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1. Introduction
In this talk we consider the classical wave propagation problem in exterior domain.

(1) In the first talk, we explain how linear or non-linear dissipations affect the
behavior of energy as time goes to infinity. More precisely, we divide the dissipations
which bring about energy decay or non-decay, and in case the energy never decays,
we consider the asymptotic behavior in the energy space of the solutions.

There are many works which treat the energy decay or point-wise decay of so-
lutions, see e.g. [2], [4], [8], [10], [12], [14], [17]. On the other hand the energy
non-decay and asymptotics of solutions are treated in [5], [6], [8], [10], [12], [13].
We summarize here the results of [5], [8], [13]. Note that the smoothing estimates
(linear case) and Strichartz estimates (non-linear case) for free solutions play an es-
sential role to enter into the asymptotoc behavior of perturbed solutions. For these
estimates see e.g., [1], [3], [7], [11], [15], [16] and [18].

(2) In the second talk, we treat small perturbation which is linear but non-
selfadjoint and depends on space-time. We shall show the uniform boundedness of
energy in ¢t € R of solutions and apply it to develop the scattering theory, i.e., the
existence and unitarity of the M¢ller wave operators.

We summarize here the results of [6], [9].

2. The dissipations which ensure the energy decay
Let €2 be an exterior domain in R™ (n > 1) with smooth compact boundary 0f2.
We consider in {2 the wave propagation problem

O*w — Apw + c(z)w + Bz, t, Ow)dw =0, (x,t) € Q x Ry

w(z,0) = fi(x), Juw(x,0) = fo(z), z €, (2.1)
w(x,t) =0, (z,t) €00 xRy,

where
n

Apu = V- Vyu =Y (9; +1ib;(x))*u,

=1
Bla,t,0pu) = b(z, 1)|dul"~!

with = (v1,---,1,) € R", 0; = 0/0x;,i = /—1and p > 1. The coefficients b;(z),

c(x) and b(x,t) are real-valued sufficiently smooth functions. We further require

that
0 <c(z) <¢ forsome ¢, >0 and b(z,t) >0, (2.2)
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Thus b(x, t)|w;|*~ w, represents a friction term.

The operator L = —Ay + ¢(x) with domain
D(L) ={uec L*(Q) N H.(Q) : —Ayu+ c(z)u € L*(Q), u|gq = 0}

defines a non-negative selfadjoint operator in L?(2). Note that Vyu € L*(Q) if
u € D(L). Let Hj, be the closure in the Dirichlet norm

lullh = [ [Vyulda

of scalar functions u € C§°(R2). The Hardy inequality

— 92)2
/(77/42)|u|2dm < /|Vbu|2dm
,

holds for each u € Hyj .

For solutions w(z,t) of (2.1) we define the energy at time ¢ by
1
ez = 5 /{th(:r, I + [Vew(x,1)|* + () [w(, t)*dz,

In the following we assume that for suitably given initial data w(0) = {f1, fo},
problem (2.1) has a unique global solution with finite energy which also satisfies the
energy identity

Jw@l+ [ [ Be,m e, ) ae,r) Pdedr = w3

To enter into the energy decay problems, we introduce an weighted energy of
solutions. Let ¢(s), s > 0, be a smooth function satisfying

1 < o(s) < po(l+ s) for some go >0 and lim ¢(s) = oo, (2.3)

S§—00

O'(s) >0, ¢"(s) <0, ¢"(s) >0 and they all are bounded in s >0,  (2.4)
With this ¢(s) an weighted energy of solutions at time ¢ is defined by

1
lw (@), =5 [ @0+ O{lwd + Vil + cw}dz.

We multiply by ¢(r + ¢)w; on both sides of the equation and take the real part.
Then |
§6t{g0(|wt|2 + Vow* + clw|*)} — ReV - (Vywewy)
1 1
—590’(|wt|2 + | Vyw|*) — §g0’c|w|2 + @Blw|* = 0.

2



Next multiply by ¢'(r + ¢t)w on both sides of the equation. Then
1
§Re3t{g0’(2wt@} —ReV - (Vywp'w) — ¢ (Jwe]* — [Vyw|* — clwl]?)

—Rey" (waw — 7 - Vyww) + Rey' Bww = 0.

Getting together these equations, we have
Xt+VY+Z:O, thth

where )
X = 590{|wt|2 + | Vyw]? + clw]?} + Rey'w,w,

Y = —ReVyw(pw; + ¢'w)

/=1, 1 12

L,
= <905—2@’)\wt’2+§¢/\$wt+vbw+$s& " wl

1
+§{230'” — 1" + et w|* — 2Reyw,w + Rey’ fw, .

1
> (B — 2¢")|wi|* + Re(¢'8 — 2¢" )ww + S12¢" =" Yo"+ ol

The case of linear dissipation Sw, = l;(ac,t)wt

In this case noting

(98 = 2¢")[wil® = {o(r + )b, t) = 2/ (r + 1)) |,

Re(¢!ft — 26/ )us = S0(2'5 — )wl?)} — (D) — 26}l

we require
bo(1+7+1)"2 <b(x,t) <by(1+7+1) for some by, by > 0.
o(r +t)b(z,t) — 2¢'(r + 1) > 0,
P+ )b, 1)} + ¢ (r + t)e(z) 2 0,
20" (r +t) — ' (r + )" (r +)* >0
for (z,t) € 2 x (0,00). Then we have
1 8
Z 2 §8t[(80/b —2¢")|wl?],
and (2.5) is reduced to
1
5075 {gp(|wt|2 + [Vow|® + c|lw|?) + 2Rep ww
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(b — 20" [w[*} = ReV - {Vyw(w, + ¢'W)} <0
Integrate the both sides over Qg x (0,¢). Then

