Direct and inverse bifurcation problems and related topics II

Tetsutaro Shibata
Laboratory of Mathematics，Institute of Engineering
Hiroshima University

$$
\text { May 12, } 2019
$$

第7回偏微分方程式レクチャーシリーズ in 福岡工業大学

Outline

(1) Introduction

(2) Direct and Inverse Problems for ODE

(3) Proof of Theorem 2.4

44 The case $g(u)=u^{p} \sin \left(u^{q}\right)(0 \leq p<1,0<q \leq 1)$
(5) Proof: $g(u)=u^{p} \sin \left(u^{q}\right)$ and $\alpha \gg 1$

Introduction: Elliptic Inverse Bifurcation Problems

We consider:

$$
\begin{align*}
-\Delta u+f(u) & =\lambda u \quad \text { in } \Omega \\
u & >0, \tag{1.1}\\
u & \text { in } \Omega \\
u & \text { on } \partial \Omega .
\end{align*}
$$

- $\Omega \subset \mathbf{R}^{N}$: appropriately smooth bounded domain.
- $\lambda>0$: a parameter.

We assume that $f(u)$ is unknown to satisfy the conditions (A.1)-(A.3):
(A.1) $f(u)$ is a function of C^{1} for $u \geq 0$ satisfying $f(0)=f^{\prime}(0)=0$.
(A.2) $f(u) / u$ is strictly increasing for $u \geq 0$.
(A.3) $f(u) / u \rightarrow \infty$ as $u \rightarrow \infty$.

Examples

Examples of $f(u)$ which satisfy (A.1)-(A.3)

$$
\begin{aligned}
& f(u)=u^{p} \quad(p>1) \\
& f(u)=u^{p}+u^{m} \quad(p>m>1)
\end{aligned}
$$

Inverse bifurcation problems in L^{q}

The First Purpose

We study inverse bifurcation problems of in L^{q}-framework $(1 \leq q \leq \infty)$. In particular:

- From mathematical point of view, since (1.1) is regarded as an eigenvalue problem, it seems natural to treat it in \underline{L}^{2}-framework.
- From biological point of view, if $f(u)=u^{2}$, then (1.1) is the model equation of population density of some species. Therefore, it seems also important to treat it in \underline{L}^{1}-framework.

L^{q}-Bifurcation Curve

(1) Let $1 \leq q \leq \infty$ be fixed. Let $\|\cdot\|_{q}$ be L^{q}-norm. For any given $\alpha>0$, there exists a unique solution pair

$$
(\lambda, u)=\left(\lambda(q, \alpha), u_{\alpha}\right) \in \mathbf{R}_{+} \times C^{2}(\bar{\Omega})
$$

such that

$$
\left\|u_{\alpha}\right\|_{q}=\alpha
$$

(2) The following set gives all the solutions of (1.1):

$$
\left\{\left(\lambda(q, \alpha), u_{\alpha}\right): \alpha>0\right\} \subset \mathbf{R}_{+} \times C^{2}(\bar{\Omega})
$$

(3)

$$
\begin{aligned}
& \lambda(q, \alpha) \rightarrow \lambda_{1} \quad\left(\alpha \rightarrow 0, \quad \lambda_{1}: \text { the first eigenvalue of }-\Delta_{D}\right), \\
& \lambda(q, \alpha) \nearrow \infty \quad(\alpha \rightarrow \infty)
\end{aligned}
$$

L^{q}-Bifurcation Curve

L^{2}-Framework

L2-framework

Let $f(u)=f_{1}(u)$ and $f(u)=f_{2}(u)$ be unknown to satisfy (A.1)-(A.3).
Furthermore, let

$$
F_{j}(u):=\int_{0}^{u} f_{j}(s) d s \quad(j=1,2)
$$

Assume that F_{1} and F_{2} satisfy the following condition (B.1).
(B.1) Let

$$
W:=\left\{u \geq 0: F_{1}(u)=F_{2}(u)\right\}
$$

Then W consists, at most, of the (finite or infinite numbers of) intervals and the points $\left\{u_{n}\right\}_{n=1}^{\infty}$ whose accumulation point is only ∞.

Theorem 1.1

Theorem 1.1.($\mathrm{S}, \mathbf{2 0 0 9)}$ Assume that f_{1} and f_{2} are unknown to satisfy (A.1)-(A.3) and (B.1). Furthermore, if $N \geq 2$, then assume that f_{1} and f_{2} satisfy the following (A.4).
(A.4) For $u, v \geq 0$,

$$
F_{j}(u+v) \leq C\left(F_{j}(u)+F_{j}(v)\right) \quad(j=1,2)
$$

Suppose

$$
\lambda_{1}(2, \alpha)=\lambda_{2}(2, \alpha) \quad \text { for any } \alpha>0
$$

Here, $\lambda_{j}(2, \alpha)$ is the L^{2}-bifurcation curve associated with $f(u)=f_{j}(u)$ $(j=1,2)$. Then $f_{1}(u) \equiv f_{2}(u)$ for $u \geq 0$.

The proof depends on the variational method.

Proof of Theorem 1.1 for $N=1$

Proof of Theorem 1.1

Variational Structure: Critical value $C_{1}(\alpha)$ and $C_{2}(\alpha)$.

For simplicity, let $\Omega=I=(0,1)$. For $j=1,2$ and $v \in H_{0}^{1}(I)$, let

$$
\begin{equation*}
\Phi_{j}(v):=\frac{1}{2}\left\|v^{\prime}\right\|_{2}^{2}+\int_{0}^{1} F_{j}(v(t)) d t \tag{1.2}
\end{equation*}
$$

For $\alpha>0$, we put

$$
M_{\alpha}:=\left\{v \in H_{0}^{1}(I):\|v\|_{2}=\alpha\right\} .
$$

Proof of Theorem 1.1

$$
\text { For } j=1,2 \text { and } \alpha>0 \text { we put }
$$

$$
\begin{equation*}
C_{j}(\alpha):=\min \left\{\Phi_{j}(v): v \in M_{\alpha}\right\} . \tag{1.3}
\end{equation*}
$$

Existence of unique positive minimizer

By taking a minimizing sequence, Lagrange multiplier theorem and strong maximum principle, there exists a Lagrange multiplier $\lambda_{j}(\alpha)$ and a unique minimizer $u_{j, \alpha} \in M_{\alpha}$ which satisfies (1.1) with $f=f_{j}$.

Proof of Theorem 1.1

The relationship between $C_{j}(\alpha)$ and $\lambda_{j}(\alpha)$

By direct calculation, we obtain

$$
\frac{d C_{j}(\alpha)}{d \alpha}=2 \lambda_{j}(\alpha) \alpha
$$

By this, we obtain
Lemma 1.2. $C_{1}(\alpha)=C_{2}(\alpha)$ for $\alpha \geq 0$.

