Direct and inverse bifurcation problems and related topics II

Tetsutaro Shibata

Laboratory of Mathematics, Institute of Engineering Hiroshima University

May 12, 2019 第7回偏微分方程式レクチャーシリーズ in 福岡工業大学

1 Introduction

- 2 Direct and Inverse Problems for ODE
- 3 Proof of Theorem 2.4

4 The case
$$g(u) = u^p \sin(u^q) \ (0 \le p < 1, 0 < q \le 1)$$

5 Proof:
$$g(u) = u^p \sin(u^q)$$
 and $\alpha \gg 1$

Introduction: Elliptic Inverse Bifurcation Problems

We consider:

$$-\Delta u + f(u) = \lambda u \quad \text{in } \Omega,$$

$$u > 0, \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega.$$
(1.1)

- $\Omega \subset \mathbf{R}^N$: appropriately smooth bounded domain.

• $\lambda > 0$: a parameter.

We assume that f(u) is **unknown to** satisfy the conditions (A.1)–(A.3): (A.1) f(u) is a function of C^1 for $u \ge 0$ satisfying f(0) = f'(0) = 0. (A.2) f(u)/u is strictly increasing for $u \ge 0$. (A.3) $f(u)/u \to \infty$ as $u \to \infty$.

Examples of f(u) which satisfy (A.1)–(A.3)

$$\begin{aligned} f(u) &= u^p \quad (p > 1), \\ f(u) &= u^p + u^m \quad (p > m > 1). \end{aligned}$$

The First Purpose

We study inverse bifurcation problems of in L^q -framework ($1 \le q \le \infty$). In particular:

• From mathematical point of view, since (1.1) is regarded as an eigenvalue problem, it seems natural to treat it in <u> L^2 -framework</u>.

• From biological point of view, if $f(u) = u^2$, then (1.1) is the model equation of population density of some species. Therefore, it seems also important to treat it in <u>L</u>¹-framework.

.

L^q-Bifurcation Curve

(1) Let $1 \le q \le \infty$ be fixed. Let $\|\cdot\|_q$ be L^q -norm. For any given $\alpha > 0$, there exists a unique solution pair

$$(\lambda, u) = (\lambda(q, \alpha), u_{\alpha}) \in \mathbf{R}_{+} \times C^{2}(\overline{\Omega})$$

such that

$$||u_{\alpha}||_{q} = \alpha.$$

(2) The following set gives all the solutions of (1.1):

$$\{(\lambda(q,\alpha),u_{\alpha}):\alpha>0\}\subset \mathbf{R}_{+}\times C^{2}(\bar{\Omega})$$

(3)

$$\begin{split} \lambda(q,\alpha) &\to \lambda_1 \quad (\alpha \to 0, \ \lambda_1: \text{ the first eigenvalue of } -\Delta_D), \\ \lambda(q,\alpha) \nearrow \infty \quad (\alpha \to \infty). \end{split}$$

L^q -Bifurcation Curve

2019/5/12 7 / 76

L²-framework

Let $f(u) = f_1(u)$ and $f(u) = f_2(u)$ be <u>unknown</u> to satisfy (A.1)–(A.3). Furthermore, let

$$F_j(u) := \int_0^u f_j(s) ds$$
 $(j = 1, 2).$

Assume that F_1 and F_2 satisfy the following condition (B.1).

(**B.1**) Let

$$W := \{ u \ge 0 : F_1(u) = F_2(u) \}$$

Then W consists, at most, of the (finite or infinite numbers of) intervals and the points $\{u_n\}_{n=1}^{\infty}$ whose accumulation point is only ∞ . **Theorem 1.1.(S, 2009)** Assume that f_1 and f_2 are unknown to satisfy (A.1)–(A.3) and (B.1). Furthermore, if $N \ge 2$, then assume that f_1 and f_2 satisfy the following (A.4).

(A.4) For $u, v \ge 0$,

$$F_j(u+v) \le C(F_j(u) + F_j(v))$$
 $(j = 1, 2).$

Suppose

$$\lambda_1(2,\alpha) = \lambda_2(2,\alpha) \quad for \ any \ \alpha > 0.$$

Here, $\lambda_j(2, \alpha)$ is the L^2 -bifurcation curve associated with $f(u) = f_j(u)$ (j = 1, 2). Then $f_1(u) \equiv f_2(u)$ for $u \ge 0$.

The proof depends on the variational method.

Proof of Theorem 1.1

Variational Structure: Critical value $C_1(\alpha)$ and $C_2(\alpha)$.

For simplicity, let $\Omega = I = (0, 1)$. For j = 1, 2 and $v \in H_0^1(I)$, let

$$\Phi_j(v) := \frac{1}{2} \|v'\|_2^2 + \int_0^1 F_j(v(t)) dt.$$
(1.2)

For $\alpha > 0$, we put

$$M_{\alpha} := \{ v \in H_0^1(I) : \|v\|_2 = \alpha \}.$$

For j = 1, 2 and $\alpha > 0$ we put

$$C_j(\alpha) := \min\{\Phi_j(v) : v \in M_\alpha\}.$$
(1.3)

Existence of unique positive minimizer

By taking a minimizing sequence, Lagrange multiplier theorem and strong maximum principle, there exists a Lagrange multiplier $\lambda_j(\alpha)$ and a unique minimizer $u_{j,\alpha} \in M_{\alpha}$ which satisfies (1.1) with $f = f_j$.

The relationship between $C_j(\alpha)$ and $\lambda_j(\alpha)$

By direct calculation, we obtain

$$\frac{dC_j(\alpha)}{d\alpha} = 2\lambda_j(\alpha)\alpha.$$

By this, we obtain

Lemma 1.2. $C_1(\alpha) = C_2(\alpha)$ for $\alpha \ge 0$.