3 / o(Jwe|? + |Vyw|? + cjw]?) + 2Rew'w,;w + (¢'b — 2<p”)]w|2} dx

1 I T 7 "
=5 . {eUBE + Vil + i) + 2Reg' oy + (¢ — 24" fuf? } dov
R

t
“Re / / 7 - {Vyw(pw, + ¢'w)}dSdr < 0.
0 Jsg
For w(x,t) with finite energy, if it also belongs to L?*(Q), it follows that
t
1"f// v 'w|}dSdr = 0
mint j o [ 17 Viwl{glw] + ¢lw|}dSdr

since p(r+7) = O(r) and ¢'(r +7) = O(1) uniformly in s € (0,¢). Moreover, since

1
/ |@thw|d$ S */ {6S0|wt‘2 +e 90 1S0/2|w‘2}dx7
QR 2 QR

letting R — oo we obtain for any ¢ > 0 and 0 < e < 1
(1=, + 5 (526" o7 (¢ uwlde

1 ~ 1
< (1 + (O, + 5 [{eh— 20"+ 7 ()l

Theorem 2.1 Assume (2.2), (2.3) and (2.7)

— (210) Let {fl,fz} € D(L) X Hl},O
also satisfy

[ eIV + £l Yo < oo,
Then the solution w(x,t) of problem (2.1) satisfies
lw(®)IE, < 3 fIl%, + 2/{—90"(7“) + ¢/ (r)b(x,0)}| /1] *de. (2.11)
Thus, the energy of w(-,t) decays like
lw(®)]|E = Ole(t)™) as t — oo.
Proof We choose € = 1/2. Then since
p'b— 20710 = G (b — 2¢') > 0

by assumption (2.8), assertion (2.11) of the theorem follows. The fact that w(t) €

C([0,T]; L?), T > 0, is guaranteed by the conditions of the initial data. O
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Examples of ¢(s)
(1) (s) =1 +s)", 0<y<1,

() ¢(s) = {logle + 5)}, 0<y <1
It is obvious that these examples satisfies (2.4) and (2.5).

In case bo(1+r+1t)"" < b(z,t) <by(1+r+1)% 0< 4§ <1, wecan use (1). By
definition (2.8) is verified as

20" (s) = p(s)1¢"(s)? =y (L =)L+ 57" 2 0.
(2.9) holds if by > 27 in (2.3). In fact
b —2¢' > (147 +1t)7" by — 27} > 0.
(2.10) becomes
{47+t b, )+ (L7 + 1) e(z) >0,

which is satisfied for any c(z) > 0 if {(1+7+1)""'b(z,t)}; < 0. On the other hand,
if ¢(z) = m* > 0 (Klein-Gordon equation case), such a restriction is not necessary
if by(x,t) <m? — (1 —7)by.

In case b(x,t) < by(1+r +t) it becomes necessary to use (2). (2.8) is given by
20" (s) = p(s)7'¢"(s)* = 9{1L — 2(y — D){log(e + )}
+(7 = 2){log(e + 5)} 7 Hlog(e +5)} 7 (1 +5) 7
> (1 =) {log(e + 5)} e+ ) > 0,
(2.9) also holds if by > 2. In fact
b — 2¢' > {log(e + 5)}7 (1 + 5) 7" (b — 27{log(e +5)} ") > 0.
The situation of (2.10) is also similar as above.
The case of non-linear dissipation Bw, = b(z,t)|w,|’ w;.

We require

2 -
1< P <1 + ( and bo(l +7r+ t>_§ S b((lf,t) S bl (212)

for some 0 < 9 < 1 and by,, by > 0. Moreover,

b(x,t) is non — increasing in t. (2.13)
With these conditions we adopt as the weight function the following

2
o(s) = {log(e + s)}* for some 0 < pu < min{l, p}.
p J—
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Lemma 2.1 There ezist constants J(p) > 0 and K(p,w(0)) > 0 such that

¢ t oo
/ /290']wt\2d:cd7' < J(p)p D/ 4D (/ /(pb\wt|p“d:cd7
0 0

)

)2/(ﬂ+1)

t N t - p/(p+1)
[ [ 16t twaldedr < e wo) e ( [ [ @bl dedn)
0 0

Proof By the Holder inequality

t t - 2/(p+1)
/ /290’\wt]2dxd7' < Jl(gp)(pl)/(p+1)</ /gpb[wtv’“dxdT) :
0 0

where .
_ / / (@B) 2/ =D /(0D g g
0

Note here .
(¢b)—2/(0—1)¢/(p+1)/(p—1)

< C{log(e + 1+ t) =P/ (=D (¢ g 4 ¢) 17200/ (1),
Then since —2(1 —=6§)/(p—1) < —nand p— (p+1)/(p—1) < —1, we have

t o]
i) < C [ {loge + )} Nar [ (e tr 4 r) 2.
0 0
Hence the first inequality holds with

J(p) = C’/ {log(e + T)}”_(p+1)/(p_1)(e + 1)t < oo.
0
Next, the Holder inequality also shows

t - t - p/(p+1)
| [t wldadr < Kapw@) e ([ [ eburtdear)
0 0

where

Ki(p,w l//w%¢WD“MW
</ f’“dr/b|w|”“dx
Since w(r) = /OT wy(s)ds + w(0), noting 5(:15, t) being non-increasing in ¢, we have
[ By tar < ¢, /{Tp /OTB\wt(s)]pHds 4 \w(O)]”“}d:v
< Ci(a+7) {[lw(O)|[% + w175 } -
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Thus, it follows that
K, w(t) < C / {log(e + 7)}*L(e + 7)"Ldr < 0.
0
and the second inequality holds if we choose

K(pw(0) = € [ {logle+ 7y~ (e + 1) ar {Jw(O)} + w5}

Theorem 2.2 Assume (2.2), (2.12) and (2.13). If we choose

2
0<u<min{,p,1}
p—1

then the solution w(x,t) of (2.1) satisfies

lw)lz, < CUIAIE, + (@) + K, )} + /{—90”(7“)|f1|2 +¢'(r)| fif2|
Thus, the energy of w(-,t) decays like

lw(®)|z = O({log(e + 1)} 7)) as t — oo.