Proof. Since $C_{1}(0)=C_{2}(0)=0$, we obtain,

$$
\begin{aligned}
C_{1}(\alpha) & =\int_{0}^{\alpha} \frac{d}{d s} C_{1}(s) d s=\int_{0}^{\alpha} 2 \lambda_{1}(s) s d s \\
& =\int_{0}^{\alpha} 2 \lambda_{2}(s) s d s=C_{2}(\alpha)
\end{aligned}
$$

Proof of Theorem 1.1

Proof of Theorem 1.1

Clearly, $0 \in W$, where

$$
W:=\left\{u \geq 0: F_{1}(u)=F_{2}(u)\right\} .
$$

(a) Assume that $0 \in W$ is contained in the interval $[0, \epsilon]$ for some constant $0<\epsilon \ll 1$. This implies that for $0 \leq u \leq \epsilon$,

$$
F_{1}(u)=F_{2}(u) .
$$

Proof of Theorem 1.1

Let K be a connected component of W satisfying $[0, \epsilon] \subset K$. Then $K=\left[0, u_{1}\right]$. If $u_{1}<\infty$, then without loss of generality, by (B.1), there exists a constant $0<\epsilon \ll 1$ such that

$$
\begin{aligned}
& F_{1}(u)=F_{2}(u) \quad\left(0 \leq u \leq u_{1}\right) \\
& F_{1}(u)<F_{2}(u), \quad\left(u_{1}<u<u_{1}+\epsilon\right)
\end{aligned}
$$

Now we choose $\alpha>0$ satisfying

$$
\left\|u_{2, \alpha}\right\|_{\infty}=u_{1}+\epsilon
$$

Proof of Theorem 1.1

Then

$$
\begin{aligned}
C_{1}(\alpha) & \leq \Phi_{1}\left(u_{2, \alpha}\right)=\frac{1}{2}\left\|u_{2, \alpha}^{\prime}\right\|_{2}^{2}+\int_{0}^{1} F_{1}\left(u_{2, \alpha}(t)\right) d t \\
& <\frac{1}{2}\left\|u_{2, \alpha}^{\prime}\right\|_{2}^{2}+\int_{0}^{1} F_{2}\left(u_{2, \alpha}(t)\right) d t \\
& =\Phi_{2}\left(u_{2, \alpha}\right)=C_{2}(\alpha)
\end{aligned}
$$

This contradicts Lemma 1.2. Therefore, we see that $u_{1}=\infty$ and $K=[0, \infty)$. This implies $F_{1}(u) \equiv F_{2}(u)$, and consequently, $f_{1}(u) \equiv f_{2}(u)$.

Proof of Theorem 1.1

(b) Assume that $0 \in W$ is an isolated point in W. Then by (B.4), without loss of generality, there exists a constant $0<\epsilon \ll 1$ such that

$$
F_{1}(u)<F_{2}(u)
$$

for $0<u<\epsilon$. Then by the same argument as that in (a) just above, we can derive a contradiction. Therefore, the case (b) does not occur. From (a) and (b), we obtain our conclusion.

Asymptotic oscillating length of bifurcation curves

We consider the following nonlinear eigenvalue problems

$$
\begin{align*}
-u^{\prime \prime}(t) & =\lambda(u(t)+g(u(t))), \quad t \in I=:(-1,1) \tag{2.1}\\
u(t) & >0, \quad t \in I \tag{2.2}\\
u(-1) & =u(1)=0 \tag{2.3}
\end{align*}
$$

where $g(u) \in C\left(\overline{\mathbb{R}}_{+}\right)$and $\lambda>0$ is a parameter.

oscillating bifurcation curve

It is well known (cf. [T. Laetsch, 1970]) that, if, for example,

$$
u+g(u)>0 \quad \text { for } \quad u>0
$$

then by time-map method, we find that λ is parameterized by using $\alpha=\|u\|_{\infty}$, such as $\lambda=\lambda(\alpha)$ and is a continuous function of $\alpha>0$. Since λ depends on g, we write

$$
\lambda=\lambda(g, \alpha)
$$

One of the nonlinear terms $g(u)$ we are interested in is

$$
g_{1}(u)=\sin \sqrt{u} .
$$

oscillating bifurcation curve

In this case, the equation (2.1)-(2.3) has been proposed in Cheng (2002) as a model problem which has arbitrary many solutions near $\lambda=\pi^{2} / 4$.

Theorem 2.0 ([Cheng, 2002]). Let $g(u)=\sin \sqrt{u}(u \geq 0)$. Then for any integer $r \geq 1$, there is $\delta>0$ such that if $\lambda \in\left(\lambda_{1}-\delta, \lambda_{1}+\delta\right)$, then (1.1)-(1.3) has at least r distinct solutions.

oscillating bifurcation curve

- Certainly, Theorem 2.0 gives us the imformation about the solution set of (2.1)-(2.3), and we expect that $\lambda(\alpha)$ oscillates and intersects the line $\lambda=\pi^{2} / 4$ infinitely many times as $\alpha \rightarrow \infty$.
- So we expect that the bifurcation curve for g_{1} is as follows.

Structure of the bifurcation curve for $g(u)=\sin \sqrt{u}$

Structure of the bifurcation curve for $g(u)=\sin \sqrt{u}$

- The first purpose here is to prove the expectation above is valid.
- Precisely, we establish the asymptotic formula for $\lambda(g, \alpha)$ as $\alpha \rightarrow \infty$, which gives us the well understanding why $\lambda(g, \alpha)$ intersect the line $\lambda=\pi^{2} / 4$ infinitely many times.
- We also obtain the asymptotic formula for $\lambda(g, \alpha)$ as $\alpha \rightarrow 0$. These two formulas clarify the total structure of $\lambda(g, \alpha)$.

Asymptotic length of bifurcation curve

We also consider the asymptotic length of $\lambda(g, \alpha)(\alpha \gg 1)$ defined by

$$
\begin{equation*}
L(g, \alpha):=\int_{\alpha}^{2 \alpha} \sqrt{1+\left(\lambda^{\prime}(g, s)\right)^{2}} d s \tag{2.4}
\end{equation*}
$$

In particular, we are interested in $g(u)$, which satisfies

$$
\begin{equation*}
L(g, \alpha)=\alpha+o(\alpha), \quad(\alpha \rightarrow \infty) \tag{2.5}
\end{equation*}
$$

This notion will be used to propose a new concept of inverse bifurcation problem.

Global behavior of bifurcation curve for $g(u)=\sin \sqrt{u}$

Theorem 2.1. Let $g(u)=g_{1}(u)=\sin \sqrt{u}$. Then as $\alpha \rightarrow \infty$,

$$
\begin{align*}
\lambda\left(g_{1}, \alpha\right) & =\frac{\pi^{2}}{4}-\pi^{3 / 2} \alpha^{-5 / 4} \cos \left(\sqrt{\alpha}-\frac{3}{4} \pi\right)+o\left(\alpha^{-5 / 4}\right) \tag{2.6}\\
\lambda^{\prime}\left(g_{1}, \alpha\right) & =\frac{1}{2} \pi^{3 / 2} \alpha^{-7 / 4} \sin \left(\sqrt{\alpha}-\frac{3}{4} \pi\right)+o\left(\alpha^{-7 / 4}\right) \tag{2.7}\\
L\left(g_{1}, \alpha\right) & =\alpha+\frac{1}{40}\left(1-\frac{1}{4 \sqrt{2}}\right) \alpha^{-5 / 2}+o\left(\alpha^{-5 / 2}\right) \tag{2.8}
\end{align*}
$$

Local behavior of bifurcation curve for $g(u)=\sin \sqrt{u}$

Theorem 2.2. Let $g(u)=g_{1}(u)=\sin \sqrt{u}$.
(i) As $\alpha \rightarrow 0$, the following asymptotic formula for $\lambda\left(g_{1}, \alpha\right)$ holds:

$$
\begin{equation*}
\lambda\left(g_{1}, \alpha\right)=\frac{3}{4} C_{1}^{2} \sqrt{\alpha}+\frac{3}{2} C_{1} C_{2} \alpha+O\left(\alpha^{3 / 2}\right) \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{1}:=\int_{0}^{1} \frac{1}{\sqrt{1-s^{3 / 2}}} d s, \quad C_{2}:=-\frac{3}{8} \int_{0}^{1} \frac{1-s^{2}}{\sqrt{1-s^{3 / 2}}} d s \tag{2.10}
\end{equation*}
$$

Local behavior of bifurcation curve for $g(u)=\sin \sqrt{u}$

(ii) Let v_{0} be a unique classical solution of the following equation

$$
\begin{align*}
-v_{0}^{\prime \prime}(t) & =\frac{3}{4} C_{1}^{2} \sqrt{v_{0}(t)}, \quad t \in I \tag{2.11}\\
v_{0}(t) & >0, \quad t \in I \tag{2.12}\\
v_{0}(-1) & =v_{0}(1)=0 \tag{2.13}
\end{align*}
$$

Furthermore, let $v_{\alpha}(t):=u_{\alpha}(t) / \alpha$. Then $v_{\alpha} \rightarrow v_{0}$ in $C^{2}(I)$ as $\alpha \rightarrow 0$.

