3% dz > 0.
R2 R2

Moreover, D[f] = 0 if and only if f = wy ., for b > 0,79 € R2.

Lemma 5.3 follows by applying the next lemma to the function
 fl/4
g:= f*=.
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Some properties of the entropy functional

Lemma 5.4 ( Del Pino-Dolbeault, J. Math. Pures Appl., 81(2002))

Suppose g € L* and |Vg| € L?. Then,

W/ Iglﬁdxé/ |V9|2dw/ lg|* da.
R2 R2 R2

Moreover, the equality occurs if and only if g = wb/ for
3b >0, zo € R2.
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Some properties of the entropy functional

Proof of Lemma 5.2

(1) For a,b > 0 with a # b and sufficiently large |z|, there exists a
constant C' > 0 such that

<\/wa,xo($) — \/wb,x0($)>2wb_,%2($) > |§2

and, hence, Hj 4, [Wa,z,] = 00. By definition, Hp 5, [wp 2, = 0.
(2) Property (2) follows easily from the fact that

(Vi@ ~ Vo @) 2)

lim =1

|z|too <\/f($) - \/wb,xl ('7;))2 wb_,l’11/2($)

(3) To prove (3), let a, b > 0 with a # b. Then, it follows from

2

(Z—$)2+(Z—y)22 (ﬂf—y)7 %%ZGR,

N | =
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Some properties of the entropy functional

that
2 -1/2 1 2 -1/2
\/? — v/ Wa,zg wa,xo > 5 (\/ Wh,zg — / wavﬂfo) wa,xo
2
—1/2
~ (VI = i) wad,
in R2. Moreover, there exists a constant C' > 0 such that

-1/2

2 i 2
(VT = iz ) wakl? < O (VF = /iom) wil’.
Therefore, integrating these estimates in R?, yields to

Ha,xo [f] > /Ha,mo [wb,xo] - CHb,mo [f]

N |

As, owing to (1), Ha,zo[Wh.z,] = 00, we find from this estimate
that M4 4, [f] = oo, which concludes the proof of Part (3).
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Some properties of the entropy functional

(4) Our proof of the estimate of Part (4) is based on the proof of
Lemma 1.10 of Blanchet-Carlen-Carrillo. By the sake of
completeness, we will give complete details here. We have

/R Vo[PS (@) de
- / Vo + [z wy(x) do+ / Vo+ (2 (f(x) — wp(w)) da .

=1 =I5

By changing to polar coordinates, it is easily seen that

164
I = — dx =16 \/l;
! /R G+ T

Moreover, as

Vo + [22 = (80) 4w, (@),



Dynamics of (KS) with critical mass

Some properties of the entropy functional

we have that
ua|<:// VT 2P| f(x) — ()| de
= [ Vi@ +¢wbm\)¢f - V@ v V) a

(%1“(/1(¢5+vﬁ) )UQ

(=) o)
R2

80)/4V/F + v/awglla v/ Hol

< 80 (IVFll2 + v/l ) v/ Helf

= (Y (I + llwnllt) VI
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Some properties of the entropy functional
Adding these estimates provides us with the estimate of Part (4),
which implies |z|f € L.

(5) It follows from the definition of wj, that

2’ f(2) = VBbw, * (@) () ~ b ()
> VEou 2w | unto) - (VI - V@) | - bfte)
= VB (x) ~ VB (VI ~ V@) w, ) b ().

Consequently, integrating in R? shows that
/ |x\2f(x)dx>\/%/ Vwpdr —V8bH[f] —b | fdx.
R2 R2 R2

Therefore, [po 2|2 f(2) dz = oo, because

/ Vwpdr = oo,  Hp[f] < oo, fdzr < .
R2

RQ
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Some properties of the entropy functional

For a rigorous proof, see Blanchet-Carlen-Carrillo and
Julian-N’-Yamada.
Formal proof of Theorem 5.4

d _d _ 2, —1/2
GHetu(] = 5 [ Vi vt da
= 8tu(wb_1/2 —u"Y?) da
RQ

= o wb_1/2 dr — OuuY? d.
R2 R2
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Some properties of the entropy functional

8tu(t)wb_1/2 dx = (86)1/2/ pu(t)(|x|* + b) dx
R2 R2

= —1/2 U z|? T
7 [ Au(t((ef +b)d
— (8b)~1/? . V- (u(t)(VN «u)(t))(|z]> + b) d

= (8p) /2 /R u(t)élzc_]i dz 4 2(8b) /2 /R u(t) (@, (VN u)(t)) da.