<u>Proof.</u> Since $C_1(0) = C_2(0) = 0$, we obtain,

$$C_1(\alpha) = \int_0^\alpha \frac{d}{ds} C_1(s) ds = \int_0^\alpha 2\lambda_1(s) s ds$$
$$= \int_0^\alpha 2\lambda_2(s) s ds = C_2(\alpha).$$

Proof of Theorem 1.1

Clearly, $0 \in W$, where

$$W := \{ u \ge 0 : F_1(u) = F_2(u) \}.$$

(a) Assume that $0 \in W$ is contained in the interval $[0, \epsilon]$ for some constant $0 < \epsilon \ll 1$. This implies that for $0 \le u \le \epsilon$,

$$F_1(u) = F_2(u).$$

Let K be a connected component of W satisfying $[0, \epsilon] \subset K$. Then $K = [0, u_1]$. If $u_1 < \infty$, then without loss of generality, by (B.1), there exists a constant $0 < \epsilon \ll 1$ such that

$$F_1(u) = F_2(u) \quad (0 \le u \le u_1),$$

$$F_1(u) < F_2(u), \quad (u_1 < u < u_1 + \epsilon).$$

Now we choose $\alpha > 0$ satisfying

$$||u_{2,\alpha}||_{\infty} = u_1 + \epsilon.$$

Then

$$C_{1}(\alpha) \leq \Phi_{1}(u_{2,\alpha}) = \frac{1}{2} \|u_{2,\alpha}'\|_{2}^{2} + \int_{0}^{1} F_{1}(u_{2,\alpha}(t)) dt$$

$$< \frac{1}{2} \|u_{2,\alpha}'\|_{2}^{2} + \int_{0}^{1} F_{2}(u_{2,\alpha}(t)) dt$$

$$= \Phi_{2}(u_{2,\alpha}) = C_{2}(\alpha).$$

This contradicts Lemma 1.2. Therefore, we see that $u_1 = \infty$ and $K = [0, \infty)$. This implies $F_1(u) \equiv F_2(u)$, and consequently, $f_1(u) \equiv f_2(u)$.

(b) Assume that $0 \in W$ is an isolated point in W. Then by (B.4), without loss of generality, there exists a constant $0 < \epsilon \ll 1$ such that

 $F_1(u) < F_2(u)$

for $0 < u < \epsilon$. Then by the same argument as that in (a) just above, we can derive a contradiction. Therefore, the case (b) does not occur. From (a) and (b), we obtain our conclusion. We consider the following nonlinear eigenvalue problems

$$\begin{aligned} -u''(t) &= \lambda \left(u(t) + g(u(t)) \right), & t \in I =: (-1, 1), \\ u(t) &> 0, & t \in I, \\ u(-1) &= u(1) = 0, \end{aligned}$$
(2.3)

where $g(u) \in C(\overline{\mathbb{R}}_+)$ and $\lambda > 0$ is a parameter.

It is well known (cf. [T. Laetsch, 1970]) that, if, for example,

$$u+g(u)>0\qquad \text{for}\quad u>0,$$

then by time-map method, we find that λ is parameterized by using $\alpha = ||u||_{\infty}$, such as $\lambda = \lambda(\alpha)$ and is a continuous function of $\alpha > 0$. Since λ depends on g, we write

$$\lambda = \lambda(g, \alpha).$$

One of the nonlinear terms g(u) we are interested in is

$$g_1(u) = \sin \sqrt{u}.$$

In this case, the equation (2.1)–(2.3) has been proposed in Cheng (2002) as a model problem which has arbitrary many solutions near $\lambda = \pi^2/4$.

Theorem 2.0 ([Cheng, 2002]). Let $g(u) = \sin \sqrt{u}$ ($u \ge 0$). Then for any integer $r \ge 1$, there is $\delta > 0$ such that if $\lambda \in (\lambda_1 - \delta, \lambda_1 + \delta)$, then (1.1)–(1.3) has at least r distinct solutions.

• Certainly, Theorem 2.0 gives us the imformation about the solution set of (2.1)–(2.3), and we expect that $\lambda(\alpha)$ oscillates and intersects the line $\lambda = \pi^2/4$ infinitely many times as $\alpha \to \infty$.

• So we expect that the bifurcation curve for g_1 is as follows.

Structure of the bifurcation curve for $g(u) = \sin \sqrt{u}$

2019/5/12 21 / 76

• The first purpose here is to prove the expectation above is valid.

• Precisely, we establish the asymptotic formula for $\lambda(g,\alpha)$ as $\alpha \to \infty$, which gives us the well understanding why $\lambda(g,\alpha)$ intersect the line $\lambda = \pi^2/4$ infinitely many times.

• We also obtain the asymptotic formula for $\lambda(g, \alpha)$ as $\alpha \to 0$. These two formulas clarify the total structure of $\lambda(g, \alpha)$.

We also consider the asymptotic length of $\lambda(g, \alpha)$ ($\alpha \gg 1$) defined by

$$L(g,\alpha) := \int_{\alpha}^{2\alpha} \sqrt{1 + (\lambda'(g,s))^2} ds.$$
(2.4)

In particular, we are interested in g(u), which satisfies

$$L(g,\alpha) = \alpha + o(\alpha), \quad (\alpha \to \infty).$$
 (2.5)

This notion will be used to propose a new concept of inverse bifurcation problem.

<u>Theorem 2.1.</u> Let $g(u) = g_1(u) = \sin \sqrt{u}$. Then as $\alpha \to \infty$,

$$\lambda(g_1, \alpha) = \frac{\pi^2}{4} - \pi^{3/2} \alpha^{-5/4} \cos\left(\sqrt{\alpha} - \frac{3}{4}\pi\right) + o(\alpha^{-5/4}), \quad (2.6)$$

$$\lambda'(g_1, \alpha) = \frac{1}{2} \pi^{3/2} \alpha^{-7/4} \sin\left(\sqrt{\alpha} - \frac{3}{4}\pi\right) + o(\alpha^{-7/4}), \quad (2.7)$$

$$L(g_1, \alpha) = \alpha + \frac{1}{40} \left(1 - \frac{1}{4\sqrt{2}}\right) \alpha^{-5/2} + o(\alpha^{-5/2}). \quad (2.8)$$

2019/5/12 24 / 76

<u>Theorem 2.2.</u> Let $g(u) = g_1(u) = \sin \sqrt{u}$.