- For the uniqueness of the positice solution of (2.11)-(2.13), we refer to A. Ambrosetti, H. Brezis, G. Cerami (1994).

Structure of the bifurcation curve for $g(u)=\sin \sqrt{u}$

Oscillating bifurcation curve

The other nonlinear terms we treat in this talk are

$$
\begin{align*}
& g_{2}(u)=\frac{1}{2} \sin u \tag{2.14}\\
& g_{3}(u)=\sin u^{2} \tag{2.15}
\end{align*}
$$

We know that the shape of $\lambda\left(g_{2}, \alpha\right)$ is something like Fig. 2 below.

Structure of the bifurcation curve for $g(u)=\frac{1}{2} \sin u$

Theorem 2.3. Let $g(u)=g_{2}(u)=(1 / 2) \sin u$. Then as $\alpha \rightarrow \infty$

$$
\begin{align*}
\lambda\left(g_{2}, \alpha\right) & =\frac{\pi^{2}}{4}-\frac{\pi}{2 \alpha} \sqrt{\frac{\pi}{2 \alpha}} \sin \left(\alpha-\frac{1}{4} \pi\right)+O\left(\alpha^{-2}\right) \tag{2.16}\\
\lambda^{\prime}\left(g_{2}, \alpha\right) & =-\frac{\pi}{2 \alpha} \sqrt{\frac{\pi}{2 \alpha}} \cos \left(\alpha-\frac{\pi}{4}\right)+o\left(\alpha^{-3 / 2}\right) \tag{2.17}\\
L\left(g_{2}, \alpha\right) & =\alpha+\frac{3 \pi^{3}}{256} \alpha^{-2}+o\left(\alpha^{-2}\right) . \tag{2.18}
\end{align*}
$$

Global structure of the bifurcation curve for $g(u)=\sin u^{2}$

Theorem 2.4. Let $g(u)=g_{3}(u)=\sin u^{2}$. Then as $\alpha \rightarrow \infty$,

$$
\begin{align*}
\lambda\left(g_{3}, \alpha\right) & =\frac{\pi^{2}}{4}-\frac{\pi^{3 / 2}}{2} \alpha^{-2} \cos \left(\alpha^{2}-\frac{3}{4} \pi\right)+o\left(\alpha^{-2}\right) \tag{2.19}\\
\lambda^{\prime}\left(g_{3}, \alpha\right) & =\frac{\pi^{3 / 2}}{\alpha} \sin \left(\alpha^{2}-\frac{3}{4} \pi\right)+o\left(\alpha^{-1}\right) \tag{2.20}\\
L\left(g_{3}, \alpha\right) & =\alpha+\frac{\pi^{3}}{8 \alpha}+o\left(\alpha^{-1}\right) \tag{2.21}
\end{align*}
$$

Local behavior of the bifurcation curve for $g(u)=\sin u^{2}$

Theorem 2.5. Let $g(u)=g_{3}(u)=\sin u^{2}$. Then as $\alpha \rightarrow 0$,

$$
\begin{equation*}
\lambda\left(g_{3}, \alpha\right)=\frac{\pi^{2}}{4}-\frac{1}{3} \pi A_{1} \alpha+\left(\frac{1}{9} A_{1}^{2}+\frac{1}{6} \pi A_{2}\right) \alpha^{2}+o\left(\alpha^{2}\right) \tag{2.22}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{1}=\int_{0}^{1} \frac{1-s^{3}}{\left(1-s^{2}\right)^{3 / 2}} d s, \quad A_{2}=\int_{0}^{1} \frac{\left(1-s^{3}\right)^{2}}{\left(1-s^{2}\right)^{5 / 2}} d s \tag{2.23}
\end{equation*}
$$

Structure of the bifurcation curve for $g(u)=\sin u^{2}$

bifurcation curve for $\lambda(\alpha)$ with $g(u)=\sin u^{2}$

Inverse problem A

Inverse problem A

Assume that

$$
g \in \Lambda:=\left\{g \in C\left(\overline{\mathbb{R}}_{+}\right): \lambda(g, \alpha) \rightarrow \pi^{2} / 4 \text { as } \alpha \rightarrow \infty\right\}
$$

satisfies

$$
\begin{equation*}
L(g, \alpha)=\alpha+o(\alpha), \quad(\alpha \rightarrow \infty) \tag{2.24}
\end{equation*}
$$

Then is it possible to distinguish g from $g_{i}(i=1,2,3)$ by the second term of $L(g, \alpha)$?

Inverse Problem A (Weak Version)

- This approach for inverse bifurcation problem seems to be new, and it is significant to consider whether this framework is suitable or not, since a few attempts have so far been made.
- We restrict our attention to the 'monotone' nonlinear terms and make the simple approach to Inverse problem A.

Inverse Problem A (Weak Version)

Assume that $g(u) \in C^{1}\left(\overline{\mathbb{R}}_{+}\right)$satisfies the following assumption (C.1).
(C.1) $g(0)=g^{\prime}(0)=0, g^{\prime}(u) \geq 0$ for $u>0$ and $g(u)=C u^{m}$ for $u \geq 1$, where $C>0$ and $0<m<1$ are constants.

Graph of $\lambda(g, \alpha) \quad(g(u)$ is "monotome" type)

bifurcation curve for $g(u) \sim C u^{m}$

Answer to Inverse Problem A

Theorem 2.6. Let $g(u)$ satisfy (C.1). Then as $\alpha \rightarrow \infty$,

$$
\begin{align*}
L(g, \alpha) & =\alpha+\frac{2^{2 m-3}-1}{2(2 m-3)} A(m)^{2} \alpha^{2 m-3}+o\left(\alpha^{2 m-3}\right) \tag{2.25}\\
\lambda(g, \alpha) & =\frac{\pi^{2}}{4}-\frac{\pi}{m+1} C C(m) \alpha^{m-1}+o\left(\alpha^{m-1}\right) \tag{2.26}\\
\lambda^{\prime}(g, \alpha) & =-\frac{m-1}{m+1} \pi C C(m) \alpha^{m-2}+o\left(\alpha^{m-2}\right) \tag{2.27}
\end{align*}
$$

where

$$
\begin{equation*}
A(m):=\frac{(1-m) \pi C C(m)}{1+m}, \quad C(m)=\int_{0}^{1} \frac{1-s^{m+1}}{\left(1-s^{2}\right)^{3 / 2}} d s \tag{2.28}
\end{equation*}
$$

