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Part I: Introduction
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Singularity:

A point at which a given mathematical object is not defined or not

well-behaved (e.g., infinite or not differentiable).

• Gravitational theory, Material science, Meteorology

• Algebraic geometry

Singular point of an algebraic variety:

A point where an algebraic variety is not locally flat.

• Differential geometry

Singular point of a manifold:

A point where the manifold is not given by a smooth embedding

of a parameter.

• Complex analysis

Poles and essential singularities.

Is it good news or bad news to encounter singularities?
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Riemann’s Removability Theorem (1851)� �
Let f(z) be any holomorphic function on a punctured domain

Ω \ {ξ} ⊂ C．The singularity ξ is removable (i.e., f(z) is

holomorphically extendable to Ω) if and only if

f(z) = o(|z − ξ|−1) (z → ξ).� �
In fact, he classified all possible isolated singularities：

• Removable singularities.

• Poles of order n = 1, 2, . . .

• Essential singularities.
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⇠(t)

non-removable

⇠

removable

⇠

f(z) =
1

(z − ξ)n
(n ∈ N) · · · pole, non-removable.

f(z) =
sin(z − ξ)

z − ξ
· · · removable by setting f(ξ) = 1.

Any non-removable singularity must be a pole of order ∃n ≥ 1 or an

essential singularity.
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There have been many studies on singularities in linear and nonlinear

elliptic PDEs.

Laplace equation:

∆u = 0 on Ω \ {ξ},

where Ω ⊂ RN , N ≥ 3.

• The singularity is removable if and only if

u(x) = o(|x − ξ|−(N−2)) (x → ξ).

... Weyl (1940)

• The fundamental solution

u(x) = CN |x − ξ|−(N−2)

has a non-removable singularity.
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Other results on the removability of singularities:

• Heat equation: Weyl (1940)

• Harmonic maps: Sacks-Uhlenbeck (1981)

• Nonlinear parabolic equation: Brezis-Friedman (1983)

• · · · · · ·
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Question� �
For parabolic PDEs, what if a singularity ξ = ξ(t) is moving?� �

u(x, t)

Moving singularity

x = ⇠(t)

D = {(x, t) : x 2 ⌦ \ {⇠(t), 0  t  T}
Time-space domain

⇠(t)

⇠(0)

⇠(T )

⌦

t = T

t = 0
⌦
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Target: Moving singularities

Removability

Local and global existence

Non-existence

Asymptotic profile

Uniqueness and Classification
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Part II: Linear equations
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[ Heat equation with a moving singularity ]

... with Jin Takahashi, Khin Phyu Phyu Htoo, Toru Kan

ut = ∆u, x ∈ RN \ {ξ(t)}, t ∈ (0, T ).

Basic assumptions:

• N ≥ 3 mostly, N = 2 ot N = 1 occasionally.

• Consider nonnegative solutions only.

• u(x, t) satisfies the equation in the classical sense for x ̸= ξ(t).

• ξ(t) is continuous.
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Standing singularity ξ(t) ≡ ξ0

ut = ∆u in Ω \ {ξ0}, t ∈ (0, T ).

· Non-removable singularity

There exists a solution with a singularity

u(x, t) =

{
|x − ξ0|−N+2 + · · · for N ≥ 3,

log(|x − ξ0|−1) + · · · for N = 2,

· Removability ... Hsu (2010), Hui (2010)

For N ≥ 3, the singular point ξ0 is removable if and only if

|u(x, t)| = o(|x − ξ0|−N+2) as x → ξ0

uniformly in t ∈ (0, T ).
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Removability of a moving singularity

ut = ∆u, x ̸= ξ(t), t ∈ (0, T ).

Theorem (Removability)� �
Suppose that ξ(t) is locally at least 1/2−Hölder continuous in t ∈
[0, T ]. Then the singularity is removable if and only if

u(x, t) = o(|x − ξ(t)|−(N−2))

uniformly in t ∈ (0, T ).� �
1/2-Hölder continuity is essential.

Brownian motion is (1/2 − ε)−Hölder continuous in t.
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Proof. By assumption

|u(x, t)| = o(|x − ξ|−(N−2)) (x → ξ)

and 1/2−Hölder continuity, for any 0 < t1 < t2 < T , the solution u

satisfies∫
Ω

u(x, t2)ϕ(x, t2) − u(x, t1)ϕ(x, t1) dx =

∫ t2

t1

∫
Ω

u(ϕt + ∆ϕ) dxdt

for all ϕ ∈ C∞
0 (Ω× (0, T )). Here, 1/2−Hölder continuity is necessary for

the construction of suitable cut-off functions around the curve x = ξ(t).

Hence u ∈ L1
loc(Ω× (0, T )) satisfies the heat equation in Ω× (0, T ) in the

distribution sense.

