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Introduction: Elliptic Inverse Bifurcation Problems

We consider:

−∆u+ f(u) = λu in Ω,

u > 0, in Ω, (1.1)

u = 0 on ∂Ω.

・Ω ⊂ RN : appropriately smooth bounded domain.

・λ > 0：a parameter.

We assume that f(u) is unknown to satisfy the conditions (A.1)–(A.3):

(A.1) f(u) is a function of C1 for u ≥ 0 satisfying f(0) = f ′(0) = 0.

(A.2) f(u)/u is strictly increasing for u ≥ 0.

(A.3) f(u)/u → ∞ as u → ∞.
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Examples

Examples of f(u) which satisfy (A.1)–(A.3)

f(u) = up (p > 1),

f(u) = up + um (p > m > 1).
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Inverse bifurcation problems in Lq

The First Purpose

We study inverse bifurcation problems of in Lq-framework (1 ≤ q ≤ ∞).

In particular:

・From mathematical point of view, since (1.1) is regarded as an

eigenvalue problem, it seems natural to treat it in L2-framework.

・From biological point of view, if f(u) = u2, then (1.1) is the model

equation of population density of some species. Therefore, it seems also

important to treat it in L1-framework.

.
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Lq-Bifurcation Curve

（1） Let 1 ≤ q ≤ ∞ be fixed. Let ∥ · ∥q be Lq-norm. For any given

α > 0, there exists a unique solution pair

(λ, u) = (λ(q, α), uα) ∈ R+ × C2(Ω̄)

such that

∥uα∥q = α.

（2） The following set gives all the solutions of (1.1):

{(λ(q, α), uα) : α > 0} ⊂ R+ × C2(Ω̄)

（3）

λ(q, α) → λ1 (α → 0, λ1 : the first eigenvalue of −∆D),

λ(q, α) ↗ ∞ (α → ∞).
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Lq-Bifurcation Curve

λ

O
Fig. 1

λ1

α

λ = λ(α)
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L2-Framework

L2-framework

Let f(u) = f1(u) and f(u) = f2(u) be unknown to satisfy (A.1)–(A.3).

Furthermore, let

Fj(u) :=

∫ u

0
fj(s)ds (j = 1, 2).

Assume that F1 and F2 satisfy the following condition (B.1).

(B.1) Let

W := {u ≥ 0 : F1(u) = F2(u)}

Then W consists, at most, of the (finite or infinite numbers of) intervals

and the points {un}∞n=1 whose accumulation point is only ∞.
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Theorem 1.1

Theorem 1.1.(S, 2009) Assume that f1 and f2 are unknown to satisfy

(A.1)–(A.3) and (B.1). Furthermore, if N ≥ 2, then assume that f1 and

f2 satisfy the following (A.4).

(A.4) For u, v ≥ 0,

Fj(u+ v) ≤ C(Fj(u) + Fj(v)) (j = 1, 2).

Suppose

λ1(2, α) = λ2(2, α) for any α > 0.

Here, λj(2, α) is the L2-bifurcation curve associated with f(u) = fj(u)

(j = 1, 2). Then f1(u) ≡ f2(u) for u ≥ 0.

The proof depends on the variational method.
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Proof of Theorem 1.1 for N = 1

Proof of Theorem 1.1

Variational Structure: Critical value C1(α) and C2(α).

For simplicity, let Ω = I = (0, 1). For j = 1, 2 and v ∈ H1
0 (I), let

Φj(v) :=
1

2
∥v′∥22 +

∫ 1

0
Fj(v(t))dt. (1.2)

For α > 0, we put

Mα := {v ∈ H1
0 (I) : ∥v∥2 = α}.
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Proof of Theorem 1.1

For j = 1, 2 and α > 0 we put

Cj(α) := min{Φj(v) : v ∈ Mα}. (1.3)

Existence of unique positive minimizer

By taking a minimizing sequence, Lagrange multiplier theorem and strong

maximum principle, there exists a Lagrange multiplier λj(α) and a unique

minimizer uj,α ∈ Mα which satisfies (1.1) with f = fj .
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Proof of Theorem 1.1

The relationship between Cj(α) and λj(α)

By direct calculation, we obtain

dCj(α)

dα
= 2λj(α)α.

By this, we obtain

Lemma 1.2. C1(α) = C2(α) for α ≥ 0.

Proof. Since C1(0) = C2(0) = 0, we obtain,

C1(α) =

∫ α

0

d

ds
C1(s)ds =

∫ α

0
2λ1(s)sds

=

∫ α

0
2λ2(s)sds = C2(α).
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Proof of Theorem 1.1

Proof of Theorem 1.1

Clearly, 0 ∈ W , where

W := {u ≥ 0 : F1(u) = F2(u)}.