Answer to Inverse Problem A (Weak Version)

$$
g_{1}(u)=\sin \sqrt{u}, \quad g_{2}(u)=\frac{1}{2} \sin u, \quad g_{3}(u)=\sin u^{2}
$$

and $g(u)$ is a "monotone type" $(0<m<1)$. Then

$$
\begin{aligned}
L\left(g_{1}, \alpha\right) & =\alpha+\frac{1}{40}\left(1-\frac{1}{4 \sqrt{2}}\right) \alpha^{-5 / 2}+o\left(\alpha^{-5 / 2}\right) \\
L\left(g_{2}, \alpha\right) & =\alpha+\frac{3 \pi^{3}}{256} \alpha^{-2}+o\left(\alpha^{-2}\right) \\
L\left(g_{3}, \alpha\right) & =\alpha+\frac{\pi^{3}}{8} \alpha^{-1}+o\left(\alpha^{-1}\right) \\
L(g, \alpha) & =\alpha+\frac{2^{2 m-3}-1}{2(2 m-3)} A(m)^{2} \alpha^{2 m-3}+o\left(\alpha^{2 m-3}\right)
\end{aligned}
$$

- We can distinguish g and g_{3} by the second term of L, but if we put $m=1 / 4$ in $L\left(g_{1}, \alpha\right), m=1 / 2$ in $L\left(g_{2}, \alpha\right)$, and choose C suitably, we can not distinguish g and g_{1}, g_{2} by the second term of L.

How to prove these Theorems

Proof of Theorems
 $=$ Time map
 + Asymptotic formulas for some special functions.

- The proofs of the Theorems in this section basically depend on the time-map argument. In particular, the key tool of the proof of Theorem 2.1 is the asymptotic formula for the Bessel functions obtained by Krasikov (2016).

The case $g(u)=\sin u^{2}$ and $\alpha \gg 1$

In this section, let $g(u)=g_{3}(u)=\sin u^{2}$ and $\alpha \gg 1$. For simplicity, we write $\lambda=\lambda(\alpha)$. For $u \geq 0$, let

$$
\begin{equation*}
G(u):=\int_{0}^{u} g(s) d s=\int_{0}^{u} \sin t^{2} d t=\sqrt{\frac{\pi}{2}} S(u) \tag{3.1}
\end{equation*}
$$

where $S(u)$ is the Fresnel sine integral defined by

$$
\begin{equation*}
S(u)=\sqrt{\frac{2}{\pi}} \int_{0}^{u} \sin x^{2} d x \tag{3.2}
\end{equation*}
$$

Further, let $C(\alpha)$ be the Fresnel cosine integral defined by

$$
\begin{equation*}
C(\alpha)=\sqrt{\frac{2}{\pi}} \int_{0}^{\alpha} \cos x^{2} d x \tag{3.3}
\end{equation*}
$$

The case $g_{3}(u)=\sin u^{2}$ and $\alpha \gg 1$

Then we know (cf. [I. S. Gradshteyn and I. M. Ryzhik (2015), pp. 898-899]) that as $\alpha \rightarrow \infty$,

$$
\begin{align*}
S(\alpha) & =\frac{1}{2}-\frac{1}{\sqrt{2 \pi} \alpha} \cos ^{2} \alpha+O\left(\alpha^{-2}\right) \tag{3.4}\\
C(\alpha) & =\frac{1}{2}+\frac{1}{\sqrt{2 \pi} \alpha} \sin ^{2} \alpha+O\left(\alpha^{-2}\right) \tag{3.5}
\end{align*}
$$

The case $g_{3}(u)=\sin u^{2}$ and $\alpha \gg 1$

It is known that if $\left(u_{\alpha}, \lambda(\alpha)\right) \in C^{2}(\bar{I}) \times \mathbb{R}_{+}$satisfies (2.1)-(2.3), then

$$
\begin{align*}
& u_{\alpha}(t)=u_{\alpha}(-t), \quad 0 \leq t \leq 1, \tag{3.6}\\
& u_{\alpha}(0)=\max _{-1 \leq t \leq 1} u_{\alpha}(t)=\alpha, \tag{3.7}\\
& u_{\alpha}^{\prime}(t)>0, \quad-1<t<0 . \tag{3.8}
\end{align*}
$$

Time map $\lambda\left(g_{3}, \alpha\right):\left(g_{3}(u)=\sin u^{2}\right)$

By (2.1), we have

$$
\left\{u_{\alpha}^{\prime \prime}(t)+\lambda\left(u_{\alpha}(t)+\sin \sqrt{u_{\alpha}(t)}\right)\right\} u_{\alpha}^{\prime}(t)=0
$$

By this, we obtain

$$
\frac{1}{2} u_{\alpha}^{\prime}(t)^{2}+\lambda\left(\frac{1}{2} u_{\alpha}(t)^{2}+G\left(u_{\alpha}(t)\right)\right)=\text { constant }=\lambda\left(\frac{1}{2} \alpha^{2}+G(\alpha)\right) .
$$

This along with (3.8) implies that for $-1 \leq t \leq 0$,

$$
\begin{equation*}
u_{\alpha}^{\prime}(t)=\sqrt{\lambda} \sqrt{\alpha^{2}-u_{\alpha}(t)^{2}+2\left(G(\alpha)-G\left(u_{\alpha}(t)\right)\right)} \tag{3.9}
\end{equation*}
$$

For $0 \leq s \leq 1$, we have

$$
\begin{equation*}
\left|\frac{G(\alpha)-G(\alpha s)}{\alpha^{2}\left(1-s^{2}\right)}\right|=\left|\frac{\int_{\alpha s}^{\alpha} g(t) d t}{\alpha^{2}\left(1-s^{2}\right)}\right| \leq \frac{\alpha(1-s)}{\alpha^{2}\left(1-s^{2}\right)} \leq \alpha^{-1} \tag{3.10}
\end{equation*}
$$

Time map $\lambda\left(g_{3}, \alpha\right):\left(g_{3}(u)=\sin u^{2}\right)$

By (3.9), (3.10), putting $s:=u_{\alpha}(t) / \alpha$ and Taylor expansion, we obtain

$$
\begin{align*}
\sqrt{\lambda} & =\int_{-1}^{0} \frac{u_{\alpha}^{\prime}(t)}{\sqrt{\alpha^{2}-u_{\alpha}(t)^{2}+2\left(G(\alpha)-G\left(u_{\alpha}(t)\right)\right)}} d t \tag{3.11}\\
& =\int_{0}^{1} \frac{1}{\sqrt{1-s^{2}+2(G(\alpha)-G(\alpha s)) / \alpha^{2}}} d s \\
& =\int_{0}^{1} \frac{1}{\sqrt{1-s^{2}}} \frac{1}{\sqrt{1+2(G(\alpha)-G(\alpha s)) /\left(\alpha^{2}\left(1-s^{2}\right)\right)}} d s \\
& =\int_{0}^{1} \frac{1}{\sqrt{1-s^{2}}}\left\{1-\frac{G(\alpha)-G(\alpha s)}{\alpha^{2}\left(1-s^{2}\right)}(1+o(1))\right\} d s \\
& =\frac{\pi}{2}-\frac{1}{\alpha^{2}}(1+o(1)) \int_{0}^{1} \frac{G(\alpha)-G(\alpha s)}{\left(1-s^{2}\right)^{3 / 2}} d s .
\end{align*}
$$