Then by the Weyl lemma, u satisfies the heat equation in Ω × (0, T )

in the classical sense.
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Remark. For N = 2, the singularity of u at x = ξ(t) is removable if and

only if

u(x, t) = o(log |x − ξ(t)|−1)

uniformly in t ∈ (0, T ).

Remark. For N = 1, if we define ũ by

ũ(x, t) :=

u(x, t) for x ̸= ξ(t)

lim inf
x↑ ξ(t)

u(x, t) for x = ξ(t)

then the singularity at x = ξ(t) is removable if and only if ũ is continu-

ously differentiable at x = ξ(t) for any t ∈ (0, T ).
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Non-removable singularity

Theorem (Existence of a moving singularity)� �
Let N > 2, T > 0. Given any ξ(t) : [0, T ] → RN and any positive
continuous function a(t), there exists a solution with a singularity

u(x, t) ≃ a(t)|x − ξ(t)|−N+2

at x = ξ(t).� �
{
ut = ∆u + g(x, t), x ∈ RN , t > 0,

u(x, 0) = u0(x), x ∈ RN .

Representation formula of the solution:

u(x, t) :=

∫
RN

G(x, y, s)u0(y)dy +

∫ s

0

∫
RN

G(x, y, s)g(y, s)dyds,

where

G(x, y, t) =
1

(4πt)−N/2
exp

(
− |x − y|2

4t

)
.
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Proof. Consider the initial value problem{
ut − ∆u = CNa(t)δ(x − ξ(t)), x ∈ RN , t > 0

u(x, 0) = 0, x ∈ RN ,

where δ(·) denotes the Dirac delta. Then

u(x, t) =

∫ t

0

a(s)

(4π(t − s))N/2
exp

(
− |x − ξ(s)|2

4(t − s)

)
ds

is the desired singular solution.

This is intuitively clear from the representation formula

u(x, t) =

∫ t

0

∫
RN

G(x, y, s)a(s)δ(y − ξ(s))dyds =

∫ t

0

G(x, ξ(s), s)a(s)ds

but this needs a proof.
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Key observation

exp
(
− |x − ξ(s)|2

4(t − s)

)
= exp

(
− |x − ξ(t) + ξ(t) − ξ(s)|2

4(t − s)

)
≃ exp

(
− |x − ξ(t)|2

4(t − s)

)
·
(
− exp

(
− |t − s|2γ

4(t − s)

)
≃ exp

(
− |x − ξ(t)|2

4(t − s)

)
Related results

• If ξ(t) has less regularity, anomalous singularities may appear. In

fact, the singularity could be weaker and asymmetric.

... Kan-Takahashi (2016)

• More general inhomogeneous term

ut − ∆u = g(x, t) : Radon measure

.... Kan-Takahashi (2016,2017)

• Higher dimensional singular set with the codimension 3 or higher.

... Htoo-Takahashi-Y (2018)



20

[ Dynamic Hardy potential ]

with Jann-Long Chern, Jin Takahashi, Gyeongha Hwang

Parabolic equation with a Hardy potential

ut = ∆u +
λ

|x − ξ0|2
u, x ∈ RN \ {ξ0},

where N ≥ 3. Baras-Goldstein (1984) showed that

λc :=
(N − 2)2

4
> 0

is critical in the following sense:

(i) if 0 < λ ≤ λc, there exists a global solution satisfying

u(x, t) ≥ c|x − ξ0|−α1 , |x − ξ0| < 1.

(ii) If λ > λc, then there exist no positive solutions.
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Steady state

∆u +
λ

|x − ξ0|2
u, x ∈ RN .

Substituting u = r−α, r = |x − ξ0|, then

urr +
N − 1

r
ur +

λ

r2
= {α(α − 1) + (N − 1)α + λ}r−α−2 = 0.

Hence α must satisfy

α2 − (N − 2)α + λ = 0.

If λ < λc = (N − 2)2/4, the quadratic equation has two real roots

0 < α1 < α2 < N − 2:

0 < α1 =
N − 2 −

√
(N − 2)2 − 4λ

2
<

N − 2

2

< α2 =
N − 2 +

√
(N − 2)2 − 4λ

2
< N − 2
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Heat equation with a dynamic Hardy term

ut = ∆u + V (x, t)u, x ∈ RN \ {ξ(t)}.

Assumptions

• V (x, t) is positive and continuous in (x, t) ∈ RN \ {ξ(t)} × [0, T ],

and is bounded for |x| > 1.

• V (x, t) is singular at ξ(t):

V (x, t) = λ(t)|x − ξ(t)|−2 + O(|x − ξ(t)|−2+ε) (x → ξ(t)),

• ξ = ξ(t) is γ-Hölder continuous with γ > 1/2.

• λ(t) is a smooth positive function of t ∈ [0, T ].

