
Perturbation Theory for Wave Propagation Problems

Kiyoshi MOCHIZUKI
(May.13-14, 2017 Fukuoka Institute of Technology)

1. Introduction

In this talk we consider the classical wave propagation problem in exterior domain.

(1) In the first talk, we explain how linear or non-linear dissipations affect the
behavior of energy as time goes to infinity. More precisely, we divide the dissipations
which bring about energy decay or non-decay, and in case the energy never decays,
we consider the asymptotic behavior in the energy space of the solutions.

There are many works which treat the energy decay or point-wise decay of so-
lutions, see e.g. [2], [4], [8], [10], [12], [14], [17]. On the other hand the energy
non-decay and asymptotics of solutions are treated in [5], [6], [8], [10], [12], [13].
We summarize here the results of [5], [8], [13]. Note that the smoothing estimates
(linear case) and Strichartz estimates (non-linear case) for free solutions play an es-
sential role to enter into the asymptotoc behavior of perturbed solutions. For these
estimates see e.g., [1], [3], [7], [11], [15], [16] and [18].

(2) In the second talk, we treat small perturbation which is linear but non-
selfadjoint and depends on space-time. We shall show the uniform boundedness of
energy in t ∈ R of solutions and apply it to develop the scattering theory, i.e., the
existence and unitarity of the Mϕller wave operators.

We summarize here the results of [6], [9].

2. The dissipations which ensure the energy decay

Let Ω be an exterior domain in Rn (n ≥ 1) with smooth compact boundary ∂Ω.
We consider in Ω the wave propagation problem

∂2
tw −∆bw + c(x)w + β(x, t, ∂tw)∂tw = 0, (x, t) ∈ Ω×R+

w(x, 0) = f1(x), ∂tw(x, 0) = f2(x), x ∈ Ω, (2.1)

w(x, t) = 0, (x, t) ∈ ∂Ω×R+,

where

∆bu = ∇b · ∇bu =
n∑

j=1

(∂j + ibj(x))
2u,

β(x, t, ∂tu) = b̃(x, t)|∂tu|ρ−1

with x = (x1, · · · , xn) ∈ Rn, ∂j = ∂/∂xj, i =
√
−1 and ρ ≥ 1. The coefficients bj(x),

c(x) and b̃(x, t) are real-valued sufficiently smooth functions. We further require
that

0 ≤ c(x) ≤ c1 for some c1 > 0 and b̃(x, t) ≥ 0, (2.2)
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Thus b̃(x, t)|wt|ρ−1wt represents a friction term.

The operator L = −∆b + c(x) with domain

D(L) = {u ∈ L2(Ω) ∩H2
loc(Ω) : −∆bu+ c(x)u ∈ L2(Ω), u|∂Ω = 0}

defines a non-negative selfadjoint operator in L2(Ω). Note that ∇bu ∈ L2(Ω) if
u ∈ D(L). Let H1

b,0 be the closure in the Dirichlet norm

∥u∥2D =
∫
|∇bu|2dx

of scalar functions u ∈ C∞
0 (Ω). The Hardy inequality

∫ (n− 2)2

4r2
|u|2dx ≤

∫
|∇bu|2dx

holds for each u ∈ H1
b,0.

For solutions w(x, t) of (2.1) we define the energy at time t by

∥w(t)∥2E =
1

2

∫
{|wt(x, t)|2 + |∇bw(x, t)|2 + c(x)|w(x, t)|2}dx,

In the following we assume that for suitably given initial data w(0) = {f1, f2},
problem (2.1) has a unique global solution with finite energy which also satisfies the
energy identity

∥w(t)∥2E +
∫ t

0

∫
β(x, τ, wt(x, τ))|wt(x, τ)|2dxdτ = ∥w(0)∥2E.

To enter into the energy decay problems, we introduce an weighted energy of
solutions. Let φ(s), s ≥ 0, be a smooth function satisfying

1 ≤ φ(s) ≤ φ0(1 + s) for some φ0 > 0 and lim
s→∞

φ(s) = ∞, (2.3)

φ′(s) ≥ 0, φ′′(s) ≤ 0, φ′′′(s) ≥ 0 and they all are bounded in s ≥ 0, (2.4)

With this φ(s) an weighted energy of solutions at time t is defined by

∥w(t)∥2Eφ
=

1

2

∫
φ(r + t){|wt|2 + |∇bw|2 + c|w|2}dx.

We multiply by φ(r + t)wt on both sides of the equation and take the real part.
Then

1

2
∂t{φ(|wt|2 +∇bw|2 + c|w|2)} − Re∇ · (∇bwφwt)

−1

2
φ′(|wt|2 + |∇bw|2)−

1

2
φ′c|w|2 + φβ|wt|2 = 0.
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Next multiply by φ′(r + t)w on both sides of the equation. Then

1

2
Re∂t{φ′(2wtw} − Re∇ · (∇bwφ

′w)− φ′(|wt|2 − |∇bw|2 − c|w|2)

−Reφ′′(wtw − x̃ · ∇bww) + Reφ′βwtw = 0.

Getting together these equations, we have

Xt +∇ · Y + Z = 0, Xt = ∂tX, (2.5)

where

X =
1

2
φ{|wt|2 + |∇bw|2 + c|w|2}+Reφ′wtw,

Y = −Re∇bw(φwt + φ′w)

Z = (φβ − 2φ′)|wt|2 +
1

2
φ′|x̃wt +∇bw + x̃φ′−1φ′′w|2

+
1

2
{2φ′′′ − φ′−1φ′′2 + φ′c}|w|2 − 2Reφ′′wtw +Reφ′βwtw.

≥ (φβ − 2φ′)|wt|2 +Re(φ′β − 2φ′′)wtw +
1

2
{2φ′′′ − φ′−1φ′′2 + φ′c}w|2. (2.6)

The case of linear dissipation βwt = b̃(x, t)wt.

In this case noting

(φβ − 2φ′)|wt|2 = {φ(r + t)b̃(x, t)− 2φ′(r + t))|wt|2,

Re(φ′β − 2φ′)wtw =
1

2
∂t{(φ′b̃− φ′)|w|2)} − 1

2
{(φ′b̃)t − 2φ′′}|w|2,

we require

b0(1 + r + t)−1 ≤ b̃(x, t) ≤ b1(1 + r + t) for some b0, b1 > 0. (2.7)

φ(r + t)b̃(x, t)− 2φ′(r + t) ≥ 0, (2.8)

−{φ′(r + t)b̃(x, t)}t + φ′(r + t)c(x) ≥ 0, (2.9)

2φ′′′(r + t)− φ′(r + t)−1φ′′(r + t)2 ≥ 0 (2.10)

for (x, t) ∈ Ω× (0,∞). Then we have

Z ≥ 1

2
∂t[(φ

′b̃− 2φ′′)|w|2],

and (2.5) is reduced to

1

2
∂t
{
φ(|wt|2 + |∇bw|2 + c|w|2) + 2Reφ′wtw
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+(φ′b̃− 2φ′′)|w|2
}
− Re∇ · {∇bw(φwt + φ′w)} ≤ 0

Integrate the both sides over ΩR × (0, t). Then

1

2

∫
ΩR

{
φ(|wt|2 + |∇bw|2 + c|w|2) + 2Reφ′wtw + (φ′b̃− 2φ′′)|w|2

}
dx

−1

2

∫
ΩR

{
φ(|f2|2 + |∇bf1|2 + c|f1|2) + 2Reφ′f2f 1 + (φ′b̃− 2φ′′)|f1|2

}
dx

−Re
∫ t

0

∫
SR

x̃ · {∇bw(φwt + φ′w)}dSdτ ≤ 0.