Time map $\lambda\left(g_{3}, \alpha\right):\left(g_{3}(u)=\sin u^{2}\right)$

We put

$$
\begin{equation*}
K:=\int_{0}^{1} \frac{G(\alpha)-G(\alpha s)}{\left(1-s^{2}\right)^{3 / 2}} d s \tag{3.12}
\end{equation*}
$$

Lemma 3.1. As $\alpha \rightarrow \infty$,

$$
\begin{equation*}
K=\frac{\sqrt{\pi}}{2}(1+o(1)) \cos \left(\alpha^{2}-\frac{3}{4} \pi\right) . \tag{3.13}
\end{equation*}
$$

Proof. For $0 \leq \theta \leq \pi / 2$, we put

$$
\begin{equation*}
M(\theta):=G(\alpha)-G(\alpha s)=\int_{\alpha \sin \theta}^{\alpha} \sin t^{2} d t \tag{3.14}
\end{equation*}
$$

We put $s=\sin \theta$ in (3.12). Then by (3.1), (3.14) and integration by parts, we obtain

Time map $\lambda\left(g_{3}, \alpha\right):\left(g_{3}(u)=\sin u^{2}\right)$

$$
\begin{aligned}
K & =\int_{0}^{\pi / 2} \frac{1}{\cos ^{2} \theta} M(\theta) d \theta \\
& =[\tan \theta M(\theta)]_{0}^{\pi / 2}+\alpha \int_{0}^{\pi / 2} \tan \theta \sin (\alpha \sin \theta)^{2} \cos \theta d \theta \\
& :=K_{1}+\alpha K_{2}
\end{aligned}
$$

Since

$$
\begin{equation*}
\lim _{\theta \rightarrow \pi / 2} \frac{M(\theta)}{\cos \theta}=\lim _{\theta \rightarrow \pi / 2} \frac{\alpha \cos \theta \sin (\alpha \sin \theta)^{2}}{\sin \theta}=0 \tag{3.16}
\end{equation*}
$$

we see that $K_{1}=0$. Now we calculate K_{2}.

Time map $\lambda\left(g_{3}, \alpha\right):\left(g_{3}(u)=\sin u^{2}\right)$

$$
\begin{align*}
K_{2}= & \int_{0}^{\pi / 2} \sin \theta \sin (\alpha \sin \theta)^{2} d \theta \tag{3.17}\\
= & \int_{0}^{\pi / 2} \sin \theta \sin \left(\alpha^{2}-\alpha^{2} \cos ^{2} \theta\right) d \theta \\
= & \sin \alpha^{2} \int_{0}^{\pi / 2} \sin \theta \cos \left(\alpha^{2} \cos ^{2} \theta\right) d \theta \\
& -\cos \alpha^{2} \int_{0}^{\pi / 2} \sin \theta \sin \left(\alpha^{2} \cos ^{2} \theta\right) d \theta \\
= & K_{21} \sin \alpha^{2}-K_{22} \cos \alpha^{2}
\end{align*}
$$

By putting $t=\cos \theta$, we obtain by (3.5) that as $\alpha \rightarrow \infty$,

Time map $\lambda\left(g_{3}, \alpha\right):\left(g_{3}(u)=\sin u^{2}\right)$

$$
\begin{align*}
K_{21} & =\int_{0}^{1} \cos \left(\alpha^{2} t^{2}\right) d t=\frac{1}{\alpha} \int_{0}^{\alpha} \cos x^{2} d x \tag{3.18}\\
& =\sqrt{\frac{\pi}{2}} \frac{1}{2 \alpha}(1+o(1))
\end{align*}
$$

By the same calculation as that to obtain (3.18), we obtain

$$
\begin{align*}
K_{22} & =\int_{0}^{1} \sin \left(\alpha^{2} t^{2}\right) d t=\frac{1}{\alpha} \sqrt{\frac{\pi}{2}} S(\alpha) \tag{3.19}\\
& =\sqrt{\frac{\pi}{2}} \frac{1}{2 \alpha}(1+o(1))
\end{align*}
$$

By (3.17)-(3.19), we obtain

Time map $\lambda\left(g_{3}, \alpha\right):\left(g_{3}(u)=\sin u^{2}\right)$

$$
\begin{align*}
K & =\frac{1}{2} \sqrt{\frac{\pi}{2}}(1+o(1))\left(\sin \alpha^{2}-\cos \alpha^{2}\right) \tag{3.20}\\
& =\frac{\sqrt{\pi}}{2}(1+o(1)) \sin \left(\alpha^{2}-\frac{1}{4} \pi\right) \\
& =\frac{\sqrt{\pi}}{2}(1+o(1)) \cos \left(\alpha^{2}-\frac{3}{4} \pi\right) .
\end{align*}
$$

This implies (3.13). Thus the proof is complete.
By Lemma 3.1 and (3.11), we obtain $\lambda\left(g_{3}, \alpha\right)$.

Asymptotic length of bifurcation curve: $g_{3}(u)=\sin u^{2}$

How to obtain $L\left(g_{3}, \alpha\right)$.

$$
\begin{aligned}
L\left(g_{3}, \alpha\right) & =\int_{\alpha}^{2 \alpha} \sqrt{1+\frac{\pi^{3}}{t^{2}}(1+o(1)) \sin ^{2}\left(t^{2}-\frac{3 \pi}{4}\right)} d t \\
& =\int_{\alpha}^{2 \alpha} 1+\frac{\pi^{3}}{2 t^{2}}(1+o(1)) \sin ^{2}\left(t^{2}-\frac{3 \pi}{4}\right) d t \\
& =\alpha+\frac{\pi^{3}}{4}(1+o(1)) \int_{\alpha}^{2 \alpha}\left(\frac{\sin ^{2} t^{2}}{t^{2}}+\frac{\cos ^{2} t^{2}}{t^{2}}+\frac{2 \sin t^{2} \cos t^{2}}{t^{2}}\right) d t
\end{aligned}
$$

Clearly,

$$
\begin{equation*}
\int_{\alpha}^{2 \alpha}\left(\frac{\sin ^{2} t^{2}}{t^{2}}+\frac{\cos ^{2} t^{2}}{t^{2}}\right) d t=\int_{\alpha}^{2 \alpha} \frac{1}{t^{2}} d t=\frac{1}{2 \alpha} \tag{3.22}
\end{equation*}
$$

Furthermore, Then by integration by parts, we obtain

Asymptotic length of bifurcation curve

$$
\begin{align*}
\int_{\alpha}^{2 \alpha} \frac{2 \sin t^{2} \cos t^{2}}{t^{2}} d t & =\int_{\alpha}^{2 \alpha} \frac{\sin \left(2 t^{2}\right)}{t^{2}} d t \tag{3.23}\\
& =\sqrt{2} \int_{\sqrt{2} \alpha}^{2 \sqrt{2} \alpha} \frac{\sin x^{2}}{x^{2}} \\
& =\sqrt{2}\left[-\frac{1}{2 t^{3}} \cos t^{2}\right]_{\sqrt{2} \alpha}^{2 \sqrt{2} \alpha}+\frac{3 \sqrt{2}}{2} \int_{\sqrt{2} \alpha}^{2 \sqrt{2} \alpha} \frac{\cos t^{2}}{t^{4}} d t \\
& =-\frac{1}{32 \alpha^{3}} \cos \left(8 \alpha^{2}\right)+\frac{1}{4 \alpha^{3}} \cos 2 \alpha^{2}+O\left(\alpha^{-3}\right) .
\end{align*}
$$

Thus the proof is complete.