Hence,

/(%u(i) 2 4y
RQ
A(8b) 1/2/ u(t) dz

1
2(8b) i / / (t,z)u < 32}> dydz.
R2 JR? | —y|
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Some properties of the entropy functional

Replacing = and y of the integrand (¢, x)u(t,y) , we
obtain
/ / (t,z)u(t,y) < g> dydx
R2 JR2 |z -y
(y.y — )
= ut,yut,azidajdy,
o oo B
and hence,

/ / (t,x)u < ’2> dydx
R? JR?
/]R2 /]1%2 u(t,x)u(t,y)(<r:;:i;|g> + <‘ya;y_—yfg>> dydz

/R?/RQ (t, x)u(t,y) dydz
2(/ u(t,2)dz)’.
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Some properties of the entropy functional

Therefore, since fR2 u(t) de = 87, we have

8tu(t)wb_1/2 dx = 4(86)1/2/ u(t) dz
R2

_ (8b)_1/221</R2 u(t, ) dr)’

™

RQ

=0.
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Some properties of the entropy functional

Next,

dyuuY? da = Auu= 2 de— | V- (u(VNxu))u?de.
R2 R2 R2
Then
1 .
Auu? de = / w32\ Vul? de = 8/ (Vul/4? de,
R2 2 R2 R2

1
- V- (w(VN s u))u"?de = —2/ uY2(Vu, VN % u) d

R2 R2
:—/ (Vul/Q,VN*wdx:/ w2V - (VN *u) dz
e BT

= —/ w32 dz.
RQ
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Some properties of the entropy functional

Hence

duu=?de =8 | |Vul/)? dx — / u*? dz = Dlu(t)].
R? R2

RQ
Therefore
i?—[b[u(t)] = O wb_1/2 de— | QuuV?de
dt R2 R2
=0 =Dlu(t)]
— ~Dlu(t)],

from which the entropy-entropy dissipation inequality/equality
(5.5) follows.
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Boundedness of the solutions

5.2. Boundedness of the solutions

In this subsection, we will prove Theorem 5.2 after some lemmas
and a theorem.

As f* = f if f is radially symmetric and non-increasing in |z|, we
observe that

wy(z) = wi(x) = wi(r|z?), =R

Here
b

wy(x) = e ° € R?

is the stationary solution of (KS), and, therefore, the decreasing
rearrangement of wy(z) is given by

N 872b

wy(s) = G 5> 0. (5.7)
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Boundedness of the solutions

Consequently,

AV

/w;;da_gm, s> 0. (5.8)
0 S s

Naturally, this implies [;* wj do = 8 and

/Oow*d _ 8 8rs 872b
B b0 =1 s+mb s-+wh

o0
lim (s/ wy da) = 8712b.
§—00 s

and hence,
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Suppose f satisfies

f>0 in R felLl, fdx = 8, (5.9)
R2
and -
lirginf (s/ f*(o) da) > 0. (5.10)

Then there exist bg > 0 and sy > 0 such that

/f*do</ wy, do for all s > sp.
0 0

If, in addition, f € L, then there exists by € (0,by) such that

S S
/ ffdo < / wy, do for all s> 0.
0 0
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Proof of Lemma 5.5

According to (5.10), there exist by > 0 and sy > 0 such that
o0
5/ f*do > 8n%by forall s> s,
S

which implies

o0 872b
/ Fdo> "0 forall s> s
s s+ b

On the other hand, owing to Proposition 3.1, it follows from (5.9)
that

/ frdo = fdx = 8.
0 R2

Thus, using (5.8), it becomes apparent that for all s > s,

S o] 8 2b 8 S
/ frdo = 87r—/ ffdo < 8m— LN - / wy do.
0 B s+mby s+ mho 0~ ?
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Subsequently, besides (5.10) and (5.9), we assume that f € L*°.
Naturally, for every by € (0,bp), we also have that for all s > s,

s s ’7s s s
*d P do = = Y do.
/Of a</0wb0 o s+7rb0<5+7rb1 /Owb1 o
Let b1 < by be such that
0< 1(0) = fll e < 8/,

Then there exists § > 0 such that

s 8 8ms
*d ;. odo = for all 0,6].
/Of U</0wb10 pap— orall s€0,]

This completes the proof if & > sg, but, in general, § < sg. So,
suppose d < sg. We should shorten by, if necessary, so that

. - 8ms
/0 f al0</0 wy, do = P for all s € [d,s]. (5.11)
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Thanks to (5.10),

S [e.e]
/ f*da</ ffdo=8r forall s>0.
0 0

On the other hand, we have that

. 8ms
lim =
b110 s + by

8w uniformly in [d, so].