For w(x, t) with finite energy, if it also belongs to L2(Ω), it follows that

lim inf
R→∞

∫ t

0

∫
SR

|x̃ · ∇bw|{φ|wt|+ φ′|w|}dSdτ = 0

since φ(r+ τ) = O(r) and φ′(r+ τ) = O(1) uniformly in s ∈ (0, t). Moreover, since∫
ΩR

|φ′wtw|dx ≤ 1

2

∫
ΩR

{
ϵφ|wt|2 + ϵ−1φ−1φ′2|w|2

}
dx,

letting R → ∞ we obtain for any t > 0 and 0 < ϵ < 1

(1− ϵ)∥w(t)∥2Eφ
+

1

2

∫
{φ′b̃− 2φ′′ − ϵ−1φ−1(φ′)2}|w|2dx

≤ (1 + ϵ)∥w(0∥2Eφ
+

1

2

∫
{φ′b̃− 2φ′′ + ϵ−1φ−1(φ′)2}f 2

1dx.

Theorem 2.1 Assume (2.2), (2.3) and (2.7) − (2.10). Let {f1, f2} ∈ D(L) × H1
b,0

also satisfy ∫
φ(r){|∇bf1|2 + |f2|2}dx < ∞.

Then the solution w(x, t) of problem (2.1) satisfies

∥w(t)∥2Eφ
≤ 3∥f∥2Eφ

+ 2
∫
{−φ′′(r) + φ′(r)b̃(x, 0)}|f1|2dx. (2.11)

Thus, the energy of w(·, t) decays like

∥w(t)∥2E = O(φ(t)−1) as t → ∞.

Proof We choose ϵ = 1/2. Then since

φ′b̃− 2φ−1φ′2 = φ′φ−1(φb̃− 2φ′) ≥ 0

by assumption (2.8), assertion (2.11) of the theorem follows. The fact that w(t) ∈
C([0, T ];L2), T > 0, is guaranteed by the conditions of the initial data. 2
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Examples of φ(s)

(1) φ(s) = (1 + s)γ, 0 < γ < 1,

(2) φ(s) = {log(e+ s)}γ, 0 < γ < 1.

It is obvious that these examples satisfies (2.4) and (2.5).

In case b0(1 + r + t)−1 ≤ b̃(x, t) ≤ b1(1 + r + t)1−δ, 0 < δ < 1, we can use (1). By
definition (2.8) is verified as

2φ′′′(s)− φ(s)−1φ′′(s)2 = γ(1− γ)(1 + s)γ−3 ≥ 0.

(2.9) holds if b0 ≥ 2γ in (2.3). In fact

φb̃− 2φ′ ≥ (1 + r + t)γ−1{b0 − 2γ} ≥ 0.

(2.10) becomes

−{(1 + r + t)γ−1b̃(x, t)}t + (1 + r + t)γ−1c(x) ≥ 0,

which is satisfied for any c(x) ≥ 0 if {(1+ r+ t)γ−1b̃(x, t)}t ≤ 0. On the other hand,
if c(x) = m2 > 0 (Klein-Gordon equation case), such a restriction is not necessary
if b̃t(x, t) ≤ m2 − (1− γ)b1.

In case b̃(x, t) ≤ b1(1 + r + t) it becomes necessary to use (2). (2.8) is given by

2φ′′′(s)− φ(s)−1φ′′(s)2 = γ{1− 2(γ − 1){log(e+ s)}−1

+(γ − 2){log(e+ s)}−2}{log(e+ s)}γ−1(1 + s)−3

≥ γ(1− γ){log(e+ s)}γ−1(e+ s)−3 ≥ 0.

(2.9) also holds if b0 ≥ 2γ. In fact

φb̃− 2φ′ ≥ {log(e+ s)}γ(1 + s)−1(b0 − 2γ{log(e+ s)}−1) ≥ 0.

The situation of (2.10) is also similar as above.

The case of non-linear dissipation βwt = b̃(x, t)|wt|ρ−1wt.

We require

1 < ρ < 1 +
2(1− δ)

n
and b0(1 + r + t)−δ ≤ b̃(x, t) ≤ b1 (2.12)

for some 0 ≤ δ < 1 and b0,, b1 > 0. Moreover,

b̃(x, t) is non− increasing in t. (2.13)

With these conditions we adopt as the weight function the following

φ(s) = {log(e+ s)}µ for some 0 < µ < min
{

2

ρ− 1
, ρ
}
.
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Lemma 2.1 There exist constants J(φ) > 0 and K(φ,w(0)) > 0 such that

∫ t

0

∫
2φ′|wt|2dxdτ ≤ J(φ)(ρ−1)/(ρ+1)

(∫ t

0

∫
φb̃|wt|ρ+1dxdτ

)2/(ρ+1)

,

∫ t

0

∫
|φ′b̃|wt|ρ−1wtw|dxdτ ≤ K(φ,w(0))1/(ρ+1)

(∫ t

0

∫
φb̃|wt|ρ+1dxdτ

)ρ/(ρ+1)

.

Proof By the Hölder inequality

∫ t

0

∫
2φ′|wt|2dxdτ ≤ J1(φ)

(ρ−1)/(ρ+1)
(∫ t

0

∫
φb̃|wt|ρ+1dxdτ

)2/(ρ+1)

,

where

J1(φ) =
∫ t

0

∫
(φb̃)−2/(ρ−1)φ′(ρ+1)/(ρ−1)dxdτ

Note here
(φb̃)−2/(ρ−1)φ′(ρ+1)/(ρ−1)

≤ C{log(e+ r + t)}µ−(ρ+1)/(ρ−1)(e+ r + t)−1−2(1−δ)/(ρ−1).

Then since −2(1− δ)/(ρ− 1) ≤ −n and µ− (ρ+ 1)/(ρ− 1) < −1, we have

J1(φ) ≤ C
∫ t

0
{log(e+ τ)}µ−(ρ+1)/(ρ−1)dτ

∫ ∞

0
(e+ r + τ)−2dr.

Hence the first inequality holds with

J(φ) = C
∫ ∞

0
{log(e+ τ)}µ−(ρ+1)/(ρ−1)(e+ τ)−1dτ < ∞.

Next, the Hölder inequality also shows

∫ t

0

∫
|φ′b̃|wt|ρ−1wtw|dxdτ ≤ K1(φ,w(t))

1/(ρ+1)
(∫ t

0

∫
φb̃|wt|ρ+1dxdτ

)ρ/(ρ+1)

,

where

K1(φ,w(t)) =
∫ t

0

∫
φ−ρb(φ′|w|)ρ+1dxdτ

≤
∫ t

0
φ(τ)−ρφ′(τ)ρ+1dτ

∫
b̃|w|ρ+1dx.

Since w(τ) =
∫ τ

0
wt(s)ds+ w(0), noting b̃(x, t) being non-increasing in t, we have

∫
b̃|w(τ)|ρ+1dx ≤ C1

∫ {
τ ρ
∫ τ

0
b̃|wt(s)|ρ+1ds+ |w(0)|ρ+1

}
dx

≤ C1(a+ τ)ρ
{
∥w(0)∥2E + ∥w(0)∥ρ+1

Lρ+1

}
.
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Thus, it follows that

K1(φ,w(t)) ≤ C
∫ ∞

0
{log(e+ τ)}µ−ρ−1(e+ τ)−1dτ < ∞.

and the second inequality holds if we choose

K(φ,w(0)) = C
∫ ∞

0
{log(e+ τ)µ−ρ−1(e+ τ)−1dτ

{
∥w(0)∥2E + ∥w(0)∥ρ+1

H1

}
.

2

Theorem 2.2 Assume (2.2), (2.12) and (2.13). If we choose

0 < µ < min
{

2

ρ− 1
, ρ, 1

}
then the solution w(x, t) of (2.1) satisfies

∥w(t)∥2Eφ
≤ C{|∥f∥2Eφ

+ J(φ) +K(φ, f)}+
∫
{−φ′′(r)|f1|2 + φ′(r)|f1f2|}dx

Thus, the energy of w(·, t) decays like

∥w(t)∥2E = O({log(e+ t)}−µ)) as t → ∞.