The case $g(u)=u^{p} \sin \left(u^{q}\right)(0 \leq p<1,0<q \leq 1)$

Now we consider the precise asymptotic formulas for $\lambda(\alpha)$ as $\alpha \rightarrow \infty$ for

$$
g(u)=u^{p} \sin \left(u^{q}\right) \quad(0 \leq p<1,0<q \leq 1) .
$$

We prove the following Theorem 3.1 by the time-map argument and the stationary phase method. We have to be careful about the regularity of the functions which will be appear after the time-map argument.

Theorem 4.1.([S, 22]) Let $g(u)=u^{p} \sin \left(u^{q}\right)$, where $0 \leq p<1$ and $0<q \leq 1$ are fixed constants. Then as $\alpha \rightarrow \infty$,

$$
\lambda(\alpha)=\frac{\pi^{2}}{4}-\frac{\pi^{3 / 2}}{\sqrt{2 q}} \alpha^{p-1-(q / 2)} \sin \left(\alpha^{q}-\frac{\pi}{4}\right)+o\left(\alpha^{p-1-(q / 2)}\right)
$$

Local behavior of $\lambda(\alpha)$

Next, to understand the whole structure of $\lambda(\alpha)$ in detail, we establish the asymptotic formulas for $\lambda(\alpha)$ as $\alpha \rightarrow 0$.

Theorem 4.2.([S, 22]) Let $g(u)=u^{p} \sin \left(u^{q}\right)$, where $0 \leq p<1$, $0<q \leq 1$. Then the following asymptotic formulas hold $\alpha \rightarrow 0$.
(i) Assume that $p+q>1$. Then

$$
\begin{align*}
\lambda(\alpha)= & \frac{\pi^{2}}{4}-A_{1} \pi \alpha^{p+q-1}+\left(A_{1}^{2}+A_{2} \pi\right) \alpha^{2(p+q-1)} \tag{4.2}\\
& +o\left(\alpha^{2(p+q-1)}\right)
\end{align*}
$$

where

$$
\begin{align*}
& A_{1}=\frac{1}{p+q+1} \int_{0}^{1} \frac{1-s^{p+q+1}}{\left(1-s^{2}\right)^{3 / 2}} d s \tag{4.3}\\
& A_{2}=\frac{3}{2(p+q+1)^{2}} \int_{0}^{1} \frac{\left(1-s^{p+q+1}\right)^{2}}{\left(1-s^{2}\right)^{5 / 2}} d s \tag{4.4}
\end{align*}
$$

Local behavior of $\lambda(\alpha)$

(ii) Assume that $p+q=1$. Then

$$
\begin{equation*}
\lambda(\alpha)=\frac{\pi^{2}}{8}+\frac{\pi}{48} B \alpha^{2 q}+o\left(\alpha^{2 q}\right) \tag{4.5}
\end{equation*}
$$

where

$$
\begin{equation*}
B=\frac{1}{q+1} \int_{0}^{1} \frac{1-s^{2 q+2}}{\left(1-s^{2}\right)^{3 / 2}} d s \tag{4.6}
\end{equation*}
$$

(iii) Assume that $p+q<1<p+3 q$. Then

$$
\begin{align*}
\lambda(\alpha)= & \frac{p+q+1}{2} \alpha^{1-p-q} \tag{4.7}\\
& \times\left\{C_{1}^{2}-\frac{p+q+1}{2} C_{1} C_{2} \alpha^{1-p-q}+o\left(\alpha^{1-p-q}\right)\right\},
\end{align*}
$$

where

$$
\begin{equation*}
C_{1}=\int_{0}^{1} \frac{1}{\sqrt{1-s^{p+q+1}}} d s, \quad C_{2}=\int_{0}^{1} \frac{1-s^{2}}{\left(1-s^{p+q+1}\right)^{3 / 2}} d s \tag{4.8}
\end{equation*}
$$

Local behavior of $\lambda(\alpha)$

(iv) Assume that $p+q<p+3 q<1$. Then

$$
\begin{align*}
\lambda(\alpha)= & \frac{p+q+1}{2} \alpha^{1-p-q} \tag{4.9}\\
& \times\left\{C_{1}^{2}+\frac{p+q+1}{6(p+3 q+1)} C_{1} C_{3} \alpha^{2 q}+o\left(\alpha^{2 q}\right)\right\} \\
& C_{3}=\int_{0}^{1} \frac{1-s^{p+3 q+1}}{\left(1-s^{p+q+1}\right)^{3 / 2}} d s \tag{4.10}
\end{align*}
$$

(v) Assume that $p+q<p+3 q=1$. Then

$$
\begin{align*}
\lambda(\alpha)= & \frac{p+q+1}{2} \alpha^{2 q} \tag{4.11}\\
& \times\left\{C_{1}^{2}-\frac{5(p+q+1)}{12} C_{1} C_{4} \alpha^{2 q}+o\left(\alpha^{2 q}\right)\right\} \\
& C_{4}=\int_{0}^{1} \frac{1-s^{2}}{\left(1-s^{p+q+1}\right)^{3 / 2}} d s \tag{4.12}
\end{align*}
$$

Local behavior of $\lambda(\alpha)$

By Theorems 4.1 and 4.2, we understand that there exist three types of the asymptotic shapes of $\lambda(\alpha)$ (see figures below).

Fig. Theorem 4.2 (i)

Graph of $\lambda(\alpha)$

Fig. Theorem 4.2 (ii)

Graph of $\lambda(\alpha)$

Proofs: $g(u)=u^{p} \sin \left(u^{q}\right)(0 \leq p<1,0<q \leq 1)$

In this section, let $\alpha \gg 1$. Furthermore, we denote by C the various positive constants independent of α. For $u \geq 0$, let

$$
g(u)=u^{p} \sin \left(u^{q}\right)
$$

and

$$
\begin{equation*}
G(u):=\int_{0}^{u} g(s) d s . \tag{5.1}
\end{equation*}
$$

Then by the same argument of time-map as that in Section 2, we obtain

Time-Map

$$
\begin{aligned}
\sqrt{\lambda} & =\int_{-1}^{0} \frac{u_{\alpha}^{\prime}(t)}{\sqrt{\alpha^{2}-u_{\alpha}(t)^{2}+2\left(G(\alpha)-G\left(u_{\alpha}(t)\right)\right)}} d t \\
& =\int_{0}^{1} \frac{1}{\sqrt{1-s^{2}+2(G(\alpha)-G(\alpha s)) / \alpha^{2}}} d s \\
& =\int_{0}^{1} \frac{1}{\sqrt{1-s^{2}}} \frac{1}{\sqrt{1+2(G(\alpha)-G(\alpha s)) /\left(\alpha^{2}\left(1-s^{2}\right)\right)}} d s \\
& =\int_{0}^{1} \frac{1}{\sqrt{1-s^{2}}}\left\{1-\frac{G(\alpha)-G(\alpha s)}{\alpha^{2}\left(1-s^{2}\right)}(1+o(1))\right\} d s \\
& =\frac{\pi}{2}-\frac{1}{\alpha^{2}}(1+o(1)) \int_{0}^{1} \frac{G(\alpha)-G(\alpha s)}{\left(1-s^{2}\right)^{3 / 2}} d s \\
& =\frac{\pi}{2}-\frac{1}{\alpha^{2}} K(\alpha)(1+o(1)),
\end{aligned}
$$

where

Key Lemma

$$
\begin{equation*}
K(\alpha):=\int_{0}^{1} \frac{G(\alpha)-G(\alpha s)}{\left(1-s^{2}\right)^{3 / 2}} d s \tag{5.3}
\end{equation*}
$$

To calculate $K(\alpha)$, we use the following Lemma. By combining [8, Lemma 2] and [10, Lemmas 2.25], we have following equalities.