(i) As $\alpha \to 0$, the following asymptotic formula for $\lambda(g_1, \alpha)$ holds:

$$\lambda(g_1, \alpha) = \frac{3}{4}C_1^2 \sqrt{\alpha} + \frac{3}{2}C_1 C_2 \alpha + O(\alpha^{3/2}), \qquad (2.9)$$

where

$$C_1 := \int_0^1 \frac{1}{\sqrt{1 - s^{3/2}}} ds, \quad C_2 := -\frac{3}{8} \int_0^1 \frac{1 - s^2}{\sqrt{1 - s^{3/2}}} ds.$$
(2.10)

(ii) Let v_0 be a unique classical solution of the following equation

$$-v_0''(t) = \frac{3}{4}C_1^2\sqrt{v_0(t)}, \quad t \in I,$$
(2.11)

$$v_0(t) > 0, \quad t \in I,$$
 (2.12)

$$v_0(-1) = v_0(1) = 0.$$
 (2.13)

Furthermore, let $v_{\alpha}(t) := u_{\alpha}(t)/\alpha$. Then $v_{\alpha} \to v_0$ in $C^2(I)$ as $\alpha \to 0$.

• For the uniqueness of the positice solution of (2.11)-(2.13), we refer to A. Ambrosetti, H. Brezis, G. Cerami (1994).

Structure of the bifurcation curve for $g(u) = \sin \sqrt{u}$

2019/5/12 27 / 76

Oscillating bifurcation curve

The other nonlinear terms we treat in this talk are

$$g_2(u) = \frac{1}{2} \sin u,$$
(2.14)

$$g_3(u) = \sin u^2.$$
(2.15)

We know that the shape of $\lambda(g_2, \alpha)$ is something like Fig.2 below.

Tetsutaro Shibata (Hiroshima University) Direct and Inverse Bifurcation Problems II

<u>Theorem 2.3.</u> Let $g(u) = g_2(u) = (1/2) \sin u$. Then as $\alpha \to \infty$

$$\lambda(g_{2},\alpha) = \frac{\pi^{2}}{4} - \frac{\pi}{2\alpha}\sqrt{\frac{\pi}{2\alpha}}\sin\left(\alpha - \frac{1}{4}\pi\right) + O(\alpha^{-2}), \quad (2.16)$$

$$\lambda'(g_{2},\alpha) = -\frac{\pi}{2\alpha}\sqrt{\frac{\pi}{2\alpha}}\cos\left(\alpha - \frac{\pi}{4}\right) + o(\alpha^{-3/2}), \quad (2.17)$$

$$L(g_{2},\alpha) = \alpha + \frac{3\pi^{3}}{256}\alpha^{-2} + o(\alpha^{-2}). \quad (2.18)$$

<u>Theorem 2.4.</u> Let $g(u) = g_3(u) = \sin u^2$. Then as $\alpha \to \infty$,

$$\lambda(g_{3},\alpha) = \frac{\pi^{2}}{4} - \frac{\pi^{3/2}}{2}\alpha^{-2}\cos\left(\alpha^{2} - \frac{3}{4}\pi\right) + o(\alpha^{-2}), \quad (2.19)$$

$$\lambda'(g_{3},\alpha) = \frac{\pi^{3/2}}{\alpha}\sin\left(\alpha^{2} - \frac{3}{4}\pi\right) + o(\alpha^{-1}). \quad (2.20)$$

$$L(g_{3},\alpha) = \alpha + \frac{\pi^{3}}{8\alpha} + o(\alpha^{-1}). \quad (2.21)$$

<u>Theorem 2.5.</u> Let $g(u) = g_3(u) = \sin u^2$. Then as $\alpha \to 0$,

$$\lambda(g_3,\alpha) = \frac{\pi^2}{4} - \frac{1}{3}\pi A_1 \alpha + \left(\frac{1}{9}A_1^2 + \frac{1}{6}\pi A_2\right)\alpha^2 + o(\alpha^2), \quad (2.22)$$

where

$$A_1 = \int_0^1 \frac{1 - s^3}{(1 - s^2)^{3/2}} ds, \quad A_2 = \int_0^1 \frac{(1 - s^3)^2}{(1 - s^2)^{5/2}} ds.$$
 (2.23)

Structure of the bifurcation curve for $g(u) = \sin u^2$

2019/5/12 32 / 76

Inverse problem A

Assume that

$$g \in \Lambda := \{g \in C(\bar{\mathbb{R}}_+) : \lambda(g, \alpha) \to \pi^2/4 \text{ as } \alpha \to \infty\}$$

satisfies

$$L(g,\alpha) = \alpha + o(\alpha), \quad (\alpha \to \infty).$$
 (2.24)

Then is it possible to distinguish g from g_i (i = 1, 2, 3) by the second term of $L(g, \alpha)$?

• This approach for inverse bifurcation problem seems to be **new**, and it is significant to consider whether this framework is suitable or not, since a few attempts have so far been made.

• We restrict our attention to the **'monotone' nonlinear terms** and make the simple approach to Inverse problem A.

Inverse Problem A (Weak Version)

Assume that $g(u) \in C^1(\overline{\mathbb{R}}_+)$ satisfies the following assumption (C.1).

(C.1) g(0) = g'(0) = 0, $g'(u) \ge 0$ for u > 0 and $g(u) = Cu^m$ for $u \ge 1$, where C > 0 and 0 < m < 1 are constants.

Graph of $\lambda(g, \alpha)$ (g(u) is "monotome" type)

2019/5/12 35 / 76

<u>Theorem 2.6.</u> Let g(u) satisfy (C.1). Then as $\alpha \to \infty$,

$$L(g,\alpha) = \alpha + \frac{2^{2m-3} - 1}{2(2m-3)} A(m)^2 \alpha^{2m-3} + o(\alpha^{2m-3}), \quad (2.25)$$

$$\lambda(g,\alpha) = \frac{\pi^2}{4} - \frac{\pi}{m+1} CC(m) \alpha^{m-1} + o(\alpha^{m-1}), \qquad (2.26)$$

$$\lambda'(g,\alpha) = -\frac{m-1}{m+1}\pi CC(m)\alpha^{m-2} + o(\alpha^{m-2}), \qquad (2.27)$$

where

$$A(m) := \frac{(1-m)\pi CC(m)}{1+m}, \quad C(m) = \int_0^1 \frac{1-s^{m+1}}{(1-s^2)^{3/2}} ds.$$
 (2.28)
Answer to Inverse Problem A (Weak Version)

$$g_1(u) = \sin \sqrt{u}, \quad g_2(u) = \frac{1}{2} \sin u, \quad g_3(u) = \sin u^2,$$

and g(u) is a "monotone type" (0 < m < 1). Then

$$\begin{split} L(g_1, \alpha) &= \alpha + \frac{1}{40} \left(1 - \frac{1}{4\sqrt{2}} \right) \alpha^{-5/2} + o(\alpha^{-5/2}), \\ L(g_2, \alpha) &= \alpha + \frac{3\pi^3}{256} \alpha^{-2} + o(\alpha^{-2}), \\ L(g_3, \alpha) &= \alpha + \frac{\pi^3}{8} \alpha^{-1} + o(\alpha^{-1}), \\ L(g, \alpha) &= \alpha + \frac{2^{2m-3} - 1}{2(2m-3)} A(m)^2 \alpha^{2m-3} + o(\alpha^{2m-3}). \end{split}$$

• We can distinguish g and g_3 by the second term of L, but if we put m = 1/4 in $L(g_1, \alpha)$, m = 1/2 in $L(g_2, \alpha)$, and choose C suitably, we can not distinguish g and g_1, g_2 by the second term of L.