Proof Integrating (2.6) and using the inequalities of Lemma 2.1, we have

t t - t - 2/(p+1)
/ /Zdl’dT > / /gpb|wt|”+1d:vd7' — J(p)~ D/ (4D </ /gob|wt|p+1dxdr>
0 0 0

t ~ p/(p+1)
K )70 ([ [ bl vy
0

> (1= 26) [ [ Gl dadr — Cle) ((9) + K(p. )

for any ¢; > 0, where in the last inequality we have used the Young inequality.
Hence it follows that

1
3 / {(p(|wt|2 + | Vyw|* + c|w|*) + 2Re¢’w,;w — 2g0”|w|2} dx

2 {2+ IV + el il?) + 2Red o, — 20"} do

t ~
H1=26) [ [ @bl idedr — Cle) {(0) + K (0, )} <0,
which implies the assertion of the theorem if we note

—"(r) — o (r)¢'(r)* >0 when 0 < pu < 1. O

7



3. Energy non-decay and asymptotics for linear dissipations

In this section we require contrary to (2.7) the following conditions on b(z, t):
0 < b(x,t) < by(1+7)"1? for some 0 < < 1. (3.1)
First we consider the simplest case in R™:
dpw — Aw + b(z, 1)d,w = 0, (z,t) € R x Ry,
w(z,0) = fi(x), Juw(z,0) = fo(z), € R". (3.2)
In this case the energy of solutions at time ¢ is given by
lw(®)|IE = /{!wt 2, t)] + [Vw(z, t)[*}dz,

and the following identity holds
t o
Hw(t)H%+/0 /b(xat)|1Ut(I7T)|2dfch = [[w(0)I%- (3:3)
The following lemma is well known (see, e.g., Kato-Yajima [3], Yafaev [18]).

Lemma 3.2 For k € Cy let Ry(k?) = (—A — k*)~! be the resolvent of the operator
—A. Then u = Ry(k*) [ satisfies for 1/2 < a <1

[ )=V + e < © (1402 fd
where C' > 0 is independent of f and k.

For solution w of (3.2) we put u = {w, w;}. Then u satisfies the equation

iug = Mu+V(t)u, u(0)=f={f1, f2}, (3.4)

(23 (342,

M is selfadjoint in the energy space Hg. So, it defines a unitary group {e
R}. On the other hand, let {U(t,s);t > s} be the family of contraction operators
which represent the solution at time s to that of time ¢.

where

7itM;t c

The integral expression of (3.4) gives

U(t,0)f = e ”Mf+/ =My ()0 (7, 0) fdr.
Then we have

(U(t,9)f. e Mg)s = (fg)p + [ (VU 9)f, 6 Mg)dr. (35)
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Theorem 3.3 (i) Under assumtion (3.1) the wave operator

Z(s) = s — lim /=9Mp(¢, s)

t—o00

exists for any s > 0.

(13) Z(s) is not identically vanishing in Hpg.

Proof (i) We put Ro(x) = (Ao — k)~ ! for k € C\R, and

AZ(S a<0x>>’ a(z) = \/bo(L+ )07,

Then since
AR (k) Af |2 = || — iakRo(K?)afel,

it follows from Lemma 3.2 with o = (1 + ¢)/2 that
AR (k) Aflle < Cllfoll < ClflE,

which implies the smoothing estimate

| AT fidt < O £l

Now we return to (3.5). Then since /V (t) < A it follows that

(3.6)

U(t,s)f,e Mgy — (U(ty, s) f,e Mgy p = /t(V(T)U(T7 s)f, e "M g) pdr

t1

s (/tt HWU(T,S)J“I\%dT)m(/; | Ae =g ) /

This and (3.3) and (3.6) show the assertion.

(3.7)

(77) / To show the existence of f € Hp such that Z(0)f # 0. We assume contrary

that ||U(t,0)f||g — 0 as t — co. Then we have from (3.3)

1715 = [ IV @U (0 s

Further, from (3.5) and (3.7)

1% < ([T IWVEUE0izar) ([ 1A v glhar)

Hence it follows that ~ ‘
1A% < [ 114e=™ £l ar.
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Put here f = U(s)g with ||g||z = 1. Then
1= |le ®Mg|3 < / |Ae™ ™ g||2dr — 0 as s — oo.

this is a contradiction, and (i7) is proved. O

If n > 3 and if Q is the exterior of some star-shaped obstacle, the above results
can be generalized to problem (2.1). In this case, we can prove the following lemma
corresponding to Lemma 3.1 (see Mochizuki [//]).

Lemma 3.3 Asume c¢(x) = co(z) + c1(z) and
{1V x b(z) > + |co(2)]?}/? < —e(1 +7)727° for some 0 < 0y < 1,

ci(r) >0, 0 {rci(x)} <0, ci(x)=o(r™") (r = o0),

where € > 0 is chosen sufficiently small. Under these requirement let R(k*) =
(L — k%)~ Then u= R(k?)f satisfies for 1/2 < a < (1+ 6;)/2

[+ 2 90 + kYo < € [ (14 7)) P,
where C' > 0 s independent of f and k.

Let u = {w, w;}. then (2.1) is rewritten in the form

Ou = Mu+V(tu, w(0)=f={f fa},

0 1 0 0
MZ(A;,—C 0) and <O B(x,t))

The energy space Hp with norm

where

1
1£1% = 5 [{IRE+ Vil +clfiP}da
In H g the operator M forms a selfadjoint operator with domain

D(A) = {fi € Hyo; Mofi € L} x {f € H} ;N L?}.