Consequently, by can be shortened, if necessary, to get (5.11). This
ends the proof.
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8b 872b

G O = g [ wito)ao =

8ws
b+ s

wy(z) =
Jby > 0, 59 > 0 sit. / ug(o) do < / wy (o) do, s> so
0 Jo

/ ug(o) do < ug(0)s, s >0
0

v v =uy(0) s

v = [ uy(o)do
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Theorem 5.5

Let ug € L' N L™ be such that ug > 0, [po uodx = 8w, and

o
lim inf (s/ U da) > 0. (5.12)
S—r00 s

Then the (unique) nonnegative mild solution u of (KS) is globally
defined in time, and there exists b > 0 such that, for every t > 0,
§>0,andp € [1,00],

| wotde < [ wilo)ds and [u(®)ly < wslye (513)
0 0




Dynamics of (KS) with critical mass

Boundedness of the solutions

Proof of Theorem 5.5

According to Lemma 5.5, there exists b > 0 such that

S S
/u3d0</ wy do for all s> 0.
0 0

Define

Then
Q@ Fort>0,s>0,

O H < 4Ans0?H + HO H, 4msd*W + WO, W = 0.
Q@ Fort >0,

H(t,0) = W(0) =0, H(t o00) = W(c0) = 8.
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@ Fors>0, H(0,s) < W(s).

Hence, by the comparison principle (Proposition 3.4),

H(t,s) <W(s), t>0,s>0,

that is,
/ u*(o,t)do < / wy(0)do, t>0, s>0.
0 0
Taking ®(u) = u? (u > 0) for 1 < p < oo in Proposition 3.1 (ii),

we have
/ uP(t,x) dx </ wy (z) dz.
R2 R2

Hence, this shows the global existence of unique mild solution w,
and for every 1 < p < o0,

[u(®)llp < [lwpllp, ¢>0.
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Letting p — oo in this inequality, we obtain
[u(t)lloo < lwblloo, ¢>0.

Thus the proof of Theorem 5.5 is complete.
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To prove Theorem 5.2 , we need the following lemma.

Lemma 5.6
Suppose f satisfies the following:
@ f>0 inR% felLl fdz = 8,

RQ
Q@ Hp[f] < oo forsome b> 0.

Then -
lim inf <s/ fr da) > 27%b.
S5—00 s

In particular, (5.10) is satisfied.

(5.14)
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Proof of Lemma 5.6

Setting
9= \/7 — Vws,
it is apparent that
f=wp+h, h:=2gywp+ g° (5.15)

Moreover,

/ @ (@) (b+|z*) dz = \/%/ gQ(JU)wb_I/Q(x) dx
R2 R2
= \/87)7'[1,[]0} < oQ.

(5.16)

For every R > 1, we have that

/| e <R / 220 (z) de,

jz|>R
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and, hence, by (5.16),

/ g*(x)dx = o(R_Q) as R — oo.
|z|>R

Similarly, since

b
/ wb(zf) do = / %dwﬁ@rb}%_‘l,
Zl>r 17| />R (b+ [2[*)?|z]

it follows from Holder's inequality that

Vwy(2)]g(z)| de = 1 l9(@)[z] dx

o[> R >R ll‘\

1/2
< ( [ dm) ([, rg<x>12\xr2dx)” :

< 2\/%32(/ |g(x)|2]a:|2d:z)l/2

lz|=R
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and, consequently, (5.16) implies

/z|>R m|g(x)|dx:0(R_2) as R — .