Proof of Theorems = Time map

+ Asymptotic formulas for some special functions.

• The proofs of the Theorems in this section basically depend on the time-map argument. In particular, the key tool of the proof of Theorem 2.1 is the asymptotic formula for the Bessel functions obtained by Krasikov (2016).

The case $g(u) = \sin u^2$ and $lpha \gg 1$

In this section, let $g(u) = g_3(u) = \sin u^2$ and $\alpha \gg 1$. For simplicity, we write $\lambda = \lambda(\alpha)$. For $u \ge 0$, let

$$G(u) := \int_0^u g(s)ds = \int_0^u \sin t^2 dt = \sqrt{\frac{\pi}{2}}S(u),$$
 (3.1)

where S(u) is the Fresnel sine integral defined by

$$S(u) = \sqrt{\frac{2}{\pi}} \int_0^u \sin x^2 dx.$$
 (3.2)

Further, let $C(\alpha)$ be the Fresnel cosine integral defined by

$$C(\alpha) = \sqrt{\frac{2}{\pi}} \int_0^\alpha \cos x^2 dx.$$
 (3.3)

Then we know (cf. [I. S. Gradshteyn and I. M. Ryzhik (2015), pp. 898-899]) that as $\alpha \to \infty$,

$$S(\alpha) = \frac{1}{2} - \frac{1}{\sqrt{2\pi\alpha}} \cos^2 \alpha + O(\alpha^{-2}),$$
 (3.4)

$$C(\alpha) = \frac{1}{2} + \frac{1}{\sqrt{2\pi\alpha}} \sin^2 \alpha + O(\alpha^{-2}).$$
 (3.5)

It is known that if $(u_{\alpha}, \lambda(\alpha)) \in C^2(\overline{I}) \times \mathbb{R}_+$ satisfies (2.1)–(2.3), then

$$u_{\alpha}(t) = u_{\alpha}(-t), \quad 0 \le t \le 1,$$
 (3.6)

$$u_{\alpha}(0) = \max_{-1 \le t \le 1} u_{\alpha}(t) = \alpha, \qquad (3.7)$$

$$u'_{\alpha}(t) > 0, \quad -1 < t < 0.$$
 (3.8)

By (2.1), we have

$$\left\{u_{\alpha}''(t) + \lambda \left(u_{\alpha}(t) + \sin \sqrt{u_{\alpha}(t)}\right)\right\} u_{\alpha}'(t) = 0.$$

By this, we obtain

$$\frac{1}{2}u_{\alpha}'(t)^2 + \lambda\left(\frac{1}{2}u_{\alpha}(t)^2 + G(u_{\alpha}(t))\right) = \text{constant} = \lambda\left(\frac{1}{2}\alpha^2 + G(\alpha)\right).$$

This along with (3.8) implies that for $-1 \le t \le 0$,

$$u'_{\alpha}(t) = \sqrt{\lambda} \sqrt{\alpha^2 - u_{\alpha}(t)^2 + 2(G(\alpha) - G(u_{\alpha}(t)))}.$$
 (3.9)

For $0 \leq s \leq 1$, we have

$$\left|\frac{G(\alpha) - G(\alpha s)}{\alpha^2 (1 - s^2)}\right| = \left|\frac{\int_{\alpha s}^{\alpha} g(t)dt}{\alpha^2 (1 - s^2)}\right| \le \frac{\alpha (1 - s)}{\alpha^2 (1 - s^2)} \le \alpha^{-1}.$$
 (3.10)

By (3.9), (3.10), putting $s:=u_{\alpha}(t)/\alpha$ and Taylor expansion, we obtain

$$\begin{aligned}
\sqrt{\lambda} &= \int_{-1}^{0} \frac{u'_{\alpha}(t)}{\sqrt{\alpha^{2} - u_{\alpha}(t)^{2} + 2(G(\alpha) - G(u_{\alpha}(t)))}} dt \quad (3.11) \\
&= \int_{0}^{1} \frac{1}{\sqrt{1 - s^{2} + 2(G(\alpha) - G(\alpha s))/\alpha^{2}}} ds \\
&= \int_{0}^{1} \frac{1}{\sqrt{1 - s^{2}}} \frac{1}{\sqrt{1 + 2(G(\alpha) - G(\alpha s))/(\alpha^{2}(1 - s^{2}))}} ds \\
&= \int_{0}^{1} \frac{1}{\sqrt{1 - s^{2}}} \left\{ 1 - \frac{G(\alpha) - G(\alpha s)}{\alpha^{2}(1 - s^{2})} (1 + o(1)) \right\} ds \\
&= \frac{\pi}{2} - \frac{1}{\alpha^{2}} (1 + o(1)) \int_{0}^{1} \frac{G(\alpha) - G(\alpha s)}{(1 - s^{2})^{3/2}} ds.
\end{aligned}$$

We put

$$K := \int_0^1 \frac{G(\alpha) - G(\alpha s)}{(1 - s^2)^{3/2}} ds.$$
 (3.12)

<u>Lemma 3.1.</u> As $\alpha \to \infty$,

$$K = \frac{\sqrt{\pi}}{2} (1 + o(1)) \cos\left(\alpha^2 - \frac{3}{4}\pi\right).$$
 (3.13)

<u>Proof.</u> For $0 \le \theta \le \pi/2$, we put

$$M(\theta) := G(\alpha) - G(\alpha s) = \int_{\alpha \sin \theta}^{\alpha} \sin t^2 dt.$$
 (3.14)

We put $s = \sin \theta$ in (3.12). Then by (3.1), (3.14) and integration by parts, we obtain

$$K = \int_{0}^{\pi/2} \frac{1}{\cos^{2} \theta} M(\theta) d\theta \qquad (3.15)$$

= $[\tan \theta M(\theta)]_{0}^{\pi/2} + \alpha \int_{0}^{\pi/2} \tan \theta \sin(\alpha \sin \theta)^{2} \cos \theta d\theta$
:= $K_{1} + \alpha K_{2}$.