Proof Integrating (2.6) and using the inequalities of Lemma 2.1, we have

∫ t

0

∫
Zdxdτ ≥

∫ t

0

∫
φb̃|wt|ρ+1dxdτ − J(φ)(ρ−1)/(ρ+1)

(∫ t

0

∫
φb̃|wt|ρ+1dxdτ

)2/(ρ+1)

−K(φ, f)1/(ρ+1)
(∫ t

0

∫
φb̃|wt|ρ+1dxdτ

)ρ/(ρ+1)

≥ (1− 2ϵ1)
∫ t

0

∫
φb̃|wt|ρ+1dxdτ − C(ϵ1) {J(φ) +K(φ, f)}

for any ϵ1 > 0, where in the last inequality we have used the Young inequality.
Hence it follows that

1

2

∫ {
φ(|wt|2 + |∇bw|2 + c|w|2) + 2Reφ′wtw − 2φ′′|w|2

}
dx

−1

2

∫ {
φ(|f2|2 + |∇bf1|2 + c|f1|2) + 2Reφ′f2f 1 − 2φ′′)|f1|2

}
dx

+(1− 2ϵ1)
∫ t

0

∫
φb̃|wt|ρ+1dxdτ − C(ϵ1) {J(φ) +K(φ, f)} ≤ 0,

which implies the assertion of the theorem if we note

−φ′′(r)− φ−1(r)φ′(r)2 ≥ 0 when 0 < µ < 1. 2
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3. Energy non-decay and asymptotics for linear dissipations

In this section we require contrary to (2.7) the following conditions on b̃(x, t):

0 ≤ b̃(x, t) ≤ b0(1 + r)−1−δ for some 0 < δ < 1. (3.1)

First we consider the simplest case in Rn:

∂ttw −∆w + b̃(x, t)∂tw = 0, (x, t) ∈ Rn ×R+,

w(x, 0) = f1(x), ∂tw(x, 0) = f2(x), x ∈ Rn. (3.2)

In this case the energy of solutions at time t is given by

∥w(t)∥2E =
1

2

∫
{|wt(x, t)|2 + |∇w(x, t)|2}dx,

and the following identity holds

∥w(t)∥2E +
∫ t

0

∫
b̃(x, t)|wt(x, τ)|2dxdτ = ∥w(0)∥2E. (3.3)

The following lemma is well known (see, e.g., Kato-Yajima [3], Yafaev [18]).

Lemma 3.2 For κ ∈ C+ let R0(κ
2) = (−∆− κ2)−1 be the resolvent of the operator

−∆. Then u = R0(κ
2)f satisfies for 1/2 < α < 1∫

(1 + r)−2α{|∇u|2 + |κu|2}dx ≤ C
∫
(1 + r)2α|f |2dx

where C > 0 is independent of f and κ.

For solution w of (3.2) we put u = {w,wt}. Then u satisfies the equation

iut = Mu+ V (t)u, u(0) = f = {f1, f2}, (3.4)

where

M = i

(
0 1
∆ 0

)
and V (t) = i

(
0 0

0 b̃(x, t)

)
,

M is selfadjoint in the energy space HE. So, it defines a unitary group {e−itM ; t ∈
R}. On the other hand, let {U(t, s); t ≥ s} be the family of contraction operators
which represent the solution at time s to that of time t.

The integral expression of (3.4) gives

U(t, 0)f = e−itMf +
∫ t

0
e−i(t−τ)MV (τ)U(τ, 0)fdτ.

Then we have

(U(t, s)f, e−i(t−s)Mg)E = (f, g)E +
∫ t

s
(V (τ)U(τ, s)f, ei(τ−s)Mg)Edτ. (3.5)
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Theorem 3.3 (i) Under assumtion (3.1) the wave operator

Z(s) = s− lim
t→∞

ei(t−s)MU(t, s)

exists for any s ≥ 0.

(ii) Z(s) is not identically vanishing in HE.

Proof (i) We put R0(κ) = (Λ0 − κ)−1 for κ ∈ C\R, and

A =

(
0 0
0 a(x)

)
, a(x) =

√
b0(1 + r)−(1+δ)/2,

Then since
∥AR0(κ)Af∥E = ∥ − iaκR0(κ

2)af2∥,

it follows from Lemma 3.2 with α = (1 + δ)/2 that

∥AR0(κ)Af∥E ≤ C∥f2∥ ≤ C∥f∥E,

which implies the smoothing estimate∫ ∞

0
∥Ae−itMf∥2Edt ≤ C∥f∥2E. (3.6)

Now we return to (3.5). Then since
√
V (t) ≤ A it follows that

(U(t, s)f, e−i(t−s)Mg)E − (U(t1, s)f, e
−i(t1−s)Mg)E =

∫ t

t1
(V (τ)U(τ, s)f, ei(τ−s)Mg)Edτ

≤
(∫ t

t1
∥
√
V (τ)U(τ, s)f∥2Edτ

)1/2(∫ t

t1
∥Ae−i(τ−s)Mg∥2Edτ

)1/2

. (3.7)

This and (3.3) and (3.6) show the assertion.

(ii) / To show the existence of f ∈ HE such that Z(0)f ̸= 0. We assume contrary
that ∥U(t, 0)f∥E → 0 as t → ∞. Then we have from (3.3)

∥f∥2E =
∫ ∞

0
∥
√
V (τ)U(τ, 0)f∥2dτ.

Further, from (3.5) and (3.7)

∥f∥2E ≤
(∫ ∞

0
∥
√
V (τ)U(τ, 0)f∥2Edτ

)1/2(∫ ∞

0
∥Ae−i(τ)Mg∥2Edτ

)1/2

.

Hence it follows that
∥f∥2E ≤

∫ ∞

0
∥Ae−iτMf∥2Edτ.
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Put here f = U(s)g with ∥g∥E = 1. Then

1 = ∥e−isMg∥2E ≤
∫ ∞

s
∥Ae−iτMg∥2Edτ → 0 as s → ∞.

this is a contradiction, and (ii) is proved. 2

If n ≥ 3 and if Ω is the exterior of some star-shaped obstacle, the above results
can be generalized to problem (2.1). In this case, we can prove the following lemma
corresponding to Lemma 3.1 (see Mochizuki [//]).

Lemma 3.3 Asume c(x) = c0(x) + c1(x) and

{|∇ × b(x)|2 + |c0(x)|2}1/2 ≤ −ϵ(1 + r)−2−δ1 for some 0 < δ1 < 1,

c1(x) ≥ 0, ∂r{rc1(x)} ≤ 0, c1(x) = o(r−1) (r → ∞),

where ϵ > 0 is chosen sufficiently small. Under these requirement let R(κ2) =
(L− κ2)−1. Then u = R(κ2)f satisfies for 1/2 < α ≤ (1 + δ1)/2∫

(1 + r)−2α{|∇bu|2 + |κu|2}dx ≤ C
∫
(1 + r)2α|f |2dx,

where C > 0 is independent of f and κ.

Let u = {w,wt}. then (2.1) is rewritten in the form

∂tu = Mu+ V (t)u, u(0) = f = {f1, f2},

where

M =

(
0 1

∆b − c 0

)
and

(
0 0

0 b̃(x, t)

)
The energy space HE with norm

∥f∥2E =
1

2

∫
Ω
{|f2|2 + |∇bf1|2 + c|f1|2}dx

In HE the operator M forms a selfadjoint operator with domain

D(Λ) = {f1 ∈ H1
b,0; ∆bf1 ∈ L2} × {f2 ∈ H1

b,0 ∩ L2}.

Let {e−itM ; t ∈ R} be the unitary family of free evolution. Let {U(t, s); t ≥ s ≥ 0}
be the perturbed evolution. Then we see that

Z(s) = s− lim
t→∞

ei(t−s)MU(t, s)

exists for any s ≥ 0 and defines a not identically vanishing operator.
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4. The case of nonlinear dissipations

We consider the dissipative wave equation

wtt −∆w + β(x, t, wt)wt = 0, β(x, t, wt) = b̃(x, t)|wt|ρ−1, (4.1)

in x ∈ Rn and t > 0, with initial conditions

{w(0), wt(0)} = {f1, f2} ∈ H2,2 × (H1,2 ∩ L2ρ). (4.2)

Here ρ ≥ 1 and the coefficient b(x, t) is required to satisfy

C−1{|b̃t(x, t)|+ |∇b̃(x, t)} ≤ b̃(x, t) ≤ b1 < ∞, C, b1 > 0. (4.3)

In the following letHr,q (r ∈ R, q ≥ 1) be the Sobolev space and Ḣr,q (r > −n, q ≥ 1)
be the homogeneous Sobolev space, respectively, given by

Hr,q = {u; ∥u∥Hr,q = ∥F−1(< ξ >r û(ξ))∥Lq < ∞},

Ḣr,q = {u; ∥u∥Ḣr,q = ∥F−1(|ξ|rû(ξ))∥Lq < ∞}.