Example

ut = ∆u +
λ(t)

|x − ξ(t)|2u, x ∈ RN \ {ξ(t)}.
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Minimal solution

Define

Vn(x, t) := min{V (x, t), n}.

If u0 ∈ L1(RN), then for each n ∈ N, there exists a unique bounded

solution of{
ut(x, t) = ∆u(x, t) + Vn(x, t)u, x ∈ RN , t > 0,

u(x, 0) = u0(x), x ∈ RN .

We denote the unique solution by un(x, t). In this case, by the compar-

ison theorem, {un(x, t)} is a monotone increasing sequenced. Hence if

{un(x, t)} is bounded, then

u(x, t) := lim
n→∞

un(x, t)

exists. Then the parabolic regularity implies that the limiting function

u(x, t) satisfies the equation for x ̸= ξ(t). We call such u(x, t) a minimal

solution. For the existence of a minimal solution, it suffices to find a

supersolution.
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Theorem (Existence of a minimal solution)� �
Assume

0 < V (x, t) ≤ λ

|x − ξ(t)|2 , 0 < |x − ξ(t)| < 1,

for some 0 < λ < λc. If the initial value satisfies

u0(x) ≤ C|x − ξ(0)|−k, k < α2(λ) + 2 = N − α1(λ),

then there exists a minimal solution satisfying

u(x, t) ≤ C|x − ξ(t)|−α1(λ).� �
Idea of the proof

STEP 1: Existence in the simplest case (standing singularity).

STEP 2: Comparison with a moving singularity.

STEP 3: Gronwall-like argument.
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STEP 1: Existence in the simplest case

u+
t = ∆u+ +

λ

|x|2u
+, x ̸= 0.

Radial solution u = v(r), r = |x|, satisfiesvt = vrr +
N − 1

r
vr +

λ

r2
v, r > 0, t > 0,

v(r, 0) = v0(r), r > 0,

where v0(r) is continuous in r > 0. Setting w(r, t) := rα1v(r, t), we

obtain the radial heat equation

wt = wrr +
d − 1

r
wr, r > 0,

where d = N − 2α1 > 2.
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Forward self-similar solution w = t−lφ(ρ), ρ = t−
1
2 r, must satisfy

φρρ +
d − 1

ρ
φρ +

ρ

2
φρ + lφ = 0, ρ > 0.

Lemma (Haraux-Weissler equation)� �
If l < d/2, then the solution with φ(0) = 1 remains positive for all
ρ > 0. Moreover, there exists a constant c(l) > 0 such that

φ(ρ) = c(l)ρ−2l + o(ρ−2l) as ρ → ∞,� �
Lemma (Radial singular solution)� �
If u0(x) = |x|−k with k < α2 + 2, there exists a minimal solution
given by

u(x, t) =
1

c(l)
t−l|x|−α1φ(t−1/2|x|),

where l = (k − α1)/2.� �
Hence there exists a minimal solution in the simple case.
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STEP 2: Comparison with the moving singularity

Consider the equations

ut = ∆u + Vn(x − ξ0)u, x ̸= 0,

and

ũt = ∆ũ + Vn(x − ξ(t))ũ, x ̸= 0,

with the same initial value

u(x, 0) = ũ(x, 0) = u0(x) (= |x − ξ0|−k),

where ξ0 = ξ(0). We shall estimate the difference

w(x, t) := ũ(x − ξ(t), t) − u(x − ξ0, t).

Since ξ(t) may NOT be differentiable, we use the integral formulas

u(x, t) =

∫
RN

G(x − y, t)u0(y)dy +

∫ t

0

∫
RN

G(x − y, t − s)Vn(y)u(y, s)dyds,

ũ(x, t) =

∫
RN

G(x − y, t)u0(y)dy +

∫ t

0

∫
RN

G(x − y, t − s)Vn(y)ũ(y, s)dyds.
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By the change of variables, we have

u(x + ξ0, t) =

∫
RN

G(x − y, t)u0(y + ξ0)dy

+

∫ t

0

∫
RN

G(x − y, t − s)Vn(y)u(y + ξ0, s)dyds,

ũ(x + ξ(t), t) =

∫
RN

G(x − y + ξ(t) − ξ0), t)u0(y + ξ0)dy

+

∫ t

0

∫
RN

G(x − y + ξ(t) − ξ(s), t − s)Vn(y)ũ(y + ξ(s), s)dyds.