Since

$$\lim_{\theta \to \pi/2} \frac{M(\theta)}{\cos \theta} = \lim_{\theta \to \pi/2} \frac{\alpha \cos \theta \sin(\alpha \sin \theta)^2}{\sin \theta} = 0,$$
 (3.16)
we see that $K_1 = 0$. Now we calculate K_2 .

2019/5/12 45 / 76

$$K_{2} = \int_{0}^{\pi/2} \sin\theta \sin(\alpha \sin\theta)^{2} d\theta \qquad (3.17)$$
$$= \int_{0}^{\pi/2} \sin\theta \sin(\alpha^{2} - \alpha^{2} \cos^{2}\theta) d\theta$$
$$= \sin\alpha^{2} \int_{0}^{\pi/2} \sin\theta \cos(\alpha^{2} \cos^{2}\theta) d\theta$$
$$- \cos\alpha^{2} \int_{0}^{\pi/2} \sin\theta \sin(\alpha^{2} \cos^{2}\theta) d\theta$$
$$= K_{21} \sin\alpha^{2} - K_{22} \cos\alpha^{2}.$$

By putting $t = \cos \theta$, we obtain by (3.5) that as $\alpha \to \infty$,

$$K_{21} = \int_0^1 \cos(\alpha^2 t^2) dt = \frac{1}{\alpha} \int_0^\alpha \cos x^2 dx$$
(3.18)
= $\sqrt{\frac{\pi}{2}} \frac{1}{2\alpha} (1 + o(1)).$

By the same calculation as that to obtain (3.18), we obtain

$$K_{22} = \int_0^1 \sin(\alpha^2 t^2) dt = \frac{1}{\alpha} \sqrt{\frac{\pi}{2}} S(\alpha)$$
(3.19)
= $\sqrt{\frac{\pi}{2}} \frac{1}{2\alpha} (1 + o(1)).$

By (3.17)-(3.19), we obtain

$$K = \frac{1}{2}\sqrt{\frac{\pi}{2}}(1+o(1))(\sin\alpha^2 - \cos\alpha^2)$$
(3.20)
= $\frac{\sqrt{\pi}}{2}(1+o(1))\sin\left(\alpha^2 - \frac{1}{4}\pi\right)$
= $\frac{\sqrt{\pi}}{2}(1+o(1))\cos\left(\alpha^2 - \frac{3}{4}\pi\right).$

This implies (3.13). Thus the proof is complete.

By Lemma 3.1 and (3.11), we obtain $\lambda(g_3, \alpha)$.

Asymptotic length of bifurcation curve: $g_3(u) = \sin u^2$

How to obtain $L(g_3, \alpha)$.

$$L(g_{3},\alpha) = \int_{\alpha}^{2\alpha} \sqrt{1 + \frac{\pi^{3}}{t^{2}}(1 + o(1))\sin^{2}\left(t^{2} - \frac{3\pi}{4}\right)} dt \qquad (3.21)$$
$$= \int_{\alpha}^{2\alpha} 1 + \frac{\pi^{3}}{2t^{2}}(1 + o(1))\sin^{2}\left(t^{2} - \frac{3\pi}{4}\right) dt$$
$$= \alpha + \frac{\pi^{3}}{4}(1 + o(1))\int_{\alpha}^{2\alpha} \left(\frac{\sin^{2}t^{2}}{t^{2}} + \frac{\cos^{2}t^{2}}{t^{2}} + \frac{2\sin t^{2}\cos t^{2}}{t^{2}}\right) dt.$$

Clearly,

$$\int_{\alpha}^{2\alpha} \left(\frac{\sin^2 t^2}{t^2} + \frac{\cos^2 t^2}{t^2} \right) dt = \int_{\alpha}^{2\alpha} \frac{1}{t^2} dt = \frac{1}{2\alpha}.$$
 (3.22)

Furthermore, Then by integration by parts, we obtain

$$\int_{\alpha}^{2\alpha} \frac{2\sin t^2 \cos t^2}{t^2} dt = \int_{\alpha}^{2\alpha} \frac{\sin(2t^2)}{t^2} dt \qquad (3.23)$$
$$= \sqrt{2} \int_{\sqrt{2\alpha}}^{2\sqrt{2\alpha}} \frac{\sin x^2}{x^2}$$
$$= \sqrt{2} \left[-\frac{1}{2t^3} \cos t^2 \right]_{\sqrt{2\alpha}}^{2\sqrt{2\alpha}} + \frac{3\sqrt{2}}{2} \int_{\sqrt{2\alpha}}^{2\sqrt{2\alpha}} \frac{\cos t^2}{t^4} dt$$
$$= -\frac{1}{32\alpha^3} \cos(8\alpha^2) + \frac{1}{4\alpha^3} \cos 2\alpha^2 + O(\alpha^{-3}).$$

Thus the proof is complete.

2019/5/12 50 / 76

The case $g(u) = u^p \sin(u^q) \ (0 \le p < 1, 0 < q \le 1)$

Now we consider the precise asymptotic formulas for $\lambda(\alpha)$ as $\alpha \to \infty$ for

 $g(u) = u^p \sin(u^q) \quad (0 \le p < 1, 0 < q \le 1).$

We prove the following Theorem 3.1 by the time-map argument and the stationary phase method. We have to be careful about the regularity of the functions which will be appear after the time-map argument.

<u>Theorem 4.1.([S, 22])</u> Let $g(u) = u^p \sin(u^q)$, where $0 \le p < 1$ and $0 < q \le 1$ are fixed constants. Then as $\alpha \to \infty$,

$$\lambda(\alpha) = \frac{\pi^2}{4} - \frac{\pi^{3/2}}{\sqrt{2q}} \alpha^{p-1-(q/2)} \sin\left(\alpha^q - \frac{\pi}{4}\right) + o(\alpha^{p-1-(q/2)}).$$
(4.1)

Local behavior of $\lambda(\alpha)$

Next, to understand the whole structure of $\lambda(\alpha)$ in detail, we establish the asymptotic formulas for $\lambda(\alpha)$ as $\alpha \to 0$.