Here < ξ >=
√
1 + |ξ|2.

As is shown in Motai [12], a unique strong solution exists and it satisfies

(a) w(t) ∈ C([0,∞);H1,2 × L2),

(b) ∥w(t)∥2E + 2
∫ t

0

∫
Rn

β(x, s, wt))|wt(x, s)|2dxds = ∥w(0)∥2E,

(c) wtt, ∇wt, ∆w, b̃(x, t, wt) ∈ L∞((0,∞);L2).

Here

∥w(t)∥2E =
1

2

∫
Rn

{|wt(x, t)|2 + |∇w(x, t)|2}dx.

Since b̃(x, t) ≥ 0, (b) shows that the energy of solution decreases with t, and a
question arises: whether it decays or not as t → ∞?

As an answer we have the following:

Theorem 4.4 (i) Other than (4.3) if

b̃(x, t) ≤ b0(1 + |x|)−δ, ρ > 1 +
2(1− δ)

n− 1
,

then the energy of solutions of (4.1), (4.2) does not in general decay as t → ∞.
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(ii) Other than (4.3) if

0 ≤ b̃(x, t) ≤ b1(1 + |x|)−δ, 1 +
4(1− δ)

n− 1
< ρ < 1 +

6

n− 2
. (4.4)

Then for each solution w(t) of (4.1), (4.2) there exists f+
0 = {f+

01, f
+
02} in the energy

space HE such that
lim
t→∞

∥eitΛ0w(t)− f+
0 ∥E = 0.

Assertion (i) is proved similar to Theorem 3.3 (ii) if we use

Lemma 4.4 If f satisfies

∥f∥Γ,m+2 =
∑

|α|,|β|≤m+2

∥xα∇βf1∥+
∑

|α|,|β|≤m+1

∥xα∇βf2∥ < ∞

with m = [n/2], then we have

|[e−itΛ0f ]2(x)| ≤ C(1 + r + t)−(n−1)/2(1 + |r − t|−1/2∥f∥Γ,m+2.

Assertion (ii) is based on, as in the linear case (see (3.7)), the equation

(w(t), e−itMf0)E − (w(s), e−isMf0)E = −
∫ t

s
(β(·, τ, wt)wt, [e

−iτMf0]2)dτ.

Lemma 4.5 Under (4.3) and (4.4) we have

β(x, t, wt)wt = b̃(x, t)|wt|ρ−1wt ∈ L(ρ+1)/ρ((0,∞);H
1,(ρ+1)/ρ
δ/(ρ+1) ),

where for p ≥ 1 and γ ∈ R

∥u∥p
Hk,p

γ
=

k∑
J=0

∫
|∇j{(1 + r)γu(x)}|pdx k = 0, 1, 2 · · · .

Proof The energy equation (b) shows

b̃(x, t)|wt|ρ = b̃1/(ρ+1)[b̃|wt|ρ+1]ρ/(ρ+1) ∈ L(ρ+1)/ρ((0,∞);L
(ρ+1)/ρ
δ/(ρ+1))

since we have b̃1/(ρ+1) ≤ [b1(1 + r)−δ]1/(ρ+1). Noting (4.3) we have a similar energy
equation for ∇w. Then the results are summarized as in above lemma. 2

With this lemma we can have

|(w(t), e−itΛ0f0)E − (w(s), e−isΛ0f0)E|

≤ ∥β(·, τ, wt)wt∥L(ρ+1)/ρ(s,t;Y ′)∥[e−iτΛ0f0]2∥Lρ+1(s,t;Y ),

12



where Y ′ = H
1,(ρ+1)/ρ
δ/(ρ+1) . So, our problems become to show that for suitable space

Z ⊂ HE

(∗) ∥[e−iτΛ0f0]2∥Lρ+1((0,∞);Y ) ≤ C∥f0∥Z .

{eitΛ0w(t)} being bounded in HE, it weekly converges in HE. Let f+
0 denote the

limit. Then letting t → ∞ in (4.//) and replacing s by t, we obtain

|(eitΛ0w(t)− f+
0 , f0)E| ≤

≤ C∥b(·, ·, wt)∥L(ρ+1)/ρ((t,∞);Y ′)∥f0∥Z ,

from which it follows that

∥eitΛ0w(t)− f+
0 ∥Z′ ≤ C∥b(·, ·, wt)∥L(ρ+1)/ρ((t,∞);Y ′) → 0,

as t → ∞. So, if we have the embedding

(∗∗) Z ′ ↪→ H′
E,

then this proves the desired assertion (ii).

To verify (∗) and (∗∗) we use a weighted Strichartz estimate obtained by combined
with the usual Strichatz and smoothing estimates.

We put K =
√
−∆. Then

∥Kru∥Lq = ∥u∥Ḣr,q .

The following is due to Strichartz [15]: Let p and α satisfy

1− 2α

n+ 1
≤ 2

p
≤ 1− α

n
, 0 < α < n, (4.5)

Then we have for u ∈ C∞
0 (Rn) and d1 = n

(
1

p′
− 1

p
− α

n

)

∥K−αeitKu∥Lp ≤ C|t|−d1∥u∥Lp′ . (4.6)

This is used to show the following

Lemma 4.6 If we restrict p to satisfy 0 < d1 < 1. Then putting
1

r′
= 1− d1

2
, we

obtain for h(t) ∈ C0(R;Lp′)

{∫ ∞

−∞
∥eiKtu∥rLpdt

}1/r

≤ C∥u∥Ḣα/2,2 . (4.7)
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Proof By the Fubini theorem it follows from (4.6) that∥∥∥∥∫ ∞

−∞
K−αe−itKh(t)dt

∥∥∥∥2
Ḣα/2,2

=
∫ ∞

−∞

∫ ∞

−∞

(
K−αe−i(t−s)Kh(t), h(s)

)
dtds

≤
∫ ∞

−∞

[∫ ∞

−∞
C|t− s|−d1∥h(t)∥Lp′dt

]
∥h(s)∥Lp′ds.

Since 0 < d1 < 1, choosing q, r > 1 to satisfy
1

r
=

1

q
− (1− d1), we can apply the

Hardy-Littlewood theorem to obtain

≤ C∥h∥Lq(R;Lp′ )∥h∥Lr′ (R;Lp′ ).

Thus, the inequality∥∥∥∥∫ ∞

−∞
K−αe−itKh(t)dt

∥∥∥∥
Ḣα/2,2

≤ C∥h∥Lr′ (R;Lp′ )

holds if we choose
1

q
=

1

r′
, i.e.,

1

r′
= 1− d1

2
.

Inequality (4.7) is a result of the duality argument. 2

The following is a well known smoothing estimate (see e.g., Hoshiro [1], Sugimoto
[16]):

Lemma 4.7 Let n ≥ 2 and
1

2
< β <

n

2
. Then we have

∥eitKu∥L2(R;L2
−β

) =
{∫ ∞

−∞
∥eiKtu∥2L2

−β
dt
}1/2

≤ C∥u∥Ḣβ−1/2,2 , (4.8)

where for p ≥ 1 and γ ∈ R

∥v∥pLp
γ
=
∫
Rn

| < x >γ v(x)|pdx.

Put r = p in (4.7), and interpolate this and (4.8). Then since
1

p
=

n− α

2(n+ 1)
, we

have the following

Lemma 4.8 The following inequality holds for 0 ≤ θ ≤ 1.{∫ ∞

−∞
∥eiKtu∥qLq

−µ
dt
}1/q

≤ C∥u∥Ḣk,2 .