Let {e7*;¢ € R} be the unitary family of free evolution. Let {U(t,s);t > s > 0}
be the perturbed evolution. Then we see that

Z(s) = 5 — lim e/ "9M (¢, 5)

t—o00

exists for any s > 0 and defines a not identically vanishing operator.
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4. The case of nonlinear dissipations

We consider the dissipative wave equation
— Aw + Bz, t,w)w, =0, B, t,w,) = bz, t)|w| L, (4.1)
in x € R" and ¢t > 0, with initial conditions
{w(0),ws(0)} = {f1, fo} € H** x (H"* N L*). (4.2)
Here p > 1 and the coefficient b(z,t) is required to satisfy
CY|be(z, t)| + |Vb(z, 1)} < b(z,t) < by < 00, C, by > 0. (4.3)

In the following let H™? (r € R, ¢ > 1) be the Sobolev space and H™ (r>-n,g>1)
be the homogeneous Sobolev space, respectively, given by

0™ = {u; [Ju]| gra = [|FH< € > (€))||1a < 00},

H™ = {u; |[u]| grg = | F (1€ 0(€)) |0 < 00}

Here < £ >= /14 [¢|%.

As is shown in Motai [12], a unique strong solution exists and it satisfies

(@) w(t) € C((0,00); H' x I2),

(b) @ +2 [ [ 8w, s,w))lue, s)Pdeds = [w(O)
() wy, Vwg, Aw, B(x,t,wt) € L*((0,00); L?).

Here

lw(t)||E = ;/Rn{\wt(a:,t)ﬁ + |Vw(z, t)[*}da.

Since b(x,t) > 0, (b) shows that the energy of solution decreases with ¢, and a
question arises: whether it decays or not as t — 00?

As an answer we have the following:

Theorem 4.4 (i) Other than (4.3) if

2(1 — §)

i)(l’,t) < b(](l + |I|)75, p > 1+ j,

then the energy of solutions of (4.1), (4.2) does not in general decay ast — oc.
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(17) Other than (4.3) if

. 4(1-6)

6
0 < b(x,t) <b(1+|z))7°, 1+ <p<lt—p (4.4)

-1 -2

Then for each solution w(t) of (4.1), (4.2) there exists fi = {foi, foh} in the energy

space Hg such that '
lim [l (t) - fi [l = 0.

Assertion (4) is proved similar to Theorem 3.3 (i7) if we use

Lemma 4.4 If f satisfies
Ifllemiz= D> N2*VIAl+ > [l2°VPfofl < oo

o], | Bl <m+2 lal,|8|<m+1
with m = [n/2], then we have

e fla(2)] < CL 47+ )" D21+ [r = t| 72| I rmere-
Assertion (7i) is based on, as in the linear case (see (3.7)), the equation

(w(6), e fo)p = (ws), e fo)ip = = [ (B w7 fol)dr

Lemma 4.5 Under (4.3) and (4.4) we have
- - .
Bt we)w, = bz, t)w|* " wy € LE*D/2((0, 00); Hy1/7),

where forp > 1 and v € R

full e = Z/\V] (1+ ) u(@)Pde k=0,1,2--.

Proof The energy equation (b) shows

b(x, t)|w|? = bBY D bl |71/ P+ e LHD/P((0, 00): L((s%;%l)))

since we have b/t < [by(1 + )~V +1)_ Noting (4.3) we have a similar energy
equation for Vw. Then the results are summarized as in above lemma. O

With this lemma we can have
[(w(t), e fo)p — (w(s), e fo) gl
<IBC, 7, we)well oo g e folall Lot s,y
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where Y/ = H;)((’;ill))/ ?. So, our problems become to show that for suitable space
Z C Hg

(*) le™™™ folallzorr 0.0y < Cllfollz

{ebow(t)} being bounded in Hg, it weekly converges in Hy. Let fi denote the
limit. Then letting ¢ — oo in (4.//) and replacing s by t, we obtain

[(e™ 0w (t) — fif, fo)el <

< Cjo(, '7wt)”L(P"'U/P((t,oo);Y’)||f0||Z’

from which it follows that
le"w(t) = fillz2 < CIbC, - wo) [l Lesreqrooyyny = 0,
as t — 00. So, if we have the embedding
() Z'— Mg,
then this proves the desired assertion (i7).

To verify (%) and (xx) we use a weighted Strichartz estimate obtained by combined
with the usual Strichatz and smoothing estimates.

We put K =+/—A. Then

K" ull e = llull gr.a-

The following is due to Strichartz [15]: Let p and « satisfy

2a < Sl—g

] 2
n+1"p n

, 0<a<n, (4.5)

1 1
Then we have for u € C§°(R") and d; = n(, S a)
p p n
VK€ ]| < Ol Ju (4.6)

This is used to show the following

1 d
Lemma 4.6 If we restrict p to satisfy 0 < dy < 1. Then putting — =1 — —21, we
r

obtain for h(t) € Co(R; L¥)
o0 i 1/7’
{7 el < Cllull o (4.7)
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Proof By the Fubini theorem it follows from (4.6) that

fro/22 _/ / K= (1), h(S)) dtds
</ [/ Clt - |‘dll|h(t>||Lp/dt]||h<s)||L,,/ds.

H/ K—a —thh dt

1 1

Since 0 < d; < 1, choosing ¢, r > 1 to satisfy — = — — (1 — d;), we can apply the
r q

Hardy-Littlewood theorem to obtain

< OHhHLQ(R;LP')”h

L (R;LP")

Thus, the inequality

| e S hwr| < bl

Ha/2,2
1 1 d
holds if we choose — = —,ie., — =1 — -1
qg r 2
Inequality (4.7) is a result of the duality argument. O

The following is a well known smoothing estimate (see e.g., Hoshiro [1], Sugimoto
[16]):

1
Lemma 4.7 Letn > 2 and 3 <p< g Then we have

) o 1/2
||eltKU||L2(R;LEB) — {/_ ||61Ktu||i25dt} < CHuHHﬂ—l/Q,Q, (48)
where forp > 1 and v € R

lollyy = [ | <@ >7 vi)lde.