(a) Assume that 0 ∈ W is contained in the interval [0, ϵ] for some

constant 0 < ϵ ≪ 1. This implies that for 0 ≤ u ≤ ϵ,

F1(u) = F2(u).
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Proof of Theorem 1.1

Let K be a connected component of W satisfying [0, ϵ] ⊂ K. Then

K = [0, u1]. If u1 < ∞, then without loss of generality, by (B.1), there

exists a constant 0 < ϵ ≪ 1 such that

F1(u) = F2(u) (0 ≤ u ≤ u1),

F1(u) < F2(u), (u1 < u < u1 + ϵ).

Now we choose α > 0 satisfying

∥u2,α∥∞ = u1 + ϵ.
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Proof of Theorem 1.1

Then

C1(α) ≤ Φ1(u2,α) =
1

2
∥u′2,α∥22 +

∫ 1

0
F1(u2,α(t))dt

<
1

2
∥u′2,α∥22 +

∫ 1

0
F2(u2,α(t))dt

= Φ2(u2,α) = C2(α).

This contradicts Lemma 1.2. Therefore, we see that u1 = ∞ and

K = [0,∞). This implies F1(u) ≡ F2(u), and consequently,

f1(u) ≡ f2(u).
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Proof of Theorem 1.1

(b) Assume that 0 ∈ W is an isolated point in W . Then by (B.4), without

loss of generality, there exists a constant 0 < ϵ ≪ 1 such that

F1(u) < F2(u)

for 0 < u < ϵ. Then by the same argument as that in (a) just above, we

can derive a contradiction. Therefore, the case (b) does not occur.

From (a) and (b), we obtain our conclusion.
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Asymptotic oscillating length of bifurcation curves

We consider the following nonlinear eigenvalue problems

−u′′(t) = λ (u(t) + g(u(t))) , t ∈ I =: (−1, 1), (2.1)

u(t) > 0, t ∈ I, (2.2)

u(−1) = u(1) = 0, (2.3)

where g(u) ∈ C(R̄+) and λ > 0 is a parameter.
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oscillating bifurcation curve

It is well known (cf. [T. Laetsch, 1970]) that, if, for example,

u+ g(u) > 0 for u > 0,

then by time-map method, we find that λ is parameterized by using

α = ∥u∥∞, such as λ = λ(α) and is a continuous function of α > 0. Since

λ depends on g, we write

λ = λ(g, α).

One of the nonlinear terms g(u) we are interested in is

g1(u) = sin
√
u.
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oscillating bifurcation curve

In this case, the equation (2.1)–(2.3) has been proposed in Cheng (2002)

as a model problem which has arbitrary many solutions near λ = π2/4.

Theorem 2.0 ([Cheng, 2002]). Let g(u) = sin
√
u (u ≥ 0). Then for

any integer r ≥ 1, there is δ > 0 such that if λ ∈ (λ1 − δ, λ1 + δ), then

(1.1)–(1.3) has at least r distinct solutions.
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oscillating bifurcation curve

・Certainly, Theorem 2.0 gives us the imformation about the solution set

of (2.1)–(2.3), and we expect that λ(α) oscillates and intersects the line

λ = π2/4 infinitely many times as α → ∞.

・So we expect that the bifurcation curve for g1 is as follows.
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Structure of the bifurcation curve for g(u) = sin
√
u

α

λ

o bifurcation curve for λ(g, α) with g(u) = sin
√
u

π2/4

λ(g, α)
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Structure of the bifurcation curve for g(u) = sin
√
u

・The first purpose here is to prove the expectation above is valid.

・Precisely, we establish the asymptotic formula for λ(g, α) as α → ∞,

which gives us the well understanding why λ(g, α) intersect the line

λ = π2/4 infinitely many times.

・We also obtain the asymptotic formula for λ(g, α) as α → 0. These two

formulas clarify the total structure of λ(g, α).
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Asymptotic length of bifurcation curve

We also consider the asymptotic length of λ(g, α) (α ≫ 1) defined by

L(g, α) :=

∫ 2α

α

√
1 + (λ′(g, s))2ds. (2.4)

In particular, we are interested in g(u), which satisfies

L(g, α) = α+ o(α), (α → ∞). (2.5)

This notion will be used to propose a new concept of inverse bifurcation

problem.