Hence w(x, t) := ũ(x + ξ(t), t) − u(x + ξ0, t) satisfies

w(x, t) =

∫
RN

{G(x − y + ξ(t) − ξ0, t) − G(x − y, t)}u0(y + ξ0)}dy

+

∫ t

0

∫
RN

G(x − y + ξ(t) − ξ(s), t − s)Vn(y)w(y + ξ(s), s)dyds

+

∫ t

0

∫
RN

{G(x − y + ξ(t) − ξ(s), t − s) − G(x − y, t − s)}

· Vn(y)u(y + ξ(s), s)dyds

= : I1 + I2 + I3.
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Lemma (Estimate of the heat kernel)� �
If 0 < δ < 1, then there exists a constant C = C(δ) > 0 such that
the following inequalities hold:

(i) |G(x − y + ξ(t) − ξ0, t) − G(x − y, t)|

≤ Ct−N/2−1+γ
{
|x − y| + tγ

}
exp

(
− (1 − δ)|x − y|2

4t

)
.

(ii) G(x − y + ξ(t) − ξ(s), t − s)

≤ 1

(4π(t − s))N/2
exp

(
− (1 − δ)

|x − y|2

4(t − s)

)
.

(iii) |G(x − y + ξ(t) − ξ(s), t − s) − G(x − y, t − s)|

≤ C(t−s)−N/2−1+γ
{
|x−y|+(t−s)γ

}
exp

(
− (1 − δ)|x − y|2

4(t − s)

)
.� �
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Lemma (Estimate of the integrals)� �
There exists a constant C = C(δ) > 0 and R = R(δ) independent of
x, t, n such that the following inequalities hold for |x| < R:

(i) |I1| ≤ C|x|2γ−1

∫
RN

G(x − y, t/(1 − 2δ))u0(y + ξ(0))dy.

(ii) |I2| ≤ C|x|2γ−1

·
∫ t

0

∫
RN

G(x− y, (t− s)/(1 − 2δ)) · Vn(y)|w(y, t− s)|dyds.

(iii) |I3| ≤ C|x|2γ−1

·
∫ t

0

∫
RN

G(x − y, (t − s)/(1 − 2δ))Vn(y)u(y, t − s)dyds.� �
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STEP 3: Gronwall-like argument

|w(x, t)| = I1 + I2 + I3

≤
∫ t

0

∫
RN

G(x − y, (t − s)/(1 − 2δ))
λ

|y|2 |w(y, s)|dyds

+ C1|x|γ−1/2u+(x, t/(1 − 2δ)) + C2

for all x ∈ RN . Let W (x, t) denote the right-hand side of this inequality.

Then we have

Wt ≤ 1

1 − 2δ
∆W +

λ

|x|2W

+ C
{
|x|γ−1/2u+

t (x, t/(1 − 2δ)) − ∆
{
|x|γ−1/2u+(x, t/(1 − 2δ))

}}
.

This implies that W is a subsolution of

Wt =
1

1 − 2δ
∆W +

λ

|x|2W

+ C
{
|x|γ−1/2u+

t (x, t/(1 − 2δ)) − ∆
{
|x|γ−1/2u+(x, t/(1 − 2δ))

}}
.
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On the other hand,

W+ := AeAt|x|−α1t−lφ(ρ), ρ = (1 − 2δ)1/2t−1/2|x|,

is a supersolution if A > 0 is sufficiently large. Since ũ satisfies

ũ < u+ + AeAt|x|−α1t−lφ(ρ) ≤ Ct−l−1|x|−α1

for small |x|, the proof is (almost) complete.
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Theorem (Lower bound)� �
Assume

V (x, t) ≥ λ

|x − ξ(t)|2 , 0 < |x − ξ(t)| < 1,

for some λ > 0. Then any positive solution satisfies

u(x, t) ≥ C|x − ξ(t)|−α1(λ), |x − ξ(t)| < 1.� �
Idea of the proof:

STEP 1: Consider the simplest case.

STEP 2: Compare with the moving singularity.

STEP 3: Gronwall-like argument.
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u−
t = ∆u− +

λ

|x|2u
−, x ̸= 0.

Radial solution u = v(r, t), r = |x|, satisfies

vt = vrr +
N − 1

r
vr +

λ

r2
v, r > 0.

Setting w(r, t) := rα1v(r, t), we have the radial heat equation

wt = wrr +
d − 1

r
wr, r > 0,

where d = N − 2α1 > 2.

Lemma (Positivity)� �
If d ≥ 2, any nonnegative and nontrivial solution satisfies w(r, t) > 0
for r ≥ 0 and t > 0.� �
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Proof. Let Gd(r, t) be the d-dimensional radial heat kernel defined by

Gd(q, r, t) :=

∫
|y|=q

G(x − y, t)dy, r = |x|,

whichl is explicitly written as

Gd(q, r, t) =
1

4t(qr)d/2−1
Id/2−1(qr/2t) exp(−

q2 + r2

4t
),

where Id/2−1(z) is the modified Bessel function of the first kind of order

d/2 − 1. Then

wd(r, t) =

∫ ∞

0

Gd(qr, t)w0(q)dq

satisfies the radial heat equation with

wd
r (0, t) = 0, wd(r, 0) = w0(r).