Here q, µ and k are given by

(∗ ∗ ∗) 1

q
=

1− θ

p
+

θ

2
=

n− α + (1 + α)θ

2(n+ 1)
, µ = βθ, k =

α(1− θ)

2
+
(
β − 1

2

)
θ.
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Note that for p given above the condition on α becomes

1 ≤ α < n. (4.9)

Now, we choose q = ρ+1 and 0 ≤ µ ≤ δ

ρ+ 1
in the above estimate. Then noting

[e−itΛ0f0]2 = w0t(t) = −K sin(Kt)f01 + cos(Kt)f02

and H−1,ρ+1
−µ ↪→ Y , we obtain from Lemma 4.7

∥[e−iτΛ0f0]2∥Lρ+1((0,∞);Y ) ≤ C∥f0∥H−1,k+1,2×H−1,k,2 . (4.14)

Here Ha,b,2 = {u; ∥u∥Ha,b,2 = ∥Kbu∥Ha,2 < ∞}.
This proves (∗) with Z = H−1,k+1,2 ×H−1,k,2. Moreover, (∗∗) is also proved if we

choose 0 < k ≤ 1. In fact, this leads us to the embedding

H1,1−k,2 ×H1,−k,2 ↪→ H1−k,1,2 ×H1−k,2 ↪→ Ḣ1,2 × L2.

Now the proof of (ii) becomes complete if we can verify the following

Lemma 4.9 When ρ satisfies (4.4), the triplet q, µ, k in the above lemma can be
chosen to satisfy

1

q
=

1

ρ+ 1
, µ ≤ δ

ρ+ 1
, 0 < k ≤ 1.

Proof The above condition on µ is rewritten as 0 ≤ θ ≤ δ

(ρ+ 1)β
. The condition

of q is
n− α + (1 + α)θ

2(n+ 1)
=

1

ρ+ 1
.

So, for fixed α and β, ρ takes the maximum when θ = 0

ρ = 1 +
2(1 + α)

n− α
(4.10)

and the minimum when θ =
δ

(ρ+ 1)β

ρ = 1 +
2(1 + α)(1− δ)

n− α
+

(1 + α)δ(2β − 1)

(n− α)β
. (4.11)

Since k = α/2 when θ = 0, letting α ↑ 2, we see that the upper-limit of ρ becomes

1 +
6

n− 2
. This gives the maximum of ρ since we can choose α = 2. Next consider
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(4.11). The right is monotone increasing with both α and β. Thus, letting α ↓ 1

and β ↓ 1/2, we obtain the lower-bound ρ = 1 +
4(1− δ)

n− 1
, at the same time k ↓ 0.

These show the assertion of the lemma. 2

Remark When ρ sartisfies

1 +
2(1− δ)

n− 1
< ρ ≤ 1 +

4(1− δ)

n− 1
(4.16)

we can prove the following: If (4.16) is satisified, there exist w+
0 (0) ∈ HE and p > 2

such that
lim
t→∞

∥U0(−t)u(t)− w+
0 (0)∥Ḣ1,p×Lp = 0.

5. Time dependent small perturbations of the Klein-Gordon eqution

Let n ≥ 2 and let Ω be an exterior domain in Rn with smooth boundary ∂Ω which
is star-shaped with respect to the origin 0 (the case Ω = Rn is not excluded when
n ≥ 3). We consider in Ω

∂2
tw −∆bw +m2w + b0(x, t)∂tw + c(x, t)w = 0, (5.1)

where i =
√
−1, ∂t = ∂/∂t, ∆b is the magnetic Laplacian

∆b = ∇b · ∇b =
n∑

j=1

(∂j + ibj(x))
2

with ∂j = ∂/∂xj, m is a positive constant, bj(x) (j = 1, · · · , n) are real-valued
smooth functions of x ∈ Rn, and c(x, t), b0(x, t) are complex-valued continuous
functions of (x, t) ∈ Rn ×R. For solutions u = u(x, t) and w = w(x, t) we require
the zero Dirichlet conditions

w(x, t)|∂Ω = 0 (5.2)

on the boundary ∂Ω. b(x) = (b1(x), · · · , bn(x)) represents a magnetic potential.
Thus, the magnetic field is defined by its rotation ∇×b(x) = {∂jbk(x)−∂kbj(x)}j<k.
We require

(A1) |∇ × b(x)| ≤ ϵ0(1 + [r])−2, r = |x|,

Here ϵ0 is a small positive constant and

[r] =

{
r, when n ≥ 3
r(1 + log r/r0), when n = 2

for a fixed r0 > 0 satisfying ∂Ω ⊂ {x; |x| > r0}. As for the coefficients of the
perturbation terms, we require the following:

(A2) |b0(x, t)|, |c(x, t)| ≤ η(t) + ϵ1(1 + [r])−2,
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where η(t) is a positive L1-function of t ∈ R and ϵ1 is a small positive constant.

Equation (5.1) is rewritten in the system to the pair {w,wt} (wt = ∂tw):

∂t

(
w
wt

)
=

(
0 1

∆b −m2 0

)(
w
wt

)
−
(

0 0
c(x, t) b0(x, t)

)(
w
wt

)
.

It is considered in the energy space HE = H1
b,0 × L2, where H1

b,0 = H1
b,0(Ω) is the

completion of C∞
0 (Ω) with norm

∥f∥2H1
b,0

=
∫
Ω
{|∇bf(x)|2 + |f(x)|2}dx.

Thus, the inner product and norm ofHE are given for f = (f1, f2), g = (g1, g2) ∈ HE

by

(f, g)HE
=

1

2

∫
Ω

{
∇bf1(x)∇bg1(x) +m2f1(x)g1(x) + f2(x)g2(x)

}
dx (5.3)

and ∥f∥HE
=
√
(f, f)HE

, respectively. We define the operator M in HE by

M =

(
0 i

i(∆b −m2) 0

)
,

with domain

D(M) =
{
f = {f1, f2} ∈ [H2

loc ∩H1
b,0]×H1

b,0; ∆bf1 ∈ L2
}
. (5.4)

Then it forms a selfadjoint operator in HE, and (5.1) with boundary condition (5.2)
is represented as

i∂tu = Mu+ V (t)u in HE, (5.5)

where u = {w,wt} and

V (t)u =

(
0 0

−ic(x, t) −ib0(x, t)

)(
w1

w2

)
.

Moreover, by use of the unitary group of operators {e−itM ; t ∈ R} in HE, (5.5) with
initial data u = {w(0), wt(0)} = {f1, f2} ∈ HE reduces to the integral equation

u(t) = e−itMf − i
∫ t

0
e−i(t−τ)MV (τ)u(τ)dτ. (5.6)

We define the weighted energy space

XE =
{
f(x) = {f1(x), f2(x)};

∥f∥2XE
=

1

2

∫
Ω
(1 + [r])−2{|∇bf1|2 +m2|f1|2 + |f2|2}dx < ∞

}
. (5.7)
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For an interval I ⊂ R and a Banach space W , we denote by L2(I;W ), the space
of all W -valued functions h(t) satisfying

∥h∥L2(I;W ) =
(∫

I
∥h(t)∥2Wdt

)1/2

< ∞.

Similarly, C(I;W ) denotes the space of all W -valued continuous functions of t ∈ I.
Further, we denote by B(W ) the space of bounded operators on W .

Now, the main results of this paper are summarized in the following theorems.

Theorem 5.5 For ζ ∈ C\R put R(ζ) = (M − ζ)−1. If ϵ0 in (A1) is chosen small
enough, then there exists C0 > 0 such that

sup
ζ∈C\R

∥R(ζ)f∥XE
≤ C0∥f∥X′

E
,

for each f ∈ X ′
E, where X ′ is the dual space of XE with respect to HE.

Theorem 5.6 Assume (A1) and (A2) with small ϵ0 and ϵ1. Then for each f ∈ H
there exists a unique solution u(t) ∈ C(R;HE) to the integral equation (11). Let
U(t, s), s, t ∈ R±, be the evolution operator which maps u(s) to u(t) = U(t, s)u(s).
Then there exists C1 > 0 such that

∥U(·, s)g∥2L2
t (R±;XE) ≤ C1∥g∥2HE

. (5.8)

for each s ∈ R+ = (0,∞) [or ∈ R− = (−∞, 0)] and g ∈ HE.