1 n—a«a
Put r =pin (4.7 d int late thi d (4.8). Then si -=
ut 7 = p in (4.7), and interpolate this and (4.8) en Slncep 2(n+1>,we

have the following
Lemma 4.8 The following inequality holds for 0 < 6 < 1.

(0.]
{/ || thu
—0o0

Here q, pu and k are given by
— — 1 0 1-6 1
1 1-6 0 n a+(+a)jM:B97k:a(2 )+( )9.

1/q
, dt} < Olull e

G = e T T
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Note that for p given above the condition on v becomes

1<a<n. (4.9)

)
Now, we choose ¢ =p+1and 0 < p < 1 in the above estimate. Then noting
P

[efitAoth = th(t) =-K sin(Kt)f01 -+ COS(Kt)fOQ
and H:}L"’H — Y, we obtain from Lemma 4.7

H [efiTAofO]zHLp-H((Opo);y) < CHf0|’H*1vk+1v2><H*1vk’2' (414)

Here HY"? = {u; ||u gas2 = || Kbu|| go2 < 00}.

This proves (x) with Z = H=1F12 x H=1E2 Moreover, (xx) is also proved if we
choose 0 < k£ < 1. In fact, this leads us to the embedding

FUR2 o fpL—R2 oy flek2 o flR2 L2 o 12
Now the proof of (i7) becomes complete if we can verify the following

Lemma 4.9 When p satisfies (4.4), the triplet q, p, k in the above lemma can be
chosen to satisfy

1 1 0
S u<—— 0<k<L.
q p+1 p+1
Proof The above condition on p is rewritten as 0 < 6 < m The condition
p
of ¢ is
n—a+(1+a)f 1
2(n+ 1) Cp+ 1
So, for fixed o and 3, p takes the maximum when 6 = 0
2(1
po14 2Lt (4.10)
n—ao
.. 0
and the minimum when § = ——
(p+1)B
2(1 1-6 1 0(28 —1
n—a (n—a)p

Since k = a/2 when 6 = 0, letting o 1 2, we see that the upper-limit of p becomes

1+ —t This gives the maximum of p since we can choose o = 2. Next consider
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(4.11). The right is monotone increasing with both o and §. Thus, letting o | 1

4(1 -9

and 8 | 1/2, we obtain the lower-bound p = 1 + ( ] ), at the same time &k | 0.

n R
These show the assertion of the lemma. O
Remark When p sartisfies

2(1—=9 41 -6

1+ ( )<p§1+ ( ) (4.16)
n—1 n—1

we can prove the following: If (4.16) is satisified, there exist wg (0) € Hg and p > 2
such that

i [Uo(=t)u(t) = wif Ol sz = 0.

5. Time dependent small perturbations of the Klein-Gordon eqution

Let n > 2 and let €2 be an exterior domain in R™ with smooth boundary 02 which
is star-shaped with respect to the origin 0 (the case 2 = R" is not excluded when
n > 3). We consider in

OPw — Npw + m*w + by(z,1)0pw + c(x, t)w = 0, (5.1)
where i = \/—1, 0, = 0/0t, Ay is the magnetic Laplacian

Ab = Vb . Vb = Z(GJ + ij(x))Q
j=1

with 0; = 0/0x;, m is a positive constant, b;(z) (j = 1,---,n) are real-valued
smooth functions of z € R", and c¢(x,t), bo(x,t) are complex-valued continuous
functions of (z,t) € R" x R. For solutions u = u(z,t) and w = w(x,t) we require
the zero Dirichlet conditions

w(ﬂf,t)‘ag =0 (52)
on the boundary 0. b(z) = (bi(z),---,b,(x)) represents a magnetic potential.
Thus, the magnetic field is defined by its rotation V x b(z) = {0;bx(x) — Okbj(x) }j<k-
We require

(A1) |V x b(z)] < e(1+[r])72, r=lz],
Here ¢ is a small positive constant and

] = T, when n > 3
"= r(1+logr/rg), whenn =2

for a fixed ro > 0 satisfying 0Q C {x;|x| > ro}. As for the coefficients of the
perturbation terms, we require the following:

(A2) [bo(z, 8)], le(z,t)] < n(t) +e(1+[7]) 72
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where 7(t) is a positive L'-function of ¢ € R and ¢, is a small positive constant.

Equation (5.1) is rewritten in the system to the pair {w, w;} (w; = Oyw):

()=l ) () ~(ter e ) ()

It is considered in the energy space Hy = Hy, x L?, where Hy, = H} () is the
completion of C§°(Q2) with norm

17, = [ (Vsf @) + 1 (@) Y.

Thus, the inner product and norm of Hg are given for f = (f1, f2), 9 = (91, 92) € HE
by

(F.9me = 3 [ AVhi @V @) + w2 fi @) + h@n@}de (63
and || f|lzz = \/(f, [)#g, respectively. We define the operator M in Hg by

MZ(i(Ab(imQ) (Z)>

with domain
D(M) = {f = {fi, o} € [H3. 0 Hyo] x H}g; Apfi € L} (5.4)

Then it forms a selfadjoint operator in Hpg, and (5.1) with boundary condition (5.2)
is represented as
i0u = Mu+V(t)u in Hg, (5.5)

where u = {w, w;} and

Vit = ( —ic?x,t) —ibo(zxat) ) ( " ) |

Moreover, by use of the unitary group of operators {e~*;¢t € R} in Hg, (5.5) with
initial data u = {w(0),w(0)} = {f1, f} € Hp reduces to the integral equation

u(t) = e —i [ =My (1) (7). (5.6)

We define the weighted energy space

Xp = {1(@) = {h(@), o)k
171 = 5 [0+ D HIVAP +m? A + BN < oo} (1)
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For an interval I C R and a Banach space W, we denote by L?*(I;TV), the space
of all W-valued functions h(t) satisfying

1/2
12l 21wy = </1 ||h(7f)\|3vdt> < .