Lemma 5.1. Assume that the function $f(r) \in C^{2}[0,1]$, and $h(r)=\cos (\pi r / 2)$. Then as $\mu \rightarrow \infty$

$$
\begin{equation*}
\int_{0}^{1} f(r) e^{i \mu h(r)} d r=e^{i(\mu-(\pi / 4))} \sqrt{\frac{2}{\pi \mu}} f(0)+O\left(\frac{1}{\mu}\right) \tag{5.4}
\end{equation*}
$$

In particular, by taking the imaginary part of (4.4),

$$
\begin{equation*}
\int_{0}^{1} f(r) \sin (\mu h(r)) d r=\sqrt{\frac{2}{\pi \mu}} f(0) \sin \left(\mu-\frac{\pi}{4}\right)+O\left(\frac{1}{\mu}\right) \tag{5.5}
\end{equation*}
$$

Key Lemma

Lemma 5.2. As $\alpha \rightarrow \infty$,

$$
\begin{equation*}
K(\alpha)=\sqrt{\frac{\pi}{2 q}} \alpha^{p+1-(q / 2)} \sin \left(\alpha^{q}-\frac{\pi}{4}\right)+o\left(\alpha^{p-1-(q / 2)}\right) \tag{5.6}
\end{equation*}
$$

Proof. We put $s=\sin \theta$ in (5.3). Then by integration by parts,

$$
\begin{align*}
K(\alpha)= & \int_{0}^{\pi / 2} \frac{1}{\cos ^{2} \theta}(G(\alpha)-G(\alpha \sin \theta)) d \theta \tag{5.7}\\
= & \int_{0}^{\pi / 2}(\tan \theta)^{\prime}(G(\alpha)-G(\alpha \sin \theta)) d \theta \\
= & {[\tan \theta(G(\alpha)-G(\alpha \sin \theta))]_{0}^{\pi / 2} } \\
& +\alpha \int_{0}^{\pi / 2} \tan \theta\left(\cos \theta(\alpha \sin \theta)^{p} \sin \left((\alpha \sin \theta)^{q}\right)\right) d \theta
\end{align*}
$$

By l'Hôpital's rule, we obtain

$$
\lim _{\theta \rightarrow \pi / 2} \frac{\int_{\alpha \sin \theta}^{\alpha} y^{p} \sin \left(y^{q}\right) d y}{\cos \theta}=\lim _{\theta \rightarrow \pi / 2} \frac{\alpha \cos \theta(\alpha \sin \theta)^{p} \sin \left((\alpha \sin \theta)^{q}\right)}{\sin \theta}=0
$$

Key Lemma

We put $m=1 / q, \sin ^{q} \theta=\sin x, x=(\pi / 2)-y$ and $y=(\pi / 2) r$. Then

$$
\begin{align*}
K(\alpha)= & \alpha^{p+1} \int_{0}^{\pi / 2} \sin ^{p+1} \theta \sin \left(\alpha^{q} \sin ^{q} \theta\right) d \theta \tag{5.8}\\
= & \frac{1}{q} \alpha^{p+1} \int_{0}^{\pi / 2} \sin ^{(p+2-q) / q} x \frac{\cos x}{\sqrt{1-\sin ^{2 m} x}} \sin \left(\alpha^{q} \sin x\right) d x \\
= & \frac{1}{q} \alpha^{p+1} \int_{0}^{\pi / 2} \sin ^{(p+2-q) / q} x \frac{\sqrt{1-\sin ^{2} x}}{\sqrt{1-\sin ^{2 m} x}} \sin \left(\alpha^{q} \sin x\right) d x \\
= & \frac{1}{q} \alpha^{p+1} \int_{0}^{\pi / 2} \cos ^{(p+2-q) / q} y \frac{\sqrt{1-\cos ^{2} y}}{\sqrt{1-\cos ^{2 m} y}} \sin \left(\alpha^{q} \cos y\right) d y \\
= & \frac{\pi}{2 q} \alpha^{p+1} \int_{0}^{1} \cos ^{(p+2-q) / q}\left(\frac{\pi}{2} r\right) \sqrt{\frac{1-\cos ^{2}\left(\frac{\pi}{2} r\right)}{1-\cos ^{2 m}\left(\frac{\pi}{2} r\right)}} \\
& \quad \times \sin \left(\alpha^{q} \cos \left(\frac{\pi}{2} r\right)\right) d r .
\end{align*}
$$

Key Lemma

We put

$$
\begin{equation*}
f(r)=\cos ^{(p+2-q) / q}\left(\frac{\pi}{2} r\right) \sqrt{\frac{1-\cos ^{2}\left(\frac{\pi}{2} r\right)}{1-\cos ^{2 m}\left(\frac{\pi}{2} r\right)}}, \quad \mu=\alpha^{q} \tag{5.9}
\end{equation*}
$$

and $h(r)=\cos (\pi r / 2)$ in (5.5). We note that $f(0)=\sqrt{q}$.
(i) If $f \in C^{2}[0,1]$, then by (5.5) and (5.8), we obtain

$$
\begin{equation*}
K(\alpha)=\sqrt{\frac{\pi}{2 q}} \alpha^{p+1-q / 2} \sin \left(\alpha^{q}-\frac{\pi}{4}\right)+o\left(\alpha^{p+1-q / 2}\right) \tag{5.10}
\end{equation*}
$$

This implies our conclusion (5.6).
(ii) Finally, we consider the case $f \notin C^{2}[0,1]$. For instance, if
$q>(p+2) / 3$, then $\cos ^{(p+2-q) / q}\left(\frac{\pi}{2} r\right) \notin C^{2}[0,1]$. Fortunately, we are still able to apply Lemma 5.1 to this case by modifying the proof of Lemma 5.1, and obtain (4.5). Thus the proof is complete.

Now Theorem 4.1 follows from (5.2) and Lemma 5.2.

$$
\int_{0}^{1} f(r) e^{i \mu h(r)} d r=e^{i(\mu-(\pi / 4))} \sqrt{\frac{2}{\pi \mu}} f(0)+O\left(\frac{1}{\mu}\right)
$$

For completeness, we show that (5.4) holds. Recall that $h(r)=\cos (\pi r / 2)$, $0 \leq p<1$ and $0<q \leq 1$. For $m=1 / q$ and $0 \leq x \leq 1$, we put

$$
\begin{equation*}
f(x)=f_{1}(x) f_{2}(x):=\cos ^{(p+2-q) / q}\left(\frac{\pi}{2} x\right) \sqrt{\frac{1-\cos ^{2}\left(\frac{\pi}{2} x\right)}{1-\cos ^{2 m}\left(\frac{\pi}{2} x\right)}} . \tag{5.11}
\end{equation*}
$$

(i) By direct calculation, we can show that if $q>0$, namely, $m>1$, then $f_{2}(x) \in C^{2}[0,1]$.
(ii) The essential point of the proof of (5.4) is to show that, as $\mu \rightarrow \infty$,

$$
\begin{equation*}
\Phi(\mu):=\int_{0}^{1} f(x) e^{-i \mu x^{2}} d x=\frac{1}{2} \sqrt{\frac{\pi}{\mu}} e^{-i(\pi / 4)} f(0)+O\left(\frac{1}{\mu}\right) . \tag{5.12}
\end{equation*}
$$