Tetsutaro Shibata (Hiroshima University) Direct and Inverse Bifurcation Problems II 2019/5/12 23 / 76



Global behavior of bifurcation curve for g(u) = sin
√
u

Theorem 2.1. Let g(u) = g1(u) = sin
√
u. Then as α → ∞,

λ(g1, α) =
π2

4
− π3/2α−5/4 cos

(√
α− 3

4
π

)
+ o(α−5/4), (2.6)

λ′(g1, α) =
1

2
π3/2α−7/4 sin

(√
α− 3

4
π

)
+ o(α−7/4), (2.7)

L(g1, α) = α+
1

40

(
1− 1

4
√
2

)
α−5/2 + o(α−5/2). (2.8)

Tetsutaro Shibata (Hiroshima University) Direct and Inverse Bifurcation Problems II 2019/5/12 24 / 76



Local behavior of bifurcation curve for g(u) = sin
√
u

Theorem 2.2. Let g(u) = g1(u) = sin
√
u.

(i) As α → 0, the following asymptotic formula for λ(g1, α) holds:

λ(g1, α) =
3

4
C2
1

√
α+

3

2
C1C2α+O(α3/2), (2.9)

where

C1 :=

∫ 1

0

1√
1− s3/2

ds, C2 := −3

8

∫ 1

0

1− s2√
1− s3/2

ds. (2.10)
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Local behavior of bifurcation curve for g(u) = sin
√
u

(ii) Let v0 be a unique classical solution of the following equation

−v′′0(t) =
3

4
C2
1

√
v0(t), t ∈ I, (2.11)

v0(t) > 0, t ∈ I, (2.12)

v0(−1) = v0(1) = 0. (2.13)

Furthermore, let vα(t) := uα(t)/α. Then vα → v0 in C2(I) as α → 0.

・For the uniqueness of the positice solution of (2.11)–(2.13), we refer to

A. Ambrosetti, H. Brezis, G. Cerami (1994).
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Structure of the bifurcation curve for g(u) = sin
√
u

α

λ

o bifurcation curve for λ(g, α) with g(u) = sin
√
u

π2/4

λ(g, α)
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0scillating bifurcation curve

The other nonlinear terms we treat in this talk are

g2(u) =
1

2
sinu, (2.14)

g3(u) = sinu2. (2.15)

We know that the shape of λ(g2, α) is something like Fig.2 below.

π2/6

α

λ

o
Fig. 2

π2/4

λ(g2, α)
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Structure of the bifurcation curve for g(u) = 1
2 sinu

Theorem 2.3. Let g(u) = g2(u) = (1/2) sinu. Then as α → ∞

λ(g2, α) =
π2

4
− π

2α

√
π

2α
sin

(
α− 1

4
π

)
+O(α−2), (2.16)

λ′(g2, α) = − π

2α

√
π

2α
cos

(
α− π

4

)
+ o(α−3/2), (2.17)

L(g2, α) = α+
3π3

256
α−2 + o(α−2). (2.18)
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Global structure of the bifurcation curve for g(u) = sin u2

Theorem 2.4. Let g(u) = g3(u) = sinu2. Then as α → ∞,

λ(g3, α) =
π2

4
− π3/2

2
α−2 cos

(
α2 − 3

4
π

)
+ o(α−2), (2.19)

λ′(g3, α) =
π3/2

α
sin

(
α2 − 3

4
π

)
+ o(α−1). (2.20)

L(g3, α) = α+
π3

8α
+ o(α−1). (2.21)
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Local behavior of the bifurcation curve for g(u) = sinu2

Theorem 2.5. Let g(u) = g3(u) = sinu2. Then as α → 0,

λ(g3, α) =
π2

4
− 1

3
πA1α+

(
1

9
A2

1 +
1

6
πA2

)
α2 + o(α2), (2.22)

where

A1 =

∫ 1

0

1− s3

(1− s2)3/2
ds, A2 =

∫ 1

0

(1− s3)2

(1− s2)5/2
ds. (2.23)
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Structure of the bifurcation curve for g(u) = sinu2

α

λ

o

bifurcation curve for λ(α) with g(u) = sinu2

π2/4

λ(α)
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Inverse problem A

Inverse problem A

Assume that

g ∈ Λ := {g ∈ C(R̄+) : λ(g, α) → π2/4 as α → ∞}

satisfies

L(g, α) = α+ o(α), (α → ∞). (2.24)

Then is it possible to distinguish g from gi (i = 1, 2, 3) by the second

term of L(g, α) ?
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Inverse Problem A (Weak Version)

・This approach for inverse bifurcation problem seems to be new, and it is

significant to consider whether this framework is suitable or not, since a

few attempts have so far been made.