Theorem 5.7 Under the same conditions as above, we have

(i) {U(t, s)}t,s∈R is a family of uniformly bounded operators in HE:

sup
t,s∈R

∥U(t, s)∥B(HE) = CU < ∞.

(ii) For every s ∈ R±, there exists the strong limit

Z±(s) = s− lim
t→±∞

e−i(−t+s)MU(t, s).

(iii) The operator Z± = Z±(0) satisfies

w − lim
s→±∞

Z±U(0, s)e−isM = I (weak limit).

(iv) If ϵ1 is chosen smaller to satisfy ϵV
√
2C0C1 < 1, where ϵV = ϵ1 (Schrödinger),

= max{1,m−1}ϵ1 (Klein-Gordon), then Z± : H −→ HE is a bijection on HE. Thus,
the scattering operator S = Z+(Z−)−1 is well defined and also gives a bijection on
HE.
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6. Proof of Theorem 5.5

Let L = −∆b be the selfadjoint operator in L2 = L2(Ω) with domain D(L) =
{u ∈ H2

loc(Ω) ∩ H1
b,0(Ω);∆bu ∈ L2(Ω)}. For κ ∈ C+ = {κ ∈ C; Imκ > 0} we put

R(κ2) = (L−κ2)−1. Assume (A1) with sufficiently small ϵ0 > 0. Then the following
two propositions hold.

Proposition 6.1 There exist C2 > 0 and C3 > 0 independent of κ such that∫
Ω
(1 + [r])−2|R(κ2)f(x)|2dx ≤ C2

∫
Ω
(1 + [r])2|f(x)|2dx,

∫
Ω
(1 + [r])−2{|∇bR(κ2)f |2 + |κR(κ2)f |2}dx ≤ C3

∫
Ω
(1 + [r])2|f |2dx.

For the sake of simplicity we put ξ(r) = (1 + [r]2)−1/2.

Lemma 6.10 Let Rm(κ
2) = (L+m2 − k2)−1. Then there exists C > 0 such that

(1 + |κ|)∥ξRm(κ
2)f∥+ ∥ξ∇b(Rm(κ

2)f)∥ ≤ C∥ξ−1f∥, (6.1)

∥ξ∆b(Rm(κ
2)f)∥ ≤ C{∥ξ−1∇bf∥+ ∥ξ−1f∥}, (6.2)

|κ|∥ξ∇(Rm(κ
2)f)∥ ≤ C{∥ξ−1∇bf∥+ ∥ξ−1f∥}. (6.3)

for each κ ∈ C+ and f ∈ X ′
0 satisfying also ∇bf ∈ X ′

0.

Proof Note that

|κ|2∥ξRm(k
2)f∥2 ≤ m2∥ξRm(κ

2)f∥2 + | −m2 + κ2|∥ξRm(κ
2)f∥2.

Then (6.1) is direct from Propositions 1 and 2.

To show (6.2) we start from the equation

ξ∆b(Rm(κ
2)g) = ∇b · {ξ∇bRm(κ

2)g)− (∇ξ)Rm(κ
2)g}.

Put f⃗ = (∇ξ)Rm(κ
2)g. Then since f⃗ |∂Ω = 0⃗, we have

|(∇b · f⃗ , h)| = |(f⃗ ,−∇bh)| ≤ ∥f⃗∥∥h∥Ḣ1
b
,

where Ḣ1
b is the completion of C∞

0 (Ω) with respect to the norm ∥∇bh∥. Let Ḣ−1
b

denote the dual space of Ḣ1
b . Then we have ∥∇b · f⃗∥Ḣ−1

b
≤ ∥f⃗∥, and hence noting

|∇ξ| ≤ C|ξ|, we have

∥ξ∆b(Rm(κ
2)g)∥Ḣ−1

b
≤ ∥ξ∇b(Rm(κ

2)g)∥+ ∥(∇ξ)Rm(κ
2)g∥ ≤ C∥ξ−1g∥.
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(6.2) then follows from the equality

(∆b(Rm(κ
2)f, g)) = (Rm(κ

2)∆bf, g) = (ξ−1f, ξ∆b(Rm(κ
2)g))

since we have

∥ξ−1f∥Ḣ1
b
≤ ∥ξ−1∇bf∥+ ∥∇(ξ−1)f∥ and |∇ξ−1| ≤ Cξ−1.

Next note that

κ2Rm(κ
2)f = −f − (∆b −m2)Rm(κ

2)f.

Then the use of (6.1) and (6.2) shows

∥ξ(∆b −m2)Rm(κ
2)f∥ ≤ C{∥ξ−1∇bf∥+ ∥ξ−1f∥}.

Since ∥ξf∥ ≤ ∥ξ−1f∥, this proves

|κ|2∥ξRm(κ
2)f∥ ≤ C{∥ξ−1∇bf∥+ ∥ξ−1f∥}. (6.4)

By use of (6.4), (6.1) and (6.2) we have

|κ|2∥ξ∇b(Rm(κ
2)f)∥2

= −|κ|2({ξ∆b(Rm(κ
2)f) + 2∇ξ · ∇b(Rm(κ

2)f}, ξRm(κ
2)f)

≤ {∥ξ∆b(Rm(κ
2)f)∥+ 2∥∇ξ · ∇b(Rm(κ

2)f)∥}|κ|2∥ξRm(κ
2)f∥

≤ C{∥ξ−1∇bf∥+ ∥ξ−1f∥}{∥ξ−1∇bf∥+ ∥ξ−1f∥}.

which proves (6.3). 2

With this lemma we can prove the following proposition which attains Theorem
5.5 for M .

Proposition 6.2 Assume (A1) with small ϵ0. For κ ∈ C\R put R(κ) = (M−κ)−1.
Then there exists C4 > 0 independent of κ and f ∈ XE such that

∥R(κ)f∥XE
≤ C4∥f∥X′

E
, (6.5)

where XE is the weighted energy space defined by (5.7).

Proof Note that

|(R(κ)f, g)HE
| = 1

2

[
|(∇b{κRm(κ

2)f1 + iRm(κ
2)f2},∇bg1)

+((c+m2){κRm(κ
2)f1 + iRm(κ

2)f2}, g1)
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+({i(∆b −m2)Rm(κ
2)f1 + κRm(κ

2)f2}, g2)|
]

(6.6)

≤ 1

2

[
{|κ|∥ξ∇b(Rm(κ

2)f1)∥+ ∥ξ∇bRm(κ
2)f2∥}∥ξ−1∇bg1∥

+m2{|κ|∥ξRm(κ
2)f1∥+ ∥ξRm(κ

2)f2∥}∥ξ−1g1∥

+{∥ξ∆b(Rm(κ
2)f1)∥+m2∥ξRm(κ

2)f1∥+ |κ|∥ξRm(κ
2)f2∥}∥ξ−1g2∥

]
.

Then applying the inequalities of Lemma 6.10 to each component of the right and
noting m > 0, we see that (6.5) to hold. 2

Remark The above proof is not verified so far to acoustic wave equations (i.e., in
case m = 0). The main reason is in the difference of the energy norm. The kinetic
energy which consists just of the Dirichlet norm makes difficult to apply Lemma
6.10 to acoustic wave equations.

However, as is proved in Mochizuki [//], a weighted energy estimate works well to
acoustic wave equations when n ≥ 3, and Theorem 5.6 is applied to problem (6.1)
with m2 = 0 if we require in place of (BC.2)

(BC.3)
{
|b̃(x, t)∥2 + r2|c̃(x, t)|2

}1/2
≤ η(t) + ϵ0(1 + r)−1−δ

for some 0 < δ < 1 and small ϵ0 > 0.

7. Proof of Theorem 5.6

The resolvent estimates of Theorem 5.5 lead us to the smoothing properties sum-
marized in the following proposition.