Theorem 4.2.([S, 22]) Let $g(u) = u^p \sin(u^q)$, where $0 \le p < 1$, $0 < q \le 1$. Then the following asymptotic formulas hold $\alpha \to 0$. (i) Assume that p + q > 1. Then

$$\lambda(\alpha) = \frac{\pi^2}{4} - A_1 \pi \alpha^{p+q-1} + (A_1^2 + A_2 \pi) \alpha^{2(p+q-1)} + o(\alpha^{2(p+q-1)}),$$
(4.2)

where

$$A_{1} = \frac{1}{p+q+1} \int_{0}^{1} \frac{1-s^{p+q+1}}{(1-s^{2})^{3/2}} ds, \qquad (4.3)$$
$$A_{2} = \frac{3}{2(p+q+1)^{2}} \int_{0}^{1} \frac{(1-s^{p+q+1})^{2}}{(1-s^{2})^{5/2}} ds. \qquad (4.4)$$

Local behavior of $\lambda(\alpha)$

(ii) Assume that p + q = 1. Then

$$\lambda(\alpha) = \frac{\pi^2}{8} + \frac{\pi}{48} B \alpha^{2q} + o(\alpha^{2q}),$$
(4.5)

where

$$B = \frac{1}{q+1} \int_0^1 \frac{1 - s^{2q+2}}{(1 - s^2)^{3/2}} ds.$$
 (4.6)

(iii) Assume that p + q < 1 < p + 3q. Then

$$\lambda(\alpha) = \frac{p+q+1}{2} \alpha^{1-p-q}$$

$$\times \left\{ C_1^2 - \frac{p+q+1}{2} C_1 C_2 \alpha^{1-p-q} + o(\alpha^{1-p-q}) \right\},$$
(4.7)

where

$$C_1 = \int_0^1 \frac{1}{\sqrt{1 - s^{p+q+1}}} ds, \ C_2 = \int_0^1 \frac{1 - s^2}{(1 - s^{p+q+1})^{3/2}} ds.$$
(4.8)

Local behavior of $\lambda(\alpha)$

(iv) Assume that p + q . Then

$$\lambda(\alpha) = \frac{p+q+1}{2} \alpha^{1-p-q} \qquad (4.9)$$
$$\times \left\{ C_1^2 + \frac{p+q+1}{6(p+3q+1)} C_1 C_3 \alpha^{2q} + o(\alpha^{2q}) \right\},$$

$$C_3 = \int_0^1 \frac{1 - s^{p+3q+1}}{(1 - s^{p+q+1})^{3/2}} ds.$$
 (4.10)

(v) Assume that p + q . Then

$$\lambda(\alpha) = \frac{p+q+1}{2} \alpha^{2q}$$

$$\times \left\{ C_1^2 - \frac{5(p+q+1)}{12} C_1 C_4 \alpha^{2q} + o(\alpha^{2q}) \right\},$$
(4.11)

$$C_4 = \int_0^1 \frac{1 - s^2}{(1 - s^{p+q+1})^{3/2}} ds.$$
 (4.12)

2019/5/12 54 / 76

By Theorems 4.1 and 4.2, we understand that there exist three types of the asymptotic shapes of $\lambda(\alpha)$ (see figures below).

2019/5/12 56 / 76

Proofs: $g(u) = u^p \sin(u^q) \ (0 \le p < 1, 0 < q \le 1)$

In this section, let $\alpha \gg 1$. Furthermore, we denote by C the various positive constants independent of α . For $u \ge 0$, let

$$g(u) = u^p \sin(u^q)$$

and

$$G(u) := \int_0^u g(s)ds.$$
(5.1)

Then by the same argument of time-map as that in Section 2, we obtain

Time-Map

$$\begin{split} \sqrt{\lambda} &= \int_{-1}^{0} \frac{u_{\alpha}'(t)}{\sqrt{\alpha^{2} - u_{\alpha}(t)^{2} + 2(G(\alpha) - G(u_{\alpha}(t)))}} dt \quad (5.2) \\ &= \int_{0}^{1} \frac{1}{\sqrt{1 - s^{2} + 2(G(\alpha) - G(\alpha s))/\alpha^{2}}} ds \\ &= \int_{0}^{1} \frac{1}{\sqrt{1 - s^{2}}} \frac{1}{\sqrt{1 + 2(G(\alpha) - G(\alpha s))/(\alpha^{2}(1 - s^{2}))}} ds \\ &= \int_{0}^{1} \frac{1}{\sqrt{1 - s^{2}}} \left\{ 1 - \frac{G(\alpha) - G(\alpha s)}{\alpha^{2}(1 - s^{2})} (1 + o(1)) \right\} ds \\ &= \frac{\pi}{2} - \frac{1}{\alpha^{2}} (1 + o(1)) \int_{0}^{1} \frac{G(\alpha) - G(\alpha s)}{(1 - s^{2})^{3/2}} ds \\ &= \frac{\pi}{2} - \frac{1}{\alpha^{2}} K(\alpha) (1 + o(1)), \end{split}$$

where

2019/5/12 59 / 76

$$K(\alpha) := \int_0^1 \frac{G(\alpha) - G(\alpha s)}{(1 - s^2)^{3/2}} ds.$$
 (5.3)

To calculate $K(\alpha)$, we use the following Lemma. By combining [8, Lemma 2] and [10, Lemmas 2.25], we have following equalities.