Similarly, C(1; W) denotes the space of all W-valued continuous functions of ¢ € I.
Further, we denote by B(W') the space of bounded operators on .

Now, the main results of this paper are summarized in the following theorems.

Theorem 5.5 For ( € C\R put R(¢) = (M —{)~'. If €y in (A1) is chosen small
enough, then there exists Cy > 0 such that

sup [|R(C)fllxz < Collfllxy,
(EC\R
for each f € X, where X' is the dual space of Xg with respect to Hpg.

Theorem 5.6 Assume (Al) and (A2) with small €y and €. Then for each f € H
there exists a unique solution u(t) € C(R;Hg) to the integral equation (11). Let
Ul(t,s), s, t € Ry, be the evolution operator which maps u(s) to u(t) = U(t, s)u(s).
Then there exists C1 > 0 such that

UG, 9)922me 0 < Cillgllie,- (5.8)
for each s € Ry = (0,00) [or € R_ = (—00,0)] and g € Hp.
Theorem 5.7 Under the same conditions as above, we have
(i) {U(t,s)}tser is a family of uniformly bounded operators in Hg:

sup ||U(t, 5)||Bng) = Cu < o0.
t,seR

(i1) For every s € Ry, there exists the strong limit

ZE(s) =5 — lim e "CHIM(¢ ),

t—=to0
(iii) The operator Z* = Z%(0) satisfies

w— lim Z*U(0,s)e™M =T (weak limit).

s—+oo

(iv) If ey is chosen smaller to satisfy ey/2CyCy < 1, where ey = €, (Schrédinger),
= max{1,m '}e; (Klein-Gordon), then Z* : H — Hp is a bijection on Hg. Thus,
the scattering operator S = ZT(Z7)7' is well defined and also gives a bijection on

HE.
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6. Proof of Theorem 5.5
Let L = —A,; be the selfadjoint operator in L? = L?(Q) with domain D(L) =

{u € H.(Q) N H,(Q); Ayu € L*(Q)}. For k € C, = {x € C;Imx > 0} we put
R(k?) = (L —x*)~!. Assume (A1) with sufficiently small ¢y > 0. Then the following
two propositions hold.
Proposition 6.1 There exist Cy > 0 and C3 > 0 independent of k such that
L@+ )RR f@)Pde < Co | (1 + 1)) (@),
[ Q) VRS2 + (R £ o < Gy [ (1+ [1])?]fPda

For the sake of simplicity we put &(r) = (1 + [r]?)~Y/2.

Lemma 6.10 Let R,,(x%) = (L +m? — k*)~1. Then there exists C > 0 such that

(L + [KDIERm () [ + V(R (%) /)]l < ClET I, (6.1)
1§20 (R (52 NIl < CLIE Vsl + 1l FIIY (6.2)
[EIEV (R (%) NIl < CLIE Vsl + 1€ FII- (6.3)

for each vk € Cy and f € X satisfying also V,f € X{.

Proof Note that
|62 1R () fII* < mP[|€Rm (k%) 11 + | = m® + K[ [[€ Ry (%) fII*.

Then (6.1) is direct from Propositions 1 and 2.

To show (6.2) we start from the equation
EDY(Ri(K2)g) = Vi - {€Vo R (52)g) — (VE) Rin(K%)g}.
Put f = (VE€)Rm(k%)g. Then since flpo = 0, we have
(Vo £o0) = (£, =V)] < 1Bl

where H} is the completion of C$°(Q) with respect to the norm ||Vh|. Let H, '
denote the dual space of H}. Then we have ||V, - flz=r < 111, and hence noting
|VE| < Cl¢], we have

1€26 (R (5%)9) | 1 < NEVH(Rin (%) 9) || + [(VE) Ren(67)gll < Cllg gl
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(6.2) then follows from the equality
(Ap(Rin (k%) f,9)) = (R () Auf, g) = (€ f,§80(Rin(7%)g))

since we have

1€ Fll < NETVR I+ IVEfII and [VETH < CE7

Next note that
KR (K2)f = —f = (A — m*) Ry (K7)
Then the use of (6.1) and (6.2) shows
1€A, — m?) Ry (%) 1| < CLIET VI + 1€ 11
Since [|€f] < €7 f], this proves
|62 1ERm (%) fIl < CLNET VoSl + €7 FII- (6.4)

By use of (6.4), (6.1) and (6.2) we have

|62 1€V (R () )]

= — |6 ({EAW (R (K*) ) + 2VE - Vi (R (k%) [}, E R (k7). f)
< {NEAL(Rm(K2) )| + 2IVE - Vo Ron (52) )} K[ 1€ R () £
< CYIEV I+ IEFIBIE Vol +1IET A1
which proves (6.3). O

With this lemma we can prove the following proposition which attains Theorem
5.5 for M.

Proposition 6.2 Assume (A1) with small ¢g. For k € C\R put R(k) = (M —r)"".
Then there exists Cy > 0 independent of k and f € Xg such that

IR(5) fllxe < Call fllxy, (6.5)

where X is the weighted energy space defined by (5.7).
Proof Note that
1 )
(R, gl = 5 [[(Vol 6 R (52) 1+ iR (W) fo}, Vo)

+((e + m*{ERu(k) fr + iR (k%) f2}, 1)
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H{i(A = M) Ron(52) f1 + 6B (52) fo}, 92 (6.6)

< ; HISIIEVH (R (57) Il + 1€V Ron (152) £ 1} 1€ Vg |

A {|6]1€ R () foll + 1€ R (5) 2l HIE 01 ]

H{IEAY(Ron (57) fO)l + M [E R (82) full + K ]1€ R (%) fo | HIE 921

Then applying the inequalities of Lemma 6.10 to each component of the right and
noting m > 0, we see that (6.5) to hold. O

Remark The above proof is not verified so far to acoustic wave equations (i.e., in
case m = (). The main reason is in the difference of the energy norm. The kinetic
energy which consists just of the Dirichlet norm makes difficult to apply Lemma
6.10 to acoustic wave equations.