Proposition 7.3 Assume (A1) with small ϵ0. Then for each h(t) ∈ L2(R±;X
′)

and f ∈ H, we have∥∥∥∥∫ t

0
e−i(t−τ)Λh(τ)dτ

∥∥∥∥2
L2(R±;X)

≤ C2
0∥h∥2L2(R±;X′), (7.1)

sup
t∈R±

∥∥∥∥∫ t

0
eiτΛh(τ)dτ

∥∥∥∥2
H
≤ 2C0∥h∥2L2(R±;X′), (7.2)

∥e−itΛf∥2L2(R±;X) ≤ 2C0∥f∥2H, (7.3)

where R+ = (0,∞) and R− = (−∞, 0).

Proof By the standard approximation procedure, we can assume h(t) ∈ C∞
0 (I;X ′)

for some interval I ⊂ R±.

For t ∈ R± we put v(t) =
∫ t

0
e−i(t−τ)Λh(τ)dτ , where h(t) is regarded to be 0

outside I, and consider its Laplace transform

ṽ(ζ) = ±
∫ ±∞

0
eiζtv(t)dt, ±Imζ > 0,
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Then since ṽ(ζ) = −iR(ζ)h̃(ζ), it follows from the Plancherel theorem and Theorem
1 that ∣∣∣∣∫

I
e∓2ϵt(v(t), g(t))Hdt

∣∣∣∣ = ∣∣∣∣(2π)−1
∫ ∞

−∞
(ṽ(λ± iϵ), g̃(λ± iϵ))Hdλ

∣∣∣∣
≤
∫ ∞

−∞
∥R(λ± iϵ)h̃(λ± iϵ)∥X∥g̃(λ± iϵ)∥X′dλ

≤ C0

∫
I
e∓2ϵt∥h(t)∥X′∥g(t)∥X′dt

for any g(t) ∈ C∞
0 (I;X ′). Letting ϵ ↓ 0, we obtain inequality (7.1).

Next, note that the Fubini theorem implies∥∥∥∥∫ t

0
eisΛh(s)ds

∥∥∥∥2
H
=
∫ t

0

(∫ σ

0
e−i(σ−s)Λh(s)ds, h(σ)

)
H
dσ

+
∫ t

0

(
h(s),

∫ s

0
e−i(s−σ)Λh(σ)dσ

)
H
ds,

where (·, ·)H is extended to the duality between X and X ′. This and (7.1) show
(7.2) to hold.

(7.3) is the dual assertion of (7.2). 2

Lemma 7.11 Under (A2) we have

|(V (t)u, v)H| ≤ η̃(t)∥u∥H∥v∥H + ϵV ∥u∥X∥v∥X ,

where η̃(t) = max{1,m−1}η(t), ϵV = max{1,m−1}ϵ1.

Proof We have

|(V (t)u, v)HE
| = 1

2

∣∣∣∣∫
Ω
{c(x, t)u1 + b0(x, t)u2}v2dx

∣∣∣∣
≤ 1

2

∫
Ω
(η(t) + ϵ1(1 + [r]2)−1){|u1|+ |u2|}|v2|dx

≤ max{1,m−1}{η(t)∥u∥HE
∥v∥HE

+ ϵ1∥u∥XE
∥v∥XE

}.

Thus, the lemma also hold in this case. 2

For 0 ≤ ±s ≤ ±T ≤ ∞ let I+,s = [s, T ] or I−,s = [T, s]. We do not exclude T ±∞
and write R+,s = [s,∞) or R−,s = (−∞, s].

With these notation let Y (I±,s) be the space of functions v(t) ∈ BC(I±,s;H) ∩
L2(I±,s;X) (BC means the space of bouded continuous functions) such that

∥v∥Y (I±,s) = sup
t∈I±,s

∥v(t)∥H + ∥v∥L2(I±,s;X) < ∞. (34)
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Lemma 7.12 We put

Φ±,sv(t) =
∫ t

s
e−i(t−s)ΛV (s)v(s)ds, v(t) ∈ Y (I±,s).

Then Φ±,s ∈ B(Y (I±,s)) and we have

sup
t∈I±,s

∥Φ±,sv(t)∥H ≤ ∥η̃∥L1(I±,s) sup
t∈I±,s

∥v(t)∥H + ϵV
√
2C0∥v∥L2(I±,s;X), (7.5)

∥Φ±,sv∥L2(I±,s;X) ≤ 2
√
2C0∥η̃∥L1(I±,s) sup

t∈I±,s

∥v(t)∥H + 3ϵVC0∥v∥L2(I±,s;X). (7.6)

Proof Let g ∈ H. Then it follows from Lemma 7 that

|(Φ±,sv(t), g)H| =
∣∣∣∣∫ t

s
(V (τ)v(τ), e−i(τ−t)Λg)Hdτ

∣∣∣∣
≤
∣∣∣∣∫ t

s
η̃(τ)∥v(τ)∥H∥g∥Hdτ

∣∣∣∣+ ϵV

∣∣∣∣∫ t

s
∥v(τ)∥X∥e−i(τ−t)Λg∥Xdτ

∣∣∣∣. (7.7)

So, by use of (7.3) and the unitarity of e−itΛ we obtain

|(Φ±,sv(t), g)H| ≤ ∥η̃∥L1(I±,s) sup
τ∈I±,s

∥v(τ)∥H∥g∥H + ϵV ∥v∥L2(I±,s;X)

√
2C0∥g∥H,

which implies (7.5).

Next, let g(t) ∈ L2(I±,s;X
′). Then it similarly follows that∣∣∣∣∫ T

s
(Φ±,sv(t), g(t))Hdt

∣∣∣∣ = ∣∣∣∣∫ T

s

∫ t

s
(V (τ)v(τ), e−i(τ−t)Λg(t))Hdτdt

∣∣∣∣
≤ ∥η̃∥L1(I±,s) sup

τ∈I±,s

(
∥v(τ)∥H

∥∥∥∥∫ T

τ
eitΛg(t)dt

∥∥∥∥
H

)

+ϵV ∥v∥L2(I±,s;X)

∥∥∥∥∫ T

τ
e−i(τ−t)Λg(t)dt

∥∥∥∥
L2(I±,s;X)

,

where ∥∥∥∥∫ T

τ
e−i(τ−t)Λg(t)dt

∥∥∥∥
L2(I±,s;X)

≤
∥∥∥∥∫ τ

0
e−i(τ−t)Λg(t)dt

∥∥∥∥
L2(I±,s;X)

+
∥∥∥∥e−iτΛ

∫ T

0
eitΛg(t)dt

∥∥∥∥
L2(I±,s;X)

.

Thus, applying inequalities (7.1), (7.2) and (7.3), we obtain∣∣∣∣∫ T

s
(Φ±,sv(t), g(t))Hdt

∣∣∣∣ ≤ ∥η̃∥L1(I±,s) sup
τ∈I±,s

∥v(τ)∥H2
√
2C0∥g∥L2(I±,s;X′)
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+ϵV ∥v∥L2(I±,s;X)3C0∥g∥L2(I±,s;X′),

which implies (7.6). 2

Now, since η̃(t) ∈ L1(R±), we can choose 0 < δ ≤ 1 and ±σ > 0 to satisfy

(1 + 2
√
2C0)∥η̃∥L1(I±,s) < 1 (7.8)

if |I±,s| = |T − s| ≤ δ or I±,s = R±,s with ±s ≥ ±σ. So, if ϵ1 is chosen small enough
to satisfy ϵV (2

√
2C0 + 3C0) < 1, then it follows from (7.4), (7.5) and (7.6) that

∥Φ±,sv∥Y (I±,s) ≤ max{(1 + 2
√
2C0)∥η̃∥L1(I±,s), ϵV (2

√
2C0 + 3C0)}∥v∥Y (I±,s)

< ∥v∥Y (I±,s). (7.9)

Lemma 7.13 For each fixed I±,s satisfying (38), the integral equation

u(t) = e−i(t−s)Λf − i
∫ t

s
e−i(t−τ)ΛV (τ)u(τ)dτ (7.10)

has a solution u(t) ∈ Y (I±,s) and it satisfies

∥u∥Y (I±,s) = sup
t∈I±,s

∥u(t)∥H + ∥u∥L2(I±,s;X) ≤ Cδ,σ∥f∥H (7.11)

for some Cδ,σ > 0 independent f .