Lemma 5.1. Assume that the function $f(r) \in C^2[0,1]$, and $h(r) = \cos(\pi r/2)$. Then as $\mu \to \infty$ $\int_0^1 f(r)e^{i\mu h(r)}dr = e^{i(\mu - (\pi/4))}\sqrt{\frac{2}{\pi\mu}}f(0) + O\left(\frac{1}{\mu}\right).$ (5.4)

In particular, by taking the imaginary part of (4.4),

$$\int_{0}^{1} f(r) \sin(\mu h(r)) dr = \sqrt{\frac{2}{\pi \mu}} f(0) \sin\left(\mu - \frac{\pi}{4}\right) + O\left(\frac{1}{\mu}\right).$$
 (5.5)

Key Lemma

Lemma 5.2. As
$$\alpha \to \infty$$
,

$$K(\alpha) = \sqrt{\frac{\pi}{2q}} \alpha^{p+1-(q/2)} \sin\left(\alpha^q - \frac{\pi}{4}\right) + o(\alpha^{p-1-(q/2)}).$$
(5.6)

Proof. We put $s = \sin \theta$ in (5.3). Then by integration by parts,

$$K(\alpha) = \int_{0}^{\pi/2} \frac{1}{\cos^{2}\theta} (G(\alpha) - G(\alpha\sin\theta)) d\theta \qquad (5.7)$$

$$= \int_{0}^{\pi/2} (\tan\theta)' (G(\alpha) - G(\alpha\sin\theta)) d\theta$$

$$= [\tan\theta (G(\alpha) - G(\alpha\sin\theta))]_{0}^{\pi/2}$$

$$+ \alpha \int_{0}^{\pi/2} \tan\theta (\cos\theta (\alpha\sin\theta)^{p} \sin((\alpha\sin\theta)^{q})) d\theta.$$

By l'Hôpital's rule, we obtain

Tet

$$\lim_{\theta \to \pi/2} \frac{\int_{\alpha \sin \theta}^{\alpha} y^p \sin(y^q) dy}{\cos \theta} = \lim_{\theta \to \pi/2} \frac{\alpha \cos \theta (\alpha \sin \theta)^p \sin((\alpha \sin \theta)^q)}{\sin \theta} = 0.$$

Key Lemma

We put m = 1/q, $\sin^q \theta = \sin x$, $x = (\pi/2) - y$ and $y = (\pi/2)r$. Then

$$\begin{split} K(\alpha) &= \alpha^{p+1} \int_{0}^{\pi/2} \sin^{p+1} \theta \sin(\alpha^{q} \sin^{q} \theta) d\theta & (5.8) \\ &= \frac{1}{q} \alpha^{p+1} \int_{0}^{\pi/2} \sin^{(p+2-q)/q} x \frac{\cos x}{\sqrt{1-\sin^{2m} x}} \sin(\alpha^{q} \sin x) dx \\ &= \frac{1}{q} \alpha^{p+1} \int_{0}^{\pi/2} \sin^{(p+2-q)/q} x \frac{\sqrt{1-\sin^{2m} x}}{\sqrt{1-\sin^{2m} x}} \sin(\alpha^{q} \sin x) dx \\ &= \frac{1}{q} \alpha^{p+1} \int_{0}^{\pi/2} \cos^{(p+2-q)/q} y \frac{\sqrt{1-\cos^{2} y}}{\sqrt{1-\cos^{2} y}} \sin(\alpha^{q} \cos y) dy \\ &= \frac{\pi}{2q} \alpha^{p+1} \int_{0}^{1} \cos^{(p+2-q)/q} \left(\frac{\pi}{2}r\right) \sqrt{\frac{1-\cos^{2} \left(\frac{\pi}{2}r\right)}{1-\cos^{2m} \left(\frac{\pi}{2}r\right)}} \\ &\times \sin\left(\alpha^{q} \cos\left(\frac{\pi}{2}r\right)\right) dr. \end{split}$$

Key Lemma

We put

$$f(r) = \cos^{(p+2-q)/q} \left(\frac{\pi}{2}r\right) \sqrt{\frac{1-\cos^2\left(\frac{\pi}{2}r\right)}{1-\cos^{2m}\left(\frac{\pi}{2}r\right)}}, \ \mu = \alpha^q$$
(5.9)

and $h(r) = \cos(\pi r/2)$ in (5.5). We note that $f(0) = \sqrt{q}$. (i) If $f \in C^2[0, 1]$, then by (5.5) and (5.8), we obtain

$$K(\alpha) = \sqrt{\frac{\pi}{2q}} \alpha^{p+1-q/2} \sin\left(\alpha^q - \frac{\pi}{4}\right) + o\left(\alpha^{p+1-q/2}\right).$$
 (5.10)

This implies our conclusion (5.6).

(ii) Finally, we consider the case $f \notin C^2[0,1]$. For instance, if q > (p+2)/3, then $\cos^{(p+2-q)/q} \left(\frac{\pi}{2}r\right) \notin C^2[0,1]$. Fortunately, we are still able to apply Lemma 5.1 to this case by modifying the proof of Lemma 5.1, and obtain (4.5). Thus the proof is complete.

$$\int_0^1 f(r)e^{i\mu h(r)}dr = e^{i(\mu - (\pi/4))}\sqrt{\frac{2}{\pi\mu}}f(0) + O\left(\frac{1}{\mu}\right)$$

For completeness, we show that (5.4) holds. Recall that $h(r) = \cos(\pi r/2)$, $0 \le p < 1$ and $0 < q \le 1$. For m = 1/q and $0 \le x \le 1$, we put

$$f(x) = f_1(x)f_2(x) := \cos^{(p+2-q)/q}\left(\frac{\pi}{2}x\right)\sqrt{\frac{1-\cos^2\left(\frac{\pi}{2}x\right)}{1-\cos^{2m}\left(\frac{\pi}{2}x\right)}}.$$
 (5.11)

(i) By direct calculation, we can show that if q > 0, namely, m > 1, then $f_2(x) \in C^2[0,1]$.

(ii) The essential point of the proof of (5.4) is to show that, as $\mu
ightarrow \infty$,

$$\Phi(\mu) := \int_0^1 f(x) e^{-i\mu x^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{\mu}} e^{-i(\pi/4)} f(0) + O\left(\frac{1}{\mu}\right).$$
(5.12)

We put

$$w(x):=\frac{f(x)-f(0)}{x},\quad \text{namely} \ f(x)=f(0)+xw(x).$$
 By [10, Lemma 2.24],

$$\int_0^1 f(r)e^{i\mu h(r)}dr = e^{i(\mu - (\pi/4))}\sqrt{\frac{2}{\pi\mu}}f(0) + O\left(\frac{1}{\mu}\right)$$

$$\int_{0}^{1} e^{-i\mu x^{2}} dx = \frac{1}{2} \sqrt{\frac{\pi}{\mu}} e^{-i\pi/4} + O\left(\frac{1}{\mu}\right).$$
 (5.13)

Since $f(0) = \sqrt{q}$, by (5.13), we obtain

$$\Phi(\mu) = f(0) \int_0^1 e^{-i\mu x^2} dx + \int_0^1 x e^{-i\mu x^2} w(x) dx$$
(5.14)
$$= \frac{1}{2} \sqrt{\frac{\pi}{\mu}} e^{-i\pi/4} \sqrt{q} + O\left(\frac{1}{\mu}\right) + \int_0^1 x e^{-i\mu x^2} w(x) dx.$$

We put

$$\Phi_1(\mu) := \int_0^1 x e^{-i\mu x^2} w(x) dx.$$
(5.15)

Now we prove that $w(x) \in C^1[0,1]$, because if it is proved, then by integration by parts, we easily show that $\Phi_1(\mu) = O(1/\mu)$ and

$$\int_0^1 f(r)e^{i\mu h(r)}dr = e^{i(\mu - (\pi/4))}\sqrt{\frac{2}{\pi\mu}}f(0) + O\left(\frac{1}{\mu}\right)$$

our conclusion (5.4) follows immediately from (5.12) and (5.14). To do this, there are several cases to consider.