・We restrict our attention to the ’monotone’ nonlinear terms and make

the simple approach to Inverse problem A.

Inverse Problem A（Weak Version)

Assume that g(u) ∈ C1(R̄+) satisfies the following assumption (C.1).

(C.1) g(0) = g′(0) = 0, g′(u) ≥ 0 for u > 0 and g(u) = Cum for u ≥ 1,

where C > 0 and 0 < m < 1 are constants.
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Graph of λ(g, α) (g(u) is ”monotome” type)

α

λ

o

bifurcation curve for g(u) ∼ Cum

π2/4

λ(g, α)
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Answer to Inverse Problem A

Theorem 2.6. Let g(u) satisfy (C.1). Then as α → ∞,

L(g, α) = α+
22m−3 − 1

2(2m− 3)
A(m)2α2m−3 + o(α2m−3), (2.25)

λ(g, α) =
π2

4
− π

m+ 1
CC(m)αm−1 + o(αm−1), (2.26)

λ′(g, α) = −m− 1

m+ 1
πCC(m)αm−2 + o(αm−2), (2.27)

where

A(m) :=
(1−m)πCC(m)

1 +m
, C(m) =

∫ 1

0

1− sm+1

(1− s2)3/2
ds. (2.28)
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Answer to Inverse Problem A (Weak Version)

g1(u) = sin
√
u, g2(u) =

1

2
sinu, g3(u) = sinu2,

and g(u) is a ”monotone type” (0 < m < 1). Then

L(g1, α) = α+
1

40

(
1− 1

4
√
2

)
α−5/2 + o(α−5/2),

L(g2, α) = α+
3π3

256
α−2 + o(α−2),

L(g3, α) = α+
π3

8
α−1 + o(α−1),

L(g, α) = α+
22m−3 − 1

2(2m− 3)
A(m)2α2m−3 + o(α2m−3).

・We can distinguish g and g3 by the second term of L, but if we

put m = 1/4 in L(g1, α), m = 1/2 in L(g2, α), and choose C suitably,

we can not distinguish g and g1, g2 by the second term of L.
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How to prove these Theorems

Proof of Theorems

= Time map

+ Asymptotic formulas for some special functions.

・The proofs of the Theorems in this section basically depend on the

time-map argument. In particular, the key tool of the proof of Theorem

2.1 is the asymptotic formula for the Bessel functions obtained by Krasikov

(2016).
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The case g(u) = sin u2 and α ≫ 1

In this section, let g(u) = g3(u) = sinu2 and α ≫ 1. For simplicity, we

write λ = λ(α). For u ≥ 0, let

G(u) :=

∫ u

0
g(s)ds =

∫ u

0
sin t2dt =

√
π

2
S(u), (3.1)

where S(u) is the Fresnel sine integral defined by

S(u) =

√
2

π

∫ u

0
sinx2dx. (3.2)

Further, let C(α) be the Fresnel cosine integral defined by

C(α) =

√
2

π

∫ α

0
cosx2dx. (3.3)
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The case g3(u) = sinu2 and α ≫ 1

Then we know (cf. [I. S. Gradshteyn and I. M. Ryzhik (2015), pp.

898-899]) that as α → ∞,

S(α) =
1

2
− 1√

2πα
cos2 α+O(α−2), (3.4)

C(α) =
1

2
+

1√
2πα

sin2 α+O(α−2). (3.5)
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The case g3(u) = sinu2 and α ≫ 1

It is known that if (uα, λ(α)) ∈ C2(Ī)× R+ satisfies (2.1)–(2.3), then

uα(t) = uα(−t), 0 ≤ t ≤ 1, (3.6)

uα(0) = max
−1≤t≤1

uα(t) = α, (3.7)

u′α(t) > 0, −1 < t < 0. (3.8)
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Time map λ(g3, α): (g3(u) = sin u2)

By (2.1), we have{
u′′α(t) + λ

(
uα(t) + sin

√
uα(t)

)}
u′α(t) = 0.

By this, we obtain

1

2
u′α(t)

2 + λ

(
1

2
uα(t)

2 +G(uα(t))

)
= constant = λ

(
1

2
α2 +G(α)

)
.