Proof We define {uk(t)} successively as follows:

u0(t) = e−i(t−s)Λf, uk(t) = u0(t)− iΦ±,suk−1(t).

Note that the unitarity of e−itΛ and (7.3) show

∥u0∥Y (I±,s) = ∥u0(t)∥H + ∥u0∥L2(I±,s;X) ≤ (1 +
√
2C0)∥f∥H. (7.12)

Thus, u0(t) ∈ Y (Is) and also each uk(t) ∈ Y (I±,s). Since

∥uk − uk−1∥Y (I±,s) ≤
(
∥Φ±,s∥B(YI±,s

)

)k
∥u0∥YI±,s

, (7.13)

we see from (39) that

un(t) = u0(t) +
n∑

k=1

{uk(t)− uk−1(t)}

converges in YI±,s as n → ∞,. The limit u(t) obviously solves the integral equation
(7.10). Inequality (7.11) with

Cδ,σ =
1 +

√
2C0

1− ∥Φ±,s∥B(Y (I±,s))
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is a result of (7.12) and (7.13). 2

Proof of Theorem 5.7 For δ and ±σ given in (7.8) we choose integer N to satisfy
Nδ ≥ ±σ, and divide R± into N + 1 subintervals

I+,sj = [sj, sj+1] or I−,sj = [sj+1, sj] (j = 0, 1, · · · , N − 1), and I±,sN = R±,sN ,

where sj = ±jδ (j = 0, 1, · · · , N). Then by Lemma 9 the solution of (7.10) with
f = u(sj) is constructed in each interval I±,sj , and by putting together, a global
solution of (5.6) is obtained. Moreover, the above argument and (7.11) imply (5.8)
to hold with C1 = (N + 1)CN

δ,σ.

The uniqueness of solutions in C(R;H) follows from the inequality

∥Φ±,sv(t)∥H ≤
∣∣∣∣∫ t

s
∥V (τ)v(τ)∥Hdτ

∣∣∣∣ ≤ ∣∣∣∣∫ t

s
{η̃(τ) + ϵ1}v(τ)∥v(τ)∥dτ

∣∣∣∣
≤ {∥η̃∥L1(I±,s,t) + ϵ1|I±,s,t|} sup

t∈I±,s,t

∥v(t)∥H,

where I+,s,t = (s, t) when 0 ≤ s < t and I−,s,t = (t, s) when t < s < 0, since we can
choose δ = |t− s| small enough to satisfy

∥η̃∥L1(I±,s,t) + ϵ1|I±,s,t| < 1. 2

5. Proof of Theorem 5.7

Proof of Theorem 5.7 will be based on Lemma 7 and inequalities of Proposition 4
and Theorem 5.6.

We put u(t, s) = U(t, s)f , u0(t− s) = e−i(t−s)Λf0. Then we have from (5.6)

(u(t, s), u0(t− s))H = (f, f0)H − i
∫ t

s
(V (τ)u(τ, s), u0(τ − s))Hdτ.

In the right side we apply the inequality of Lemma 7. It then follows from (7.3) and
(5.8) that for any σ, t ∈ R±,

|(u(t, s), u0(t− s))H − (u(σ, s), u0(σ − s))H| ≤
∣∣∣∣∫ t

σ
η̃(τ)∥u(τ, s)∥H∥u0(τ − s)∥Hdτ

∣∣∣∣
+ϵV

∣∣∣∣∫ t

σ
∥u(τ, s)∥2Xdτ

∣∣∣∣1/2∣∣∣∣∫ t

σ
∥u0(τ − s))∥2Xdτ

∣∣∣∣1/2. (8.1)

All the assertions of the theorem are verified from this inequality.

Proof of Theorem 3 (i) We put σ = s in (7.14). Then by (7.3) and (5.8)

|(u(t, s), u0(t− s))H − (f, f0)H| ≤
∣∣∣∣∫ t

s
η̃(τ)∥u(τ, s)∥H∥u0(τ − s)∥Hdτ

∣∣∣∣
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+ϵV
√
2C0C1∥f∥H∥f0∥H.

Since e−i(t−s)Λ is unitary, it follows that

∥u(t, s)∥H ≤ (1 + ϵV
√
2C0C1)∥f∥H +

∫ t

s
η̃(τ)∥u(τ, s)∥Hdτ.

The requirement η(t) ∈ L1(R) and the Gronwall inequality show the assertion with

CU = (1 + ϵV
√
2C0C1)e

∥η̃∥L1 .

(ii) Noting (i), we have from (7.14), (7.3) and (5.8)

|(u(t, s), u0(t− s))H − (u(σ, s), u0(σ − s))H| ≤
{
CU∥f∥H

∣∣∣∣∫ t

σ
η̃(τ)dτ

∣∣∣∣+
+ϵV

∣∣∣∣∫ t

σ
∥u(τ, s)∥2Xdτ

∣∣∣∣1/2√2C0

}
∥f0∥H.

Here, for fixed any s ∈ R±,
{
· · ·
}

→ 0 as σ, t → ±∞. Thus, e−i(s−t)ΛU(t, s)

converges strongly in H as t → ±∞.

(iii) Let σ = s and t → ±∞ in (7.14). Then noting (i) and (5.8), we have

|(Z±(s)f, f0)H − (f, f0)H| ≤ ∥f∥H
{
CU

∣∣∣∣∫ ±∞

s
η̃(τ)dτ

∣∣∣∣∥f0∥H+
+ϵV

√
C1

∣∣∣∣∫ ±∞

s
∥u0(τ − s))∥2Xdτ

∣∣∣∣1/2}. (8.2)

Choose here f = e−isΛg and f0 = e−isΛg0. Then

|({eisΛZ±(s)e−isΛ − I}g, g0)H| ≤ ∥e−isΛg∥H
{
CU

∣∣∣∣∫ ±∞

s
η̃(τ)dτ

∣∣∣∣∥e−isΛg0∥H+

+ϵV
√
2C0

∣∣∣∣∫ ∞

s
∥e−iτΛg0∥Xdτ

∣∣∣∣1/2}.
g and g0 being arbitrary, this implies that as s → ±∞,

Z±U(0, s)e−isΛ = eisΛZ±(s)e−isΛ → I weakly in H.

(iv) Note that (7.15) and (7.3) imply

|({Z±(s)− I}f, f0)H| ≤
{∣∣∣∣∫ ±∞

s
η̃(τ)dτ

∣∣∣∣CU + ϵV
√
2C0C1

}
∥f∥H∥f0∥H.

Since ϵV
√
2C1C0 < 1, we can choose ±s > 0 sufficiently large to satisfy∣∣∣∣∫ ±∞

s
η̃(τ)dτ

∣∣∣∣CU + ϵV
√
2C0C1 < 1.
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Thus, ∥Z±(s)− I∥B(H) < 1 and Z±(s) gives a bijection on H. The same property of
Z± then easily follows. 2

Final Remarks

In case Ω = Rn (n ≥ 3) and b(x) = 0, similar results have been obtained in [11] and
[13], for complex potentials satisfying

c(x, t) ∈ Lν(R;Lp) ∩BC(Rn+1)

with

0 ≤ 1

p
≤ 2

n
and

1

ν
= 1− n

2p
.

The smallness condition
∥c∥L∞(R±;Ln/2) << 1

is also required when ν = ∞.

The arguments employed in these works are based on the Fourier transformation,
and are not directly applicable to the problems in exterior domain. Moreover, note
that the function

c(x, t) = c0(1 + r)−α(1 + |t|)−β (46)

with α, β ≥ 0 satisfies (A2) and also the above conditions if α/2+ β > 1. However,
the function

c(x, t) = c0 sin t(1 + r)−2 with small |c0| > 0

satisfies (A2) but slips out of the above conditions.

The potential (46) has been considered in Yafaev [17] when c is real and β > 0.
For the Schrödinger equation (1) in Rn (n ≥ 3) with b = 0 his results include the
following. The wave operator

W± = s− lim
t→±∞

U(0, t)eitL

exists if α+β > 1. It is in general incomplete, but becomes complete, i.e., the range

of W± coincides with the whole space L2(Rn), if the stronger condition
α

2
+ β > 1

is required.
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