However, as is proved in Mochizuki [//], a weighted energy estimate works well to
acoustic wave equations when n > 3, and Theorem 5.6 is applied to problem (6.1)
with m? = 0 if we require in place of (BC.2)

(BC.3) (ot DI + ez, )P} < nt) + o1 +7) 70

for some 0 < 0 < 1 and small ¢ > 0.

7. Proof of Theorem 5.6
The resolvent estimates of Theorem 5.5 lead us to the smoothing properties sum-

marized in the following proposition.

Proposition 7.3 Assume (A1) with small €g. Then for each h(t) € L*(Ry; X’)
and f € H, we have

t ) 2
| e nryar < CBllAl s (7.1)
0 L2(R4;X)
oA 2 2
sup / e h(r)dr| < 2Co||h|| 72wy xr)s (7.2)
teRL11/0 H
He_itAfH%?(Ri;X) < 200||f||3{7 (7.3)

where Ry = (0,00) and R_ = (—00,0).

Proof By the standard approximation procedure, we can assume h(t) € C§°(I; X')
for some interval I C R4.

t
For t € Ry we put v(t) = / e ""TAR(T)dr, where h(t) is regarded to be 0
0

outside I, and consider its Laplace transform

+oo |
0(¢) = j:/ e“to(t)dt, +Im¢ >0,
0
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Then since #(¢) = —iR(¢)A(), it follows from the Plancherel theorem and Theorem
1 that

[ i), g(t))Hdt‘ _ ‘(2#)_1 / Z(@(A +ie), GO\ + d€) )
< [ IROE b i6) 1 [3(8 £ i) |

< Co [ 7 (0) v o8 vt

for any ¢(t) € C3°(1; X'). Letting € | 0, we obtain inequality (7.1).

Next, note that the Fubini theorem implies

i B /Ot ( /0" e~y (5)ds, h(o‘))Hda

+/Ot<h(5),/os€i(SU)Ah@)dO)HdS’

where (+,-)3 is extended to the duality between X and X’. This and (7.1) show
(7.2) to hold.

(7.3) is the dual assertion of (7.2). 0

t
/ e"Mh(s)ds

0

Lemma 7.11 Under (A2) we have

[V (t)u, v)a] < n@)l[ullal[vllz + evllullxlvllx,

where 7(t) = max{1,m *}n(t), ey = max{1,m '}e.
Proof We have

(V (), v)ps | = ;’ /Q {clz, ) + bo(x, t)us }T3da

< 5 [0+ (U4 D) ) | + ol

< max{L,m ™ Hn()[ullwg vlls + enllullxg ol x,}-
Thus, the lemma also hold in this case. O
For0 <+s<+T <oolet I, s =[s,T]or I, =[T,s]. Wedo not exclude T'+ co
and write Ry ; = [s,00) or R_ ; = (—00, s].

With these notation let Y (1. s) be the space of functions v(t) € BC(Iy s H) N
L*(I+4; X) (BC means the space of bouded continuous functions) such that

[0lly sy = sup [lo(®)lls + [0l 2(re.x) < 00, (34)

eli,s
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Lemma 7.12 We put

o 0(t) = / LAY (g)o(s)ds, v(t) € Y(Iay).

Then @4 s € B(Y (I+s)) and we have

sup ||+ v(t)|ln < |7l SUP o)l + ev/2Co|v][ L2214 sx), (7.5)

e:l:s

[P+ 50| z2rs 0ix) < 24/ 2C0|7l 21 (2e ) sup |v()[]2 + 3evCol[v|lL2(reix)-  (7.6)
Elts

Proof Let g € H. Then it follows from Lemma 7 that

(@t 9l = | [ (Vo) e g s

+ ey (77)

< | [ 40 ol gl

So, by use of (7.3) and the unitarity of e

[ @) sl 0 e

we obtain

—itA
[(®50(0), 9ol < llrey suP N0 (T)llllgllae + evllvllzz e,z v 2Collgle
TGt s

which implies (7.5).
Next, let g(t) € L*(I1; X'). Then it similarly follows that

T
/ (CI):‘: SU 'Hdt’ =

(T_t)Ag(t))Hdet‘

< iz, sup (Hv HHH/ “g(e)ar] )

7€l s

+€VHU\|L2(1i,S;X)H/ e_i(T_t)Ag(t)dt

T o

Y

L2 (14,s;X)
where

LQ(I:ES;X) 0
. T .
e—m’A / eztAg(t)dt
0

Thus, applying inequalities (7.1), (7.2) and (7.3), we obtain

<

L2(1+ 4;X)

+

L2 (14,55 X)

T
/ (D1 sv(t), ())Hdt‘ < 7l sup [v(T)[1221/2Coll gl L2 (12 )

Tﬂ:a
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Fevioll e x)3C0llgll L2 gix1)
which implies (7.6).

Now, since 77(t) € L'(R+), we can choose 0 < § < 1 and +0 > 0 to satisfy

+,s
(L+2/2C) 19l 1 (1s0) < 1

(7.8)

if [Ios|=|T—s| <dorlis=Rywith £s > +0. So, if ¢ is chosen small enough
to satisfy ey (2v/2Cy + 3Cy) < 1, then it follows from (7.4), (7.5) and (7.6) that

19s s0lly (1,0 < max{(1 + 2y 2C0) [l £z, €v (2y/2C0 + 3C0) }|v[ly 1-..)

< |vlly(re..)-

Lemma 7.13 For each fized I, s satisfying (38), the integral equation

. t .
u(t) = ety z/ e_z(t_T)AV(T)u(T)dT

S

has a solution u(t) € Y (I ) and it satisfies

lullya. = sup fu®lh + lullzze.x < Cooll il
+,s

for some Cs, > 0 independent f.