This along with (3.8) implies that for −1 ≤ t ≤ 0,

u′α(t) =
√
λ
√

α2 − uα(t)2 + 2(G(α)−G(uα(t))). (3.9)

For 0 ≤ s ≤ 1, we have∣∣∣∣G(α)−G(αs)

α2(1− s2)

∣∣∣∣ = ∣∣∣∣
∫ α
αs g(t)dt

α2(1− s2)

∣∣∣∣ ≤ α(1− s)

α2(1− s2)
≤ α−1. (3.10)
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Time map λ(g3, α): (g3(u) = sin u2)

By (3.9), (3.10), putting s := uα(t)/α and Taylor expansion, we obtain

√
λ =

∫ 0

−1

u′α(t)√
α2 − uα(t)2 + 2(G(α)−G(uα(t)))

dt (3.11)

=

∫ 1

0

1√
1− s2 + 2(G(α)−G(αs))/α2

ds

=

∫ 1

0

1√
1− s2

1√
1 + 2(G(α)−G(αs))/(α2(1− s2))

ds

=

∫ 1

0

1√
1− s2

{
1− G(α)−G(αs)

α2(1− s2)
(1 + o(1))

}
ds

=
π

2
− 1

α2
(1 + o(1))

∫ 1

0

G(α)−G(αs)

(1− s2)3/2
ds.
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Time map λ(g3, α): (g3(u) = sin u2)

We put

K :=

∫ 1

0

G(α)−G(αs)

(1− s2)3/2
ds. (3.12)

Lemma 3.1. As α → ∞,

K =

√
π

2
(1 + o(1)) cos

(
α2 − 3

4
π

)
. (3.13)

Proof. For 0 ≤ θ ≤ π/2, we put

M(θ) := G(α)−G(αs) =

∫ α

α sin θ
sin t2dt. (3.14)

We put s = sin θ in (3.12). Then by (3.1), (3.14) and integration by parts,

we obtain
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Time map λ(g3, α): (g3(u) = sin u2)

K =

∫ π/2

0

1

cos2 θ
M(θ)dθ (3.15)

= [tan θM(θ)]
π/2
0 + α

∫ π/2

0
tan θ sin(α sin θ)2 cos θdθ

:= K1 + αK2.

Since

lim
θ→π/2

M(θ)

cos θ
= lim

θ→π/2

α cos θ sin(α sin θ)2

sin θ
= 0, (3.16)

we see that K1 = 0. Now we calculate K2.
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Time map λ(g3, α): (g3(u) = sin u2)

K2 =

∫ π/2

0
sin θ sin(α sin θ)2dθ (3.17)

=

∫ π/2

0
sin θ sin(α2 − α2 cos2 θ)dθ

= sinα2

∫ π/2

0
sin θ cos(α2 cos2 θ)dθ

− cosα2

∫ π/2

0
sin θ sin(α2 cos2 θ)dθ

= K21 sinα
2 −K22 cosα

2.

By putting t = cos θ, we obtain by (3.5) that as α → ∞,
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Time map λ(g3, α): (g3(u) = sin u2)

K21 =

∫ 1

0
cos(α2t2)dt =

1

α

∫ α

0
cosx2dx (3.18)

=

√
π

2

1

2α
(1 + o(1)).

By the same calculation as that to obtain (3.18), we obtain

K22 =

∫ 1

0
sin(α2t2)dt =

1

α

√
π

2
S(α) (3.19)

=

√
π

2

1

2α
(1 + o(1)).

By (3.17)–(3.19), we obtain
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Time map λ(g3, α): (g3(u) = sin u2)

K =
1

2

√
π

2
(1 + o(1))(sinα2 − cosα2) (3.20)

=

√
π

2
(1 + o(1)) sin

(
α2 − 1

4
π

)
=

√
π

2
(1 + o(1)) cos

(
α2 − 3

4
π

)
.

This implies (3.13). Thus the proof is complete.

By Lemma 3.1 and (3.11), we obtain λ(g3, α).
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Asymptotic length of bifurcation curve: g3(u) = sinu2

How to obtain L(g3, α).

L(g3, α) =

∫ 2α

α

√
1 +

π3

t2
(1 + o(1)) sin2

(
t2 − 3π

4

)
dt (3.21)

=

∫ 2α

α
1 +

π3

2t2
(1 + o(1)) sin2

(
t2 − 3π

4

)
dt

= α+
π3

4
(1 + o(1))

∫ 2α

α

(
sin2 t2

t2
+

cos2 t2

t2
+

2 sin t2 cos t2

t2

)
dt.

Clearly, ∫ 2α

α

(
sin2 t2

t2
+

cos2 t2

t2

)
dt =

∫ 2α

α

1

t2
dt =

1

2α
. (3.22)

Furthermore, Then by integration by parts, we obtain
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Asymptotic length of bifurcation curve

∫ 2α

α

2 sin t2 cos t2

t2
dt =

∫ 2α

α

sin(2t2)

t2
dt (3.23)

=
√
2

∫ 2
√
2α

√
2α

sinx2

x2

=
√
2

[
− 1

2t3
cos t2

]2√2α

√
2α

+
3
√
2

2

∫ 2
√
2α

√
2α

cos t2

t4
dt

= − 1

32α3
cos(8α2) +

1

4α3
cos 2α2 +O(α−3).