If w0(r) ≥ 0 and w0(r) ̸≡ 0, then wd(r, t) > 0 for all r ≥ 0 and t > 0.
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Lemma (Minimality)� �
wd(r, t) is the minimal nonnegative solution.� �

Proof. wd(r, t) is a solution with the Neumann boundary condition at

r = 0. We define a subsolution by

w−(r, t) = max{w(r, t) − εr−d+2, 0}.

Here w = r−d+2 is a singular steady state. Hence for every ε > 0, we

have w(r, t) > w−(r, t) for r > 0 and t > 0. Taking the limit as ε ↓ 0, we

obtain w(r, t) ≥ w(r, t). This proves the lemma.
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Summary for the existence

Heat equation with a dynamic Hardy term

ut = ∆u + V (x, t)u, x ∈ RN \ {ξ(t)}.

Assumptions

• V (x, t) is positive and continuous in (x, t) ∈ RN \ {ξ(t)} × [0,∞),

and is bounded for |x| > 1.

• V (x, t) is singular at ξ(t):

V (x, t) = λ(t)|x − ξ(t)|−2 + O(|x − ξ(t)|−2+ε) (x → ξ(t)),

• ξ = ξ(t) is γ-Hölder continuous with γ > 1/2.

• λ(t) is a smooth positive function of t ∈ [0, T ].

If λ(t) < λc, the quadratic equation

α2 − (N − 2)α + λ(t) = 0

has two positive roots 0 < α1(t) < α2(t).
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Theorem (Minimal solution)� �
(i) Assume

0 < V (x, t) ≤ λ

|x − ξ(t)|2 , 0 < |x − ξ(t)| < 1,

for some 0 < λ < λc. If the initial value satisfies

u0(x) ≤ C|x − ξ(0)|−k, k < α2(λ) + 2 = N − α1(λ),

then there exists a minimal solution satisfying

u(x, t) ≤ C|x − ξ(t)|−α1(λ), |x − ξ(t)| < 1.

(ii) Assume

V (x, t) ≥ λ

|x − ξ(t)|2 , 0 < |x − ξ(t)| < 1,

for some λ > 0. Then any positive solution satisfies

u(x, t) ≥ C|x − ξ(t)|−α1(λ), |x − ξ(t)| < 1.� �
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Corollary� �
Suppose that λ(t) < λc for t ∈ [0, T ]. If the initial value satisfies

u0(x) ≤ C|x − ξ(0)|−k, k < α2(λ) + 2 = N − α1(λ),

for some k < α2(0) + 2, then for any ε > 0, the minimal solution
satisfies

c1|x|−α1(t)+ε ≤ u(x, t) ≤ c2|x|−α1(t)−ε, |x| < 1,

for every t ∈ (0, T ].� �
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Corollary� �
Suppose that λ(t) ≡ λ ∈ (0, λc) is constant. If initial value satisfies

u0(x) ≤ C|x − ξ(0)|−k, k < α2(λ) + 2 = N − α1(λ),

for some k < α2(0) + 2, then the minimal solution satisfies

c1|x|−α1 < u(x, t) < c2|x|−α1 , |x| < 1,

for every t ∈ (0, T ].� �
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Nonexistence

Theorem (Nonexistence)� �
If λ(0) > λc, then there are no positive solutions.� �

Proof. Consider the integral equation

u = T [u] :=

∫
RN

G(x − y, t)u0(y)dy

+

∫ t

0

∫
RN

G(x − y, t − s)
λ

|y − ξ|2u(y, s)dyds.

Suppose λ(0) > λc. If U > |x|−α1(0) for |x| < 1, then

T [U ] > (1 + δ)U(x, t) |x| < 1.
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[Other results]

• More precise asymptotics in the case λ(t) depends on t.

u(x, t) ∼ |x − ξ(t)|−α1(t)(log |x − ξ(t)|)β

• Critical case λ(t) = λc.

• Existence of a solution with a stronger singularity

u ∼ C|x − ξ(t)|−α2(t)

• Uniqueness

u1(x, 0) = u2(x, 0), |u1(x, t) − u2(x, t)| = o(|x|−α1)

=⇒ u1 ≡ u2.

• Classification
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Part III: Nonlinear equations
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[ III-1: Nonlinear diffusion ]

with Marek Fila, Jin Takahashi

Equation of porous medium type

ut = ∆um, x ∈ RN \ {ξ(t)}, t > 0,

where m > 0 and ξ ∈ C1([0,∞);RN).

Singular steady state

u = φ(x) := K|x|−
N−2
m , x ̸= 0

where K is an arbitrary positive constant.
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u(x, t)

x = ⇠(t)
RN

ut = �um = m div(um�1ru)

slow di↵usion for large um < 1 =)

m > 1 =) fast di↵usion for large u
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Known facts:

• Vázquez-Winkler (2011): 0 < m <
N − 2

N

Evolution of standing singularities of proper (minimal) solutions.