Proof We define {u(t)} successively as follows:
up(t) = e (t=A £ ug(t) = up(t) — iy sugp_1(t).

Note that the unitarity of e=#* and (7.3) show

luolly (ze..) = lluo(®)][# + lluoll L2y ix) < (14 1/2C0) || f1]2-

Thus, ug(t) € Y (Is) and also each ug(t) € Y(I 5). Since

k
ek = e allyirs. < (1924l ) luollys,

we see from (39) that

w®=%®+§ww%wH@}

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

converges in Y7, ; as n — 0o,. The limit u(¢) obviously solves the integral equation

(7.10). Inequality (7.11) with
14+ v/2Cy

C(S,a =
1- H(bi,SHB(Y(Ii,s))
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is a result of (7.12) and (7.13). O

Proof of Theorem 5.7 For 6 and +o0 given in (7.8) we choose integer N to satisfy
N > +0, and divide R4 into N + 1 subintervals

I, =[sj,8541) or I_s, = [sj11,8] (j=0,1,--- N —1), and I+, = Ry,

where s; = 50 (j = 0,1,---,N). Then by Lemma 9 the solution of (7.10) with
f = u(s;) is constructed in each interval I, , and by putting together, a global

solution of (5.6) is obtained. Moreover, the above argument and (7.11) imply (5.8)
to hold with Cy = (N + 1)Cy\,.

The uniqueness of solutions in C'(R;H) follows from the inequality

0@l < | [ 1V () dr| <

[itr) + e o)letr) s

< e +allesdy sup o),

teli,s,t

where I ;4 = (s,t) when 0 < s <tand I_,; = (t,s) when t < s < 0, since we can
choose § = |t — s| small enough to satisfy

7 (rp sy + €150 < 1. O

5. Proof of Theorem 5.7

Proof of Theorem 5.7 will be based on Lemma 7 and inequalities of Proposition 4
and Theorem 5.6.

We put u(t,s) = U(t,s)f, uo(t — s) = e =97 fi. Then we have from (5.6)

(ult, ), wo(t = ) = (f, fol = [ (V(r)u(r, ), (s = )d

In the right side we apply the inequality of Lemma 7. It then follows from (7.3) and
(5.8) that for any o, t € Ry,

|(u(t, s), uo(t — )3 — (u(0, 5), uo(0 = 8))u| < ‘/ T[T, 8)llalluo(T — 8)[ludr

1/2

ol — s))Iedr (5.1)

t ) 1/2
|tz )k
All the assertions of the theorem are verified from this inequality.

Proof of Theorem 3 (i) We put ¢ = s in (7.14). Then by (7.3) and (5.8)

+ey

(ult, 5), ot = ) = (f, folul < | [ A (7, o = 9)lludr
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t+ev/2C0Ch || £l foll-

=)\ is unitary, it follows that

Since e~

Ju(ts )l < (1 + vy 2CaCOI e+ [ () (s, )l

The requirement n(t) € L*(R) and the Gronwall inequality show the assertion with

CU = (]. + €y i/ 20001)6”77HL1 .

(77) Noting (i), we have from (7.14), (7.3) and (5.8)

(ult, 5),wolt = ) = (o), w0l = )l < {Cull 7] [ 7 )ar|+

¢ 1/2
[t 9| 2Co flfole

Here, for fixed any s € Ry, {} — 0 as o, t — Foo. Thus, e CDAU(t,s)

+€V

converges strongly in ‘H as t — +o0.

(17i) Let 0 = s and t — 400 in (7.14). Then noting (7) and (5.8), we have

+oo
(=) fou = (o dodud < Il Co| [ a1 ol
+oo 1/2
tery/C1l [ lluolr = )|} (8.2)
Choose here f = e **¢ and f; = e **go. Then
. . . Fo0 )
({e™*Z%(s)e™" — I}g, go)ul < HemgHH{CU/S A(r)dr|lle™"*  goll2+

1/2
+€V\/2CO / ” ZTAg()H_)(dT }

g and go being arbitrary, this implies that as s — +o0,

ZEU(0, 5)e N = 2 7% (s)e ™ = I weakly in H.
(iv) Note that (7.15) and (7.3) imply

2%) = 13 fobl < {| [ #n)ar|Co + v 2CoCu Al ol

Since ey+/2C,Cy < 1, we can choose s > 0 sufficiently large to satisfy

+oo
/ (r)dr|Cu + evy/2C,C) < 1.

26




Thus, || Z4(s) — I||pm) < 1 and Z*(s) gives a bijection on H. The same property of
Z* then easily follows. O

Final Remarks

In case @ = R™ (n > 3) and b(z) = 0, similar results have been obtained in [11] and
[13], for complex potentials satisfying

c(x,t) € L*(R; LP) N BC(R™™)

with
n

0< - —.

2
<=
n

1
and — =1
v

=

The smallness condition
HCHL‘X’(Ri;L"/Z) <<1

is also required when v = oo.

The arguments employed in these works are based on the Fourier transformation,
and are not directly applicable to the problems in exterior domain. Moreover, note
that the function

c(x,t) = co(14+ 7)1+ |t~ (46)

with a, 8 > 0 satisfies (A2) and also the above conditions if /2 + 5 > 1. However,
the function

c(x,t) = cosint(1 +7)~? with small |cg| > 0
satisfies (A2) but slips out of the above conditions.

The potential (46) has been considered in Yafaev [17] when ¢ is real and 8 > 0.
For the Schrodinger equation (1) in R™ (n > 3) with b = 0 his results include the
following. The wave operator

W* =s— lim U(0,t)e™"

t—+oo

exists if a+ (8 > 1. It is in general incomplete, but becomes complete, i.e., the range
o)
of W# coincides with the whole space L2(R"), if the stronger condition 5 +8>1

is required.
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