Thus the proof is complete.
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The case g(u) = up sin(uq) (0 ≤ p < 1, 0 < q ≤ 1)

Now we consider the precise asymptotic formulas for λ(α) as α → ∞ for

g(u) = up sin(uq) (0 ≤ p < 1, 0 < q ≤ 1).

We prove the following Theorem 3.1 by the time-map argument and the

stationary phase method. We have to be careful about the regularity of

the functions which will be appear after the time-map argument.

Theorem 4.1.([S, 22]) Let g(u) = up sin(uq), where 0 ≤ p < 1 and

0 < q ≤ 1 are fixed constants. Then as α → ∞,

λ(α) =
π2

4
− π3/2

√
2q

αp−1−(q/2) sin
(
αq − π

4

)
+ o(αp−1−(q/2)). (4.1)
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Local behavior of λ(α)

Next, to understand the whole structure of λ(α) in detail, we establish the

asymptotic formulas for λ(α) as α → 0.

Theorem 4.2.([S, 22]) Let g(u) = up sin(uq), where 0 ≤ p < 1,

0 < q ≤ 1 . Then the following asymptotic formulas hold α → 0.

(i) Assume that p+ q > 1. Then

λ(α) =
π2

4
−A1πα

p+q−1 + (A2
1 +A2π)α

2(p+q−1) (4.2)

+ o(α2(p+q−1)),

where

A1 =
1

p+ q + 1

∫ 1

0

1− sp+q+1

(1− s2)3/2
ds, (4.3)

A2 =
3

2(p+ q + 1)2

∫ 1

0

(1− sp+q+1)2

(1− s2)5/2
ds. (4.4)
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Local behavior of λ(α)

(ii) Assume that p+ q = 1. Then

λ(α) =
π2

8
+

π

48
Bα2q + o(α2q), (4.5)

where

B =
1

q + 1

∫ 1

0

1− s2q+2

(1− s2)3/2
ds. (4.6)

(iii) Assume that p+ q < 1 < p+ 3q. Then

λ(α) =
p+ q + 1

2
α1−p−q (4.7)

×
{
C2
1 − p+ q + 1

2
C1C2α

1−p−q + o(α1−p−q)

}
,

where

C1 =

∫ 1

0

1√
1− sp+q+1

ds, C2 =

∫ 1

0

1− s2

(1− sp+q+1)3/2
ds. (4.8)
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Local behavior of λ(α)

(iv) Assume that p+ q < p+ 3q < 1. Then

λ(α) =
p+ q + 1

2
α1−p−q (4.9)

×
{
C2
1 +

p+ q + 1

6(p+ 3q + 1)
C1C3α

2q + o(α2q)

}
,

C3 =

∫ 1

0

1− sp+3q+1

(1− sp+q+1)3/2
ds. (4.10)

(v) Assume that p+ q < p+ 3q = 1. Then

λ(α) =
p+ q + 1

2
α2q (4.11)

×
{
C2
1 − 5(p+ q + 1)

12
C1C4α

2q + o(α2q)

}
,

C4 =

∫ 1

0

1− s2

(1− sp+q+1)3/2
ds. (4.12)
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Local behavior of λ(α)

By Theorems 4.1 and 4.2, we understand that there exist three types of

the asymptotic shapes of λ(α) (see figures below).

α

λ

o
Fig. Theorem 4.2 (i)

π2/4

λ(α)
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Graph of λ(α)

α

λ

o

Fig. Theorem 4.2 (ii)

π2/4

λ(α)
π2/8
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Graph of λ(α)

α

λ

o
Fig. Theorem 4.2 (iii), (iv), (v)

π2/4

λ(α)
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Proofs: g(u) = up sin(uq) (0 ≤ p < 1, 0 < q ≤ 1)

In this section, let α ≫ 1. Furthermore, we denote by C the various

positive constants independent of α. For u ≥ 0, let

g(u) = up sin(uq)

and

G(u) :=

∫ u

0
g(s)ds. (5.1)

Then by the same argument of time-map as that in Section 2, we obtain
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Time-Map

√
λ =

∫ 0

−1

u′α(t)√
α2 − uα(t)2 + 2(G(α)−G(uα(t)))

dt (5.2)