Therefore, we find from (5.15) that
/ \h(z)| da = 0<R*2> as R — 0o (5.17)
le[>R

As wy, = f + (—h) and (—h)* = h*, applying the basic properties
on rearrangements in Section 3, it is apparent that

wy (2s) < f*(s) + h*(s) forall s >0
and hence,

f(s) > w;(2s) —h*(s) forall s >0 (5.18)
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We will derive (5.14) from (5.18). To do it, we need to estimate

/ wy (20) do and / h*(o)do.

By (5.7), we find that

00 4 2b
/ wy (20) do T

- 2s + mb

and, hence,
linl <s/ wy (20) da) = 272D (5.19)

To conclude the proof of the lemma, it suffices to show that

/ h*(o)do < / |h(z)|dx (5.20)
s |z]>(s/m)"/2
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Indeed, suppose (5.20) holds. Then, by (5.17) we deduce that

s/ h*(a)dags/ |h(z)|dx — 0 as s — oo
s |z|>(s/m) /2

(5.21)
Therefore, combining (5.18), (5.19) and (5.21),

lim inf <9/ (o) da)

S—00 s

S 1 « T «

> Slg(r)lo <s/s wy (20) da> sllglo <5/s h*(o) do>

= 27%b

The proof of (5.20) can be accomplished as follows. Thanks to the
Hardy-Littlewood inequality, for every R > 0, we have that

/|m|<R |h(x)| dx = /R2 \h(x)|x By (z) dz
ot () dp — o)
g/th( )X, () d /|m|<Rh( ) d,
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where xp, stands for the characteristic function of the ball
Bp := Bg(0), and we have used that xﬁBR = XBg. As, due to
Proposition 3.1(i),

|hd:c:/ ¥ da,
R2 R2

we infer from the previous estimate that

/Iz|zR Iro)l dw = /up [h@)| de = /|96|<R |h(z)| dzx
> /R2 hﬁ(x) dx — /|w<R hﬁ(x) da

= /ng R (z) de.
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Therefore, by the definition of hf,

/lzzR Ihie)lde > /|sz h (@) do = /lsz W (r|x|?) do
=2n /OO W (xp®)pdp = /002 h* (o) do.

R TR

Taking s = 7R? in this inequality shows (5.20):

/ h*(a)dag/ Ih(z)| da.
‘ ol (/)12

Thus the proof of Lemma 5.6 is complete.
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Proof of Theorem 5.2

Let T}nae > 0 denote the maximal existence time of the unique
mild solution of (KS). By Proposition 2.1,

u(t) € LY N L™ forall € (0, Thaz)-
Moreover, by Lemma 5.3, we have that
D(u(t)) >0 forall t e (0, Tmaz)-
Thus, owing to Theorem 5.4, we have that
Hplu(t)] < Hplug) < oo forall t e (0, Thaz)- (5.22)

Consequently, it follows from Lemma 5.6 that

lim inf <s/ u*(1,0) da> > 212D,

S§—00



Dynamics of (KS) with critical mass

Boundedness of the solutions

As the function ¢ — u(t 4 7) is a mild solution of (KS) in

[0, Tynaz — 7) with nonnegative initial data u(7) € L' N L,
according to Theorem 5.5 u(t + 7) must be globally defined in
time and (5.3) holds:

3b, >0 s.t. sup|lu(t)|p, < |lwp, |, forall 1<p<oo.
t>1

In particular, T}, = 00 and the proof is complete.
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5.4. Convergence to a stationary solution

This section proves Theorem 5.3.
Thus, throughout it, we will assume that the initial data ug € L!
satisfy

ug > 0, / updxr =8m and Hplug] < oo for some b > 0.
]RQ

By Theorem 5.2, we already know that the unique mild solution u
of (KS) is nonnegative and globally defined in time. Moreover,

sup |lu(t)]|p < oo forall 1 <p<oo. (5.23)
t>1

The proof of Theorem 5.3 will follow after some lemmas of
technical nature.
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The following estimates hold:

sup [Vu(t)]l, < 00 (2 <Vp < o0),
t>2

t+1
igl (10eu(s) |3 + |Au(s)[13) ds < oo.
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For everyt > 0 and R > 1 the following uniform integrability
estimate holds:

/| R(b+|x|2)1/2u(t,$) dx
x|>

/
< /x|>R(b+|ﬂf|2)1/2wb($C) dx+®(b, R) (W(b)+||‘x|wb||} 2) ’
(5.24)

where

®(b, R) := (8b)/*Hp[uo] /2R,

W(b) = (16762 + 2(80)"/4(8m) /2 Hb[u()])l/ °
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Proof of Lemma 5.8