• Lukkari (2010, 2012): m >
N − 2

N − 1

vt − ∆vm = M(y, t),

where M is a nonnegative Radon measure on Rn × R.
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Consider

ut = ∆um, x ∈ RN \ {ξ(t)},

where ξ ∈ C1 and the derivative ξ′ is locally Hölder continuous.

Theorem (Existence)� �
Let n ≥ 3 and m > m∗ := (N − 2)/(N − 1). Then for any positive
function k ∈ C1, there exists a solution such that

v(y, t) = k(t)|x − ξ(t)|−
N−2
m + O(|x − ξ(t)|−λ)

as y → ξ(t) for each t ≥ 0, where λ < (N − 2)/m.� �
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Remarks:

• m =
N − 2

N − 1
The critical case looks delicate. We have not found any obstacle

for the existence, but our method cannot be modified easily.

• m <
N − 2

N − 1
The result of Chasseigne (2003) on the ”pressure equation” indi-

cates that there is no solution with a moving singularity.

• N − 2

N
< m <

N − 2

N − 1
The problem is well-posed for a standing singularity, but there is

no solution with a moving singularity.

• m <
N − 2

N
Formal analysis suggests that the singularity is “half frozen”. The

singularity may NOT be asymptotically radially symmetric.
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u(x, t)

x = ⇠(t)
RN

ut = �um = m div(um�1ru)

slow di↵usion for large u
N � 2

N � 1
< m < 1 =)
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u(x, t)

RN

ut = �um = m div(um�1ru)

N � 2

N
< m <

N � 2

N � 1
=)

very slow di↵usion for large u

⇠
fixed
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u(x, t)

RN

ut = �um = m div(um�1ru)

m <
N � 2

N
=) extremely slow di↵usion for large u

⇠
fixed
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[ III-2: Absorption equation ]

with Jin Takahashi

Absorption equation

ut = ∆u − up

Stationary problem

∆u − up = 0, x ̸= ξ.

If 1 < p <
N

N − 2
, there is a radially symmetric singular solution

u = K|x − ξ|−
2

p−1 ,

where

K = K(N, p) :=
{( 2

p − 1

)2

− 2(N − 2)

p − 1

} 1
p−1

> 0.
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Veron (1981)� �
If 1 < p <

N

N − 2
, any isolated singularity is one of the following

three types:

(i) Removable singularity.

(ii) u(x) = c|x − ξ|2−N + · · · , where c is an arbitrary constant.

(iii) u(x) = K|x − ξ|−
2

p−1 + · · ·� �
Brezis–Veron (1980), Baras–Pierre (1984)� �
If p ≥ N

N − 2
, then any isolated singularity is removable.� �
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Removability of a moving singularity

Consider positive solutions of

ut = ∆u − up, x ̸= ξ(t), t ∈ (0, T ).

Theorem (Removability)� �
Suppose that ξ(t) is at least 1/2-Hölder continuous in t ∈ [0, T ].

(i) If 1 < p <
N

N − 2
and

u(x, t) = o(|x − ξ(t)|−(N−2)) (x → ξ(t))

locally uniformly in t ∈ (0, T ), the singularity is removable.

(ii) If p ≥ N

N − 2
, any singularity is removable.� �



55

Outline of the proof

STEP 1: By applying the method of Poláčik–Quittner–Souplet (2007),

derive an a priori estimates which depend only on the parabolic distance

from the boundary of a time-space domain.

D = {(x, t) : x 2 ⌦ \ {⇠(t), 0  t  T}
Time-space domain

⇠(t)

⇠(0)

⇠(T )

⌦

t = T

t = 0
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STEP 2: Use the estimate to show that u satisfies the absorption equa-

tion in Ω × (0, T ) in the distribution sense.

STEP 3: Apply the parabolic regularity theory by Brézis and Friedman

(1983) to show u ∈ L∞
loc(Ω × (0, T )) and u ∈ C2,1(Ω × (0, T )).
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Classification of singularities

Formal asymptotic analysis suggests that non-removable singularities

can be classified as follows:

• Type F: u(x, t) = a(t)|x − ξ(t)|−(N−2) + · · · .
(Fundamental)

• Type N: u(x, t) = K|x − ξ(t)|−
2

p−1 + · · · .
(Nonlinear)

• Type A: Others

(Anomalous)
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Singularities of Type F for

ut = ∆u − up on RN \ {ξ(t)}, t ∈ (0, T ).

Theorem (Existence of Type F)� �
Let

1 < p <
N

N − 2
.