=

∫ 1

0

1√
1− s2 + 2(G(α)−G(αs))/α2

ds

=

∫ 1

0

1√
1− s2

1√
1 + 2(G(α)−G(αs))/(α2(1− s2))

ds

=

∫ 1

0

1√
1− s2

{
1− G(α)−G(αs)

α2(1− s2)
(1 + o(1))

}
ds

=
π

2
− 1

α2
(1 + o(1))

∫ 1

0

G(α)−G(αs)

(1− s2)3/2
ds

=
π

2
− 1

α2
K(α)(1 + o(1)),

where
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Key Lemma

K(α) :=

∫ 1

0

G(α)−G(αs)

(1− s2)3/2
ds. (5.3)

To calculate K(α), we use the following Lemma. By combining [8,

Lemma 2] and [10, Lemmas 2.25], we have following equalities.

Lemma 5.1. Assume that the function f(r) ∈ C2[0, 1], and

h(r) = cos(πr/2). Then as µ → ∞∫ 1

0
f(r)eiµh(r)dr = ei(µ−(π/4))

√
2

πµ
f(0) +O

(
1

µ

)
. (5.4)

In particular, by taking the imaginary part of (4.4),∫ 1

0
f(r) sin(µh(r))dr =

√
2

πµ
f(0) sin

(
µ− π

4

)
+O

(
1

µ

)
. (5.5)

Tetsutaro Shibata (Hiroshima University) Direct and Inverse Bifurcation Problems II 2019/5/12 60 / 76



Key Lemma

Lemma 5.2. As α → ∞,

K(α) =

√
π

2q
αp+1−(q/2) sin

(
αq − π

4

)
+ o(αp−1−(q/2)). (5.6)

Proof. We put s = sin θ in (5.3). Then by integration by parts,

K(α) =

∫ π/2

0

1

cos2 θ
(G(α)−G(α sin θ))dθ (5.7)

=

∫ π/2

0
(tan θ)′(G(α)−G(α sin θ))dθ

= [tan θ(G(α)−G(α sin θ))]
π/2
0

+ α

∫ π/2

0
tan θ(cos θ(α sin θ)p sin((α sin θ)q))dθ.

By l’Hôpital’s rule, we obtain

lim
θ→π/2

∫ α
α sin θ y

p sin(yq)dy

cos θ
= lim

θ→π/2

α cos θ(α sin θ)p sin((α sin θ)q)

sin θ
= 0.
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Key Lemma

We put m = 1/q, sinq θ = sinx, x = (π/2)− y and y = (π/2)r. Then

K(α) = αp+1

∫ π/2

0
sinp+1 θ sin(αq sinq θ)dθ (5.8)

=
1

q
αp+1

∫ π/2

0
sin(p+2−q)/q x

cosx√
1− sin2m x

sin(αq sinx)dx

=
1

q
αp+1

∫ π/2

0
sin(p+2−q)/q x

√
1− sin2 x√
1− sin2m x

sin(αq sinx)dx

=
1

q
αp+1

∫ π/2

0
cos(p+2−q)/q y

√
1− cos2 y√
1− cos2m y

sin(αq cos y)dy

=
π

2q
αp+1

∫ 1

0
cos(p+2−q)/q

(π
2
r
)√

1− cos2
(
π
2 r

)
1− cos2m

(
π
2 r

)
× sin

(
αq cos

(π
2
r
))

dr.
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Key Lemma

We put

f(r) = cos(p+2−q)/q
(π
2
r
)√

1− cos2
(
π
2 r

)
1− cos2m

(
π
2 r

) , µ = αq (5.9)

and h(r) = cos(πr/2) in (5.5). We note that f(0) =
√
q.

(i) If f ∈ C2[0, 1], then by (5.5) and (5.8), we obtain

K(α) =

√
π

2q
αp+1−q/2 sin

(
αq − π

4

)
+ o

(
αp+1−q/2

)
. (5.10)

This implies our conclusion (5.6).

(ii) Finally, we consider the case f ̸∈ C2[0, 1]. For instance, if

q > (p+ 2)/3, then cos(p+2−q)/q
(
π
2 r

)
̸∈ C2[0, 1]. Fortunately, we are still

able to apply Lemma 5.1 to this case by modifying the proof of Lemma

5.1, and obtain (4.5). Thus the proof is complete.