A direct calculation shows that

(b)) 20 = (b+][2) 2wy (85) Y 4w, (Vv /w0) (Vurt /i),

where u = u(t,z) and wy = wy(x). Thus, integrating this identity
on |z| > R, we have that

/ (b+|x!2)1/2u(t,x)dm§/ (b+[22) 2y () da-+(8B) /4T,
|z|>R |z|>R

where

I:= /|I>R 1/4 <\/u (t,x) \/wb(x)> <\/u(t,a:) + \/wb(m)) dx.
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Using Holder's inequality and
Hplu(t)] < Hyp[uo] (£>0)  (by (5.22))

and setting € := {|x| > R}, we can estimate [ as follows.

1/2 1/2
r<( [ e P vara) ([ e va?ds
|z|>R |z|>R

< Hp[u(®)][[Vu + vl 2
< Hp[u(t)] ([IVull 2 + VWl 12 0)

1/2
IVullL2 ) = </ |7 Jafu(t, @) dﬂﬁ)
|z|>R

1/2
< R? / |x|u(t, x) dx .
|z|>R
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Similarly,

z|>R

1/2
[vwsl| 2 () < R7Y/2 </I |z |wy () dw) )

Hence

I< ’7"[1,["LL()]R71/2

1/2 1/2
X </|x>R |z|u(t, z) d:n) + </x|>R |z|wy () dw)



Dynamics of (KS) with critical mass

Convergence to a stationary solution

On the other hand, applying Lemma 5.2(iv) to u(t), using the
conservation of mass of u and (5.22), we get

| Jolu(t,2) do < 167012 + (80! () 1 + i) Ao )]

< 1670"/2 4 (86) /4 (|[uolly/* + l[wsllt/*) v/ Hp[uo]
< 16wbY/2 + 2(8b) /4 (87) /2 \/Hy[uo]

and, therefore,
1< Hyfuo] R (W) + [alwn] %)

This concludes the proof.
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The next result establishes the averaged large-time asymptotic of
the solution.

Lemma 5.9

Forevery1l <p <2,

T+1
lim / lult, 2) — wy g ()P dwdt = 0, (5.25)
T R2

T—o00

where x is the center of mass of uy.
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Proof of Lemma 5.9

By the conservation of the center of mass

1

— [ au(t,x)dx
8w R2

=— [ zup(z)dr =xg
8 R2

and the translational invariance of the problem in the space
coordinate, we may assume xg = 0 without lost of generality.
Let {tn}n>1 be an arbitrary sequence of times such that

lim ¢, = c©
n—oo

and consider the translated solutions

un(t, ) == u(t + tp, x), 0<t<1, zeR%.
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Then

sup sup [|un ()1 < oo,
n>10<t<1

1
sup/ |0¢un (t)]13 dt < oo.
0

n>1

By the proof of Lemma 5.8, we already know that

sup sup || un (t, ) doe < W2(b) < oco.
n>10<t<1 JRr2

Now, we will show that for each 0 < ¢ < 1,

{un,(t)}22, is relatively compact in L?(R?).

Take any t € [0, 1] and fix it. By (5.26),

{,(t)}n>1 is bounded in  H'.

(5.26)

(5.27)

(5.28)

(5.29)
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Thus, by that fact that
embedding H'(Br) < L?(Br) compact for every R >0,

we can extract a subsequence of {u,(t)},>1, relabeled by
{un(t)}n>1, and a function v : R? — R such that

nh_{rgo |un(t) = vllL2(py) =0 forall R>0. (5.30)
We claim that, actually, v € L?(R?) and that, along some
subsequence,
lim |[[un(t) — v[|2gey = 0. (5.31)

n—oo

Indeed, by the convergence of {u,,(t)},>1 to v in L?(Bg) for all
R > 0, we can extract a subsequence, again labeled by n, such that

lim wy,(t,z) = v(x) a.e. in R%
n—oo
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As {uy(t)}n>1 is bounded in LP(IR?) for all 1 < p < oo, we also
have
v e LP(R?) forall 1<p<oco.