Suppose that ξ(t) ∈ C1(0, T ). Then for any positive function a(t) ∈
C1(0, T ), there exists a singular solution if Type F:

u(x, t) = a(t)|x − ξ(t)|−(N−2) + · · · .� �
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Outline of the proof

STEP 1: Let U be a solution of

Ut − ∆U = a(t)δ(x − ξ(t)) (x ∈ RN),

where a(t) ∈ C1(0, T ). Then we have a singular solution such that

U(x, t) = CNa(t)|x − ξ(t)|−(N−2) + · · · .

If p <
N

N − 2
, then U is a nice approximate solution.

STEP 2: Construct suitable comparison functions by modifying the ap-

proximate solution U .

STEP 3: Construct a sequence of approximate solutions on annular do-

mains, and show the convergence to the desired solution.
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Singularities of Type N for

ut = ∆u − up on RN \ {ξ(t)}, t ∈ (0, T ).

Theorem (Existence of Type N)� �
Let

1 < p <
N

N − 2
.

Suppose that ξ(t) ∈ C1(0, T ). Then there exists a singular solution

of Type N:

u(x, t) = K|x − ξ(t)|−
2

p−1 + · · · .� �
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Idea of the proof

Let U be a solution of

Ut − ∆U = δ(x − ξ(t)) (x ∈ RN).

Then we have a singular solution such that

U(x, t) = CN |x − ξ(t)|−(N−2) + · · · .

The singular solution of (A) is well approximated by

u(x, t) ≃ K
{U(x, t)

CN

} 2
(p−1)(N−2)

= K|x − ξ(t)|−
2

p−1 + · · · .

The remaining part of the proof is similar to the case of Type F.
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Non-existence of Type A

Theorem (Non-existence of Type A)� �
Let

1 < p <
N

N − 2
.

Suppose that ξ(t) is 1/2-Hölder continuous in t ∈ [0, T ]. If

u = α(t)|x − ξ(t)|−β(t) + · · ·

for some positive functions α(t) ∈ C(0, T ) and β(t) ∈ C1(0, T ). Then

one of the following holds for t ∈ (0, T ):

(i) Type F: β(t) ≡ N − 2.

(ii) Type N: α(t) ≡ K and β(t) ≡ 2

p − 1
.� �
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Idea of the proof

Consider the balance of flux on an annular region.

⇠(t)

⇠(t)

flux

A�(t)

Inward and outward flux.

The inward flux and the outward flux are balanced only if

u(x, t) = α(t)|x − ξ(t)|−(N−2) + · · ·

or

u(x, t) = K|x − ξ(t)|−
2

p−1 + · · · .
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Summary for the absorption equation with a moving singularity

ut = ∆u − up on D \ {ξ(t)}.

u(x, t) ∼ |x − ξ(t)|−β

N

N � 2

p1
O

N � 2

removable

removable

Type F

Type N

� =
2

p � 1

�
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[Part III-3: Fujita equation]

with Shota Sato

Fujita equation

ut = ∆u + |u|p−1u.

Stationary problem (Lane-Emden equation)

∆u + up = 0, u > 0 on RN \ {ξ}.

· There are radially symmetric singular solutions such that

u =


C|x − ξ|−(N−2) + · · · for p <

N

N − 2
,

L|x − ξ|−
2

p−1 for p >
N

N − 2
,

where C > 0 is an arbitrary constant and

L = L(N, p) :=
{
−

( 2

p − 1

)2

+
2(N − 2)

p − 1

} 1
p−1

> 0.
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Gidas–Spruck (1981)� �
Let u be a stationary solution.

(i) If 1 < p ≤ N

N − 2
, then any isolated singularity is removable.

(ii) Let
N

N − 2
< p <

N + 2

N − 2
. If u = o(|x− ξ|−

2
p−1 ), then the singu-

larity is removable.� �
Removability of a standing singularity ξ(t) ≡ ξ0 for

Hirata–Ono (2014)� �
Let 1 < p <

N

N − 2
. The singularity is removable if and only if

u = o(|x − ξ0|−(N−2)) (x → ξ0).� �
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Classification of singularities

ut = ∆u + up, x ̸= ξ(t).

Formal asymptotic analysis suggests that non-removable singularities

can be classified as follows:

• Type F: u(x, t) = a(t)|x − ξ(t)|−(N−2) + · · · .
(Fundamental)

• Type N: u(x, t) = L|x − ξ(t)|−
2

p−1 + · · · .
(Nonlinear)

• Type A: Others

(Anomalous)
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Existence of a solution with a moving singularity

ut = ∆u + up, x ∈ RN \ {ξ(t)}, t ∈ (0, T ).

Kan–Takahashi (2016) (Existence of Type F)� �
If p <

N

N − 2
, then there exists a singular solution of Type F:

u(x, t) = a(t)|x − ξ(t)|−(N−2) + · · · .� �
Theorem (Existence of Type N)� �
If

N

N − 2
< p < pc =

N + 2
√
N − 1

N − 4 + 2
√
N − 1

,

then there exists a singular solution of Type N:

u(x, t) = L|x − ξ(t)|−
2

p−1 + a(t)|x − ξ(t)|−λ(N,p) + · · · .� �
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Why
N

N − 2
< p < pc?