Now Theorem 4.1 follows from (5.2) and Lemma 5.2.
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∫ 1

0 f(r)eiµh(r)dr = ei(µ−(π/4))
√

2
πµf(0) +O

(
1
µ

)
For completeness, we show that (5.4) holds. Recall that h(r) = cos(πr/2),

0 ≤ p < 1 and 0 < q ≤ 1. For m = 1/q and 0 ≤ x ≤ 1, we put

f(x) = f1(x)f2(x) := cos(p+2−q)/q
(π
2
x
)√

1− cos2
(
π
2x

)
1− cos2m

(
π
2x

) . (5.11)

(i) By direct calculation, we can show that if q > 0, namely, m > 1, then

f2(x) ∈ C2[0, 1].

(ii) The essential point of the proof of (5.4) is to show that, as µ → ∞,

Φ(µ) :=

∫ 1

0
f(x)e−iµx2

dx =
1

2

√
π

µ
e−i(π/4)f(0) +O

(
1

µ

)
. (5.12)

We put

w(x) :=
f(x)− f(0)

x
, namely f(x) = f(0) + xw(x).

By [10, Lemma 2.24],
Tetsutaro Shibata (Hiroshima University) Direct and Inverse Bifurcation Problems II 2019/5/12 64 / 76



∫ 1

0 f(r)eiµh(r)dr = ei(µ−(π/4))
√

2
πµf(0) +O

(
1
µ

)
∫ 1

0
e−iµx2

dx =
1

2

√
π

µ
e−iπ/4 +O

(
1

µ

)
. (5.13)

Since f(0) =
√
q, by (5.13), we obtain

Φ(µ) = f(0)

∫ 1

0
e−iµx2

dx+

∫ 1

0
xe−iµx2

w(x)dx (5.14)

=
1

2

√
π

µ
e−iπ/4√q +O

(
1

µ

)
+

∫ 1

0
xe−iµx2

w(x)dx.

We put

Φ1(µ) :=

∫ 1

0
xe−iµx2

w(x)dx. (5.15)

Now we prove that w(x) ∈ C1[0, 1], because if it is proved, then by

integration by parts, we easily show that Φ1(µ) = O(1/µ) and
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∫ 1

0 f(r)eiµh(r)dr = ei(µ−(π/4))
√

2
πµf(0) +O

(
1
µ

)

our conclusion (5.4) follows immediately from (5.12) and (5.14). To do

this, there are several cases to consider.

・We note that, by direct calculation, we can show that if q > 0, namely,

m > 1, then f2(x) ∈ C2[0, 1].

Case 1. Assume that p = 0 and q = 1. Then f(x) = cos
(
π
2x

)
∈ C2[0, 1].

Case 2. Assume that 0 < q < 1 and p+ 2 ≥ 3q. Then (p+ 2− q)/q ≥ 2

and f1(x) ∈ C2[0, 1]. Consequently, f ∈ C2[0, 1] in this case.
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∫ 1

0 f(r)eiµh(r)dr = ei(µ−(π/4))
√

2
πµf(0) +O

(
1
µ

)
Case 3. Assume that 0 < p < 1 and q = 1. Then

f(x) = cosp+1
(
π
2x

)
̸∈ C2[0, 1]. However, by direct calculation, we can

show that

w(x) =
f(x)− f(0)

x
∈ C1[0, 1].

It is reasonable, because by Taylor expansion, for 0 < x ≪ 1, we have

w(x) = −(p+ 1)π2

8
x+ o(x). (5.16)

Case 4. Assume that 0 < q < 1 and p+ 2 < 3q. Then

p+ 2− q

q
=

p+ 2− 2q

q
+ 1 := η + 1.

Then 0 < η < 1 and f1(x) = cosη+1 x. Since f2 ∈ C2[0, 1], by the

consequence of Case 3 above, we find that w ∈ C1[0, 1]. Thus the proof is

complete.
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[3] S. Cano-Casanova, J. López-Gómez, Blow-up rates of radially

symmetric large solutions, J. Math. Anal. Appl., 352 (2009), 166–174.

Tetsutaro Shibata (Hiroshima University) Direct and Inverse Bifurcation Problems II 2019/5/12 68 / 76



References

[4] Shanshan Chen, Junping Shi and Junjie Wei, Bifurcation analysis of

the Gierer-Meinhardt system with a saturation in the activator production,

Appl. Anal., 93 (2014), 1115–1134.

[5] Y.J. Cheng, On an open problem of Ambrosetti, Brezis and Cerami,

Differential Integral Equations, 15 (2002), 1025–1044.

[6] R. Chiappinelli, On spectral asymptotics and bifurcation for elliptic

operators with odd superlinear term, Nonlinear Anal., 13 (1989), 871–878.

Tetsutaro Shibata (Hiroshima University) Direct and Inverse Bifurcation Problems II 2019/5/12 69 / 76



References
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Thank you very much

Thank You for Your Attention
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