Due to (5.28),

sup |z |un (t, ) de < W2(b) < oo,
n>1.JR2

and hence, thanks to Fatou's lemma, we find that

|lz|v(z) dz < U2 (b) < oo.
R2
Thus,
sup/ || [t (2, ) — v(z)| dz < 202(b) < oco. (5.32)
R2

n>1
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Then, owing to (5.32), we find that for R > 0,
lun (8) — 02 d = /

lz|<R

< Nun(®) = o225, + B! / el s
x>

R2

|t (1) — v]? dx—l—/ un (t) — v|? da
lz|>R

< lun(t) = vll72(p,) + CR™ o Rlxllun(t)—v\d:v
x>
< Jun(t) = vlF2(py) + CEHBO)RT

for some nonnegative constant C'. By this,
lim sup ||u, (t) — v||3 < 4CV3(b)R7L,
n—oo

and then, by letting R — o0,

lim [Ju,(t) —v]2 = 0.

n—o0

and hence, (5.29) holds.
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We claim that, actually, v € L?(R?) and that, along some
subsequence, Next, owing to (5.27), we obtain that, for any
0<t; <ty <1,

t

tin (t2) — 1 (1)) §/2||8tun(t)|]2dt

t1
<t 2sup [ o0
n>1.o
and, therefore,
{tn}n>1 is uniformly equicontinuos in C([0, 1]; L?).
Then, by the Ascoli-Arzela theorem (see, e.g., Lemma 1 of Simon),

{un}n>1 is relatively compact in  C(][0, 1];L2).
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Therefore, there exists w € C([0, 1]; L?) and, along some
subsequence, relabeled by n, we must have

lim u, =w in C([0,1]; L?). (5.33)

n—oo

From (5.28) it follows that

sup / |z|w(t, z) de < U2(b) < oo,
0<t<1 JRr2

and from (5.33) it is easily seen that

lim u, =w in C([0,1]; LY). (5.34)

n—oo

According to Theorem 5.4,

Hplun(t)] + /OtD[un(s)] ds < Hp[uo], 0<t<1l, n>1
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o For fe L', f >0, [po fdx=8m,Vfe Ll

DIf| = 8/{{{2 VAP de — /R 2 4 > 0.

D[f] =0 <= f = wy 4, for some b > 0,z € R2

Thus,
. 1 1 2
8/ / vu}/4|2dxdt:/ D[un(t)]dH/ Jan (1) 37
0 JR? 0 °
3/2
< Hp[uo] + sup [[u(t) |35
t>1
(5.35)
By (5.34),
lim ul/' =w!/tin C((0,1]; LY.

n—o0
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Thus, due to (5.35), we may assume that

lim Vul/* = Vw'/* weakly in L?((0,1) x R?).

n—o0

Hence,

1 1
/ (Vw42 dedt < lim 1nf/ \Vul/4? dadt
0 JR2 0 JRr2

n—oo

and, therefore,

/ Dw(t)] dt < lim 1nf/1 Dluy(t)] dt. (5.36)

n—oo

Once again by Theorem 5.4, we also find that

/ Dlu(t)] dt < Hpluo].
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Consequently, since

/01 Dluy,(t)] dt = /01 Dlu(t + t,)] dt = /:H Dlu(s)] ds

for all n > 1, it becomes apparent that

im [ Dlun ()] dt = 0.

n—oo 0

Therefore, (5.36) entails

/ 1 Dlw(t)] dt = 0. (5.37)
0

As, according to Lemma 5.3, we have D]w(t)] > 0, the identity
(5.37) implies

Dw(t)] =0 forall te[0,1]\ N,
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where N is a subset of [0, 1] of measure zero. Consequently, once
again by Lemma 5.3, for every t € [0,1] \ N, there exist b(t) > 0
and xo(t) € R? such that

8b(t)

FET OO

w(t, T) = Wy(p) z0(1) (T) = (

In what follows, we will show zy(¢) =0 and b(t) = b.
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By (5.24), we observe that

sup/ |z|un (t, ) de — 0 as R — oo.
n>1J]z|>R

Hence, since u,,(t) — w(t) in L' as n — oo, we deduce that

lim xup(t, z) de = /

n—oo R2 R2

= 8mwo(t).

zw(t,z)dx = /R2 TWh(t),z0 () (T) d

As we are assuming that the center of mass of ug is zero, by the
conservation of the center of mass for u(t), we have that

/R2 xup(t, z) de = / zup(x) dx = 0.