• We note that, by direct calculation, we can show that if q > 0, namely, m > 1, then $f_2(x) \in C^2[0, 1]$.

Case 1. Assume that p = 0 and q = 1. Then $f(x) = \cos\left(\frac{\pi}{2}x\right) \in C^2[0, 1]$.

Case 2. Assume that 0 < q < 1 and $p + 2 \ge 3q$. Then $(p + 2 - q)/q \ge 2$ and $f_1(x) \in C^2[0, 1]$. Consequently, $f \in C^2[0, 1]$ in this case.

$$\int_0^1 f(r)e^{i\mu h(r)}dr = e^{i(\mu - (\pi/4))}\sqrt{\frac{2}{\pi\mu}}f(0) + O\left(\frac{1}{\mu}\right)$$

Case 3. Assume that 0 and <math>q = 1. Then $f(x) = \cos^{p+1}\left(\frac{\pi}{2}x\right) \notin C^2[0,1]$. However, by direct calculation, we can show that

$$w(x) = \frac{f(x) - f(0)}{x} \in C^1[0, 1].$$

It is reasonable, because by Taylor expansion, for $0 < x \ll 1,$ we have

$$w(x) = -\frac{(p+1)\pi^2}{8}x + o(x).$$
(5.16)

Case 4. Assume that 0 < q < 1 and p + 2 < 3q. Then

$$\frac{p+2-q}{q} = \frac{p+2-2q}{q} + 1 := \eta + 1.$$

Then $0 < \eta < 1$ and $f_1(x) = \cos^{\eta+1} x$. Since $f_2 \in C^2[0,1]$, by the consequence of Case 3 above, we find that $w \in C^1[0,1]$. Thus the proof is complete.

2019/5/12 67 / 76

[1] A. Ambrosetti, H. Brezis, G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, *J. Funct. Anal.*, **122** (1994), 519–543.

[2] S. Cano-Casanova and J. López-Gómez, Existence, uniqueness and blow-up rate of large solutions for a canonical class of one-dimensional problems on the half-line, *J. Differential Equations*, **244** (2008), 3180–3203.

[3] S. Cano-Casanova, J. López-Gómez, Blow-up rates of radially symmetric large solutions, *J. Math. Anal. Appl.*, **352** (2009), 166–174.

[4] Shanshan Chen, Junping Shi and Junjie Wei, Bifurcation analysis of the Gierer-Meinhardt system with a saturation in the activator production, *Appl. Anal.*, **93** (2014), 1115–1134.

[5] Y.J. Cheng, On an open problem of Ambrosetti, Brezis and Cerami, *Differential Integral Equations*, **15** (2002), 1025–1044.

[6] R. Chiappinelli, On spectral asymptotics and bifurcation for elliptic operators with odd superlinear term, *Nonlinear Anal.*, **13** (1989), 871–878.

[7] J. M. Fraile, J. López-Gómez and J. Sabina de Lis, On the global structure of the set of positive solutions of some semilinear elliptic boundary value problems, *J. Differential Equations*, **123** (1995), 180–212.

[8] A. Galstian, P. Korman and Y. Li, On the oscillations of the solution curve for a class of semilinear equations, *J. Math. Anal. Appl.*, **321** (2006), 576–588.

[9] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products. Translated from the Russian. Translation edited and with a preface by Daniel Zwillinger and Victor Moll. Eighth edition. Elsevier/Academic Press, Amsterdam, 2015. [10] P. Korman and Y. Li, Exact multiplicity of positive solutions for concave-convex and convex-concave nonlinearities, *J. Differential Equations*, **257** (2014), 3730–3737.

[11] P. Korman and Y. Li, Computing the location and the direction of bifurcation for sign changing solutions, *Differ. Equ. Appl.*, **2** (2010), 1–13.

[12] P. Korman and Y. Li, Infinitely many solutions at a resonance, *Electron. J. Differ. Equ. Conf. 05*, 105–111.

[13] P. Korman, An oscillatory bifurcation from infinity, and from zero, *NoDEA Nonlinear Differential Equations Appl.*, **15** (2008), 335–345.

[14] P. Korman, Global solution curves for semilinear elliptic equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, (2012).

[15] T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, *Indiana Univ. Math. J.*, **20** 1970/1971 1–13.
[16] T. Shibata, New method for computing the local behavior of L_q-bifurcation curve for logistic equations, Int. J. Math. Anal., (Ruse) 7 (2013) no. 29-32, 1531–1541.

[17] T. Shibata, S-shaped bifurcation curves for nonlinear two-parameter problems, *Nonlinear Anal.*, **95** (2014), 796–808.

[18] T. Shibata, Asymptotic length of bifurcation curves related to inverse bifurcation problems, *J. Math. Anal. Appl.*, 438 (2016), 629–642.

[19] T. Shibata, Oscillatory bifurcation for semilinear ordinary differential equations, *Electron. J. Qual. Theory Differ. Equ.* 2016, No. **44**, 1–13.

[20] T. Shibata, Global and local structures of oscillatory bifurcation curves with application to inverse bifurcation problem, Topological Methods in Nonlinear Analysis 50 (2017), 603–622.

[21] T. Shibata, Global behavior of bifurcation curves for the nonlinear eigenvalue problems with periodic nonlinear terms, Communications on Pure and Applied Analysis 17 (2018), 2139-2147.

[22] T. Shibata, Global and local structures of oscillatory bifurcation curves, submitted.

Thank You for Your Attention