We put

$$
w(x):=\frac{f(x)-f(0)}{x}, \quad \text { namely } f(x)=f(0)+x w(x)
$$

By [10, Lemma 2.24],

$$
\int_{0}^{1} f(r) e^{i \mu h(r)} d r=e^{i(\mu-(\pi / 4))} \sqrt{\frac{2}{\pi \mu}} f(0)+O\left(\frac{1}{\mu}\right)
$$

$$
\begin{equation*}
\int_{0}^{1} e^{-i \mu x^{2}} d x=\frac{1}{2} \sqrt{\frac{\pi}{\mu}} e^{-i \pi / 4}+O\left(\frac{1}{\mu}\right) . \tag{5.13}
\end{equation*}
$$

Since $f(0)=\sqrt{q}$, by (5.13), we obtain

$$
\begin{align*}
\Phi(\mu) & =f(0) \int_{0}^{1} e^{-i \mu x^{2}} d x+\int_{0}^{1} x e^{-i \mu x^{2}} w(x) d x \tag{5.14}\\
& =\frac{1}{2} \sqrt{\frac{\pi}{\mu}} e^{-i \pi / 4} \sqrt{q}+O\left(\frac{1}{\mu}\right)+\int_{0}^{1} x e^{-i \mu x^{2}} w(x) d x
\end{align*}
$$

We put

$$
\begin{equation*}
\Phi_{1}(\mu):=\int_{0}^{1} x e^{-i \mu x^{2}} w(x) d x \tag{5.15}
\end{equation*}
$$

Now we prove that $w(x) \in C^{1}[0,1]$, because if it is proved, then by integration by parts, we easily show that $\Phi_{1}(\mu)=O(1 / \mu)$ and

$$
\int_{0}^{1} f(r) e^{i \mu h(r)} d r=e^{i(\mu-(\pi / 4))} \sqrt{\frac{2}{\pi \mu}} f(0)+O\left(\frac{1}{\mu}\right)
$$

our conclusion (5.4) follows immediately from (5.12) and (5.14). To do this, there are several cases to consider.

- We note that, by direct calculation, we can show that if $q>0$, namely, $m>1$, then $f_{2}(x) \in C^{2}[0,1]$.

Case 1. Assume that $p=0$ and $q=1$. Then $f(x)=\cos \left(\frac{\pi}{2} x\right) \in C^{2}[0,1]$.
Case 2. Assume that $0<q<1$ and $p+2 \geq 3 q$. Then $(p+2-q) / q \geq 2$ and $f_{1}(x) \in C^{2}[0,1]$. Consequently, $f \in C^{2}[0,1]$ in this case.

$$
\int_{0}^{1} f(r) e^{i \mu h(r)} d r=e^{i(\mu-(\pi / 4))} \sqrt{\frac{2}{\pi \mu}} f(0)+O\left(\frac{1}{\mu}\right)
$$

Case 3. Assume that $0<p<1$ and $q=1$. Then $f(x)=\cos ^{p+1}\left(\frac{\pi}{2} x\right) \notin C^{2}[0,1]$. However, by direct calculation, we can show that

$$
w(x)=\frac{f(x)-f(0)}{x} \in C^{1}[0,1] .
$$

It is reasonable, because by Taylor expansion, for $0<x \ll 1$, we have

$$
\begin{equation*}
w(x)=-\frac{(p+1) \pi^{2}}{8} x+o(x) \tag{5.16}
\end{equation*}
$$

Case 4. Assume that $0<q<1$ and $p+2<3 q$. Then

$$
\frac{p+2-q}{q}=\frac{p+2-2 q}{q}+1:=\eta+1 .
$$

Then $0<\eta<1$ and $f_{1}(x)=\cos ^{\eta+1} x$. Since $f_{2} \in C^{2}[0,1]$, by the consequence of Case 3 above, we find that $w \in C^{1}[0,1]$. Thus the proof is complete.

References

[1] A. Ambrosetti, H. Brezis, G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.
[2] S. Cano-Casanova and J. López-Gómez, Existence, uniqueness and blow-up rate of large solutions for a canonical class of one-dimensional problems on the half-line, J. Differential Equations, 244 (2008), 3180-3203.
[3] S. Cano-Casanova, J. López-Gómez, Blow-up rates of radially symmetric large solutions, J. Math. Anal. Appl., 352 (2009), 166-174.

References

[4] Shanshan Chen, Junping Shi and Junjie Wei, Bifurcation analysis of the Gierer-Meinhardt system with a saturation in the activator production, Appl. Anal., 93 (2014), 1115-1134.
[5] Y.J. Cheng, On an open problem of Ambrosetti, Brezis and Cerami, Differential Integral Equations, 15 (2002), 1025-1044.
[6] R. Chiappinelli, On spectral asymptotics and bifurcation for elliptic operators with odd superlinear term, Nonlinear Anal., 13 (1989), 871-878.

References

[7] J. M. Fraile, J. López-Gómez and J. Sabina de Lis, On the global structure of the set of positive solutions of some semilinear elliptic boundary value problems, J. Differential Equations, 123 (1995), 180-212.
[8] A. Galstian, P. Korman and Y. Li, On the oscillations of the solution curve for a class of semilinear equations, J. Math. Anal. Appl., 321 (2006), 576-588.
[9] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products. Translated from the Russian. Translation edited and with a preface by Daniel Zwillinger and Victor Moll. Eighth edition.
Elsevier/Academic Press, Amsterdam, 2015.

References

[10] P. Korman and Y. Li, Exact multiplicity of positive solutions for concave-convex and convex-concave nonlinearities, J. Differential Equations, 257 (2014), 3730-3737.
[11] P. Korman and Y. Li, Computing the location and the direction of bifurcation for sign changing solutions, Differ. Equ. Appl., 2 (2010), 1-13.
[12] P. Korman and Y. Li, Infinitely many solutions at a resonance, Electron. J. Differ. Equ. Conf. 05, 105-111.

References

[13] P. Korman, An oscillatory bifurcation from infinity, and from zero, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 335-345.
[14] P. Korman, Global solution curves for semilinear elliptic equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, (2012).
[15] T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 1970/1971 1-13.

References

[16] T. Shibata, New method for computing the local behavior of L_{q}-bifurcation curve for logistic equations, Int. J. Math. Anal., (Ruse) 7 (2013) no. 29-32, 1531-1541.
[17] T. Shibata, S-shaped bifurcation curves for nonlinear two-parameter problems, Nonlinear Anal., 95 (2014), 796-808.
[18] T. Shibata, Asymptotic length of bifurcation curves related to inverse bifurcation problems, J. Math. Anal. Appl., 438 (2016), 629-642.

References

[19] T. Shibata, Oscillatory bifurcation for semilinear ordinary differential equations, Electron. J. Qual. Theory Differ. Equ. 2016, No. 44, 1-13.
[20] T. Shibata, Global and local structures of oscillatory bifurcation curves with application to inverse bifurcation problem, Topological Methods in Nonlinear Analysis 50 (2017), 603-622.
[21] T. Shibata, Global behavior of bifurcation curves for the nonlinear eigenvalue problems with periodic nonlinear terms, Communications on Pure and Applied Analysis 17 (2018), 2139-2147.

References

[22] T. Shibata, Global and local structures of oscillatory bifurcation curves, submitted.

Thank you very much

Thank You for Your Attention