R2
Therefore, 2((t) = 0 and, hence, for every t € [0,1] \ N,

8b(t)

w(t, ) = wyp (r) = o+ b)) R?.
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By (5.34), for every t € [0,1] \ N, there exists a subsequence
{un]. (t)}jZI of {un(t)}nzl such that

lim uy, (t,r) = wyp(r) ae in R?.
Jj—o0

Then, thanks to Fatou's lemma, (5.22) implies that

Hplwy()) / /W (1) ;1/2 dx

2
< lim inf ( U, (t) — \/wb) wb_l/2 dx
R2

J—00

= lminf Hp[un, (t)] = liminf Hy[u(t + t,,)] < Hap[uo].
j—o0 j—00

Therefore,
Hy[wy(r)] < Hpluo] < oo
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Consequently, according to Lemma 5.2(i),

b(t)=b forall te[0,1]\N
and, therefore,
w(t) =wy forall te€[0,1]\ N.
Since w : [0,1] — L' N L? is continuous, we have
w(t) =wy forall tel0,1].

Owing to (5.33) and (5.34), we also find that, for every p = 1,2,

n—o0

tnt1
lim / |u(t, x) — wy(x)|P dxdt
R2
= lim / / |un,(t, x) — wy(x)|P dedt
n—oo R2
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This provides us with (5.25) for p = 1, 2.

The general case when 1 < p < 2 follows from the following
interpolation inequality: for every 1 < ¢ <p <r < oo and
A€ [0,1] with 1/p=X/qg+ (1 —N)/r,

£l < IFIGIFI> forall feL?nLP.

Actually, for 1 < p < 2,
tn+1
/‘ Juu(t) — w2 dt
tn
tn+1
2— 2p—2
g[ lat) — wp| EPP () — w227 e

tnt1 @-p)/p, [intl (2p—2)/p
< (L7 bt —wnlaa)) ([ ute) = wnl )
tn tn

This ends the proof.



Dynamics of (KS) with critical mass

Convergence to a stationary solution

Proof of Theorem 5.3

As in Lemma 5.9, we may assume that the center of mass of ug is
zero, that is, zp = 0. Take any sequence of times {t, },>1 such
that

lim ¢, = oo.
n—o0

Due to Lemma 5.9, we have that

tn+1
lim |u(t) — wyl|3 dt = 0. (5.38)

n—o0
n

Thus, for every n > 1, there exists s, € [t,, ¢, + 1] such that

lim u(s,) =wy, in L%
n—oo
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On the other hand, setting

Iy = [lu(sn) = wpl3 — [lu(tn) —wpl3|,  n=>1,

we have that

Sn Sn,
}/ < u(t) — wpl3 <2/ / o — 1wy |Opu| dedt
tn tn, JR2

tnt1 1/2 tnt1 1/2
<([7 - wigar) ([T 1ol a)

and hence, we obtain that

lim I, = 0.
n—oo
Consequently,

lim u(t,) =wy, in L?
n—oo
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and, therefore, as this is valid along any sequence {t,, }n>1
approximating oo as n — oo, we find that

lim u(t) =w, in L2

t—o0

Moreover, thanks to Lemma 5.8, we have that

sup/ |z|u(t, z) de < oo
t>0 JR2
and, consequently, we also deduce that

lim u(t) = wy in L.

t—o00

Thus, it becomes apparent from the Nash inequality [42]

—1
£l < Coll FIVPIUV £, 1< p < o,
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that, for every p € |1, 00),

lim u(t) =w, in LP. (5.39)

t—o00

In the case of p = oo, we will use the interpolation inequality
establishing that, for any 2 < ¢ < oo, there exists a positive
constant Cy, depending only on ¢, such that

1£llo < Coll Fllg™>/ 11V F113/7
for all f € W14(R?). According to it, we find that
lu(t) = wplloo < Cqllu(t) — wyllg™/ |V (u(t) — wp)[3/*  (5.40)

for all ¢ > 3 and g € (2,00). Therefore, (5.39) and (5.40) imply
(5.39) for p = oc:

. o : 00
tliglo u(t) = wp in L.

The proof is complete.
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