We formally expand the solution u(x, t) in terms of r = |x − ξ(t)| as
follows:

u(x, t) = Lr−m + a(t)r−λ +

[m]∑
i=1

bi(ω, t)r−m+i + v(y, t).

Substitute this expansion into the equation and equate each power of r

to obtain a system of equations for bi(ω, t). These equations are solvable

and the remainder term v(y, t) must satisfy

vt = ∆v + ξt · ∇v +
pLp−1

|y|2 v + o(|y|−2).

This equation is well-posed if and only if

0 < pLp−1 <
(N − 2)2

4
.

These inequalities hold if

N > 2 and
N

N − 2
< p < pc =

N + 2
√
N − 1

N − 4 + 2
√
N − 1

.
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Summary for the Fujita equation

ut = ∆u + up, x ̸= ξ(t).

u(x, t) ∼ |x − ξ(t)|−β

N

N � 2

p1O

N � 2

removable?

pc

???

�

Type N

Type F

� =
2

p � 1
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Comparison of the absorption equation and the Fujita equation

u(x, t) ∼ |x − ξ(t)|−β

N

N � 2

p1
O

N � 2

pc

�

ut = �u + up

ut = �u � up

Type N

Type F � =
2

p � 1
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[Other results for the Fujita equation]

• Time-global solution with a moving singularity.

... Sato–Y (2010)

• Sudden appearance of a moving singularity. ... Sato (2011)

• Emergence of an anomalous singularity. ... Sato–Y (2012)

• Convergence to a singular steady state

... Sato–Y (2012), Hoshino–Y (2016)
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Part IV: Related topics
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[Higher dimensional singularities ]

�(t)

Γ(t) is a curve or a surface with codimension Ñ ≥ 3.
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x

⇠

�(t)

Htoo–Takahashi–Y (Higher dimensional singularity·� �
If Ñ/(Ñ − 2) < p < pc(Ñ), then the Fujta equation has a solution
of the form

u(x, t) = L̃|x − ξ|−
2

p−1 + a(ξ, t)|x − ξ|−λ(Ñ,p) + · · · ,

where Ñ is the codimension, L̃ = L̃(Ñ, p), ξ = ξ(x, t) is the nearest
point on Γ(t), and a(ξ, t) is arbitrary.� �
The asymptotic profile depend on the distance from Γ(t). For the

proof, we need to consider the effect of the shape of Γ(t).
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Remarks.

• Codimension 2: Logarithmic term appears in asymptotic profile.

• When 1 < p < N/(N − 2), a quite general result was obtained by

Kan-Takahashi (2016, 2017) for

ut − ∆u = M(x, t),

where M is a nonnegative Radon measure on RN × R.
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[Singulairity of codimension 1]

{
ut = ∆u − f(u), x ∈ Ω(t), t > 0,

u → +∞, x → ∂Ω(t), t > 0.

where f ∈ C([0,∞)) is a nondecreasing nonnegative function and Ω(t)

is a bounded domain in RN depending on t.

⇠(t)

u(x, t)

⌦(t)

Large solution with a moving boundary.
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For f , we assume f(u) > 0 and the Keller-Osserman condition∫ ∞ dt√
F (t)

< ∞, F (t) =

∫ t

0

f(s) ds.

The the one-dimensional problem has a solution:{
ϕ′′(x) − f(ϕ) = 0, x > 0,

ϕ(x) → ∞, x ↓ 0.

⇠(t)

�(x)

xO
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{
ut = ∆u − f(u), x ∈ Ω(t), t > 0,

u → +∞, x → ∂Ω(t), t > 0.

Bandle-Kan-Y (Large solution)� �
There exists a solution of the form

u(x, t) = ϕ(d(x, t)) + o(d(x, t)) as x → ∂Ω,

where

d(x, t) := dist(x, ∂Ω(t)) = inf
ξ∈∂Ω(t)

|x − ξ|, x ∈ Ω(t).� �
For the proof, we need to consider the effect of the motion and shape

of ∂Ω(t), which appears in the second-order term. In fact, to construct

suitable comparison functions, we use a solution of the equation

ϕ′′ − µϕ′ − f(ϕ) = 0,

where µ depends on the curvature and the normal velocity of ∂Ω(t).
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[Point singularity on boundary]
ut = ∆u + up, x ∈ Ω,

∂

∂ν
u = 0 x ∈ ∂Ω \ {ξ(t)},

u(x, t) → ∞, x → ξ(t),

where Ω ⊂ RN is a bounded domain.

⇠(t)

⌦

⇠(t)

u(x, t)

Moving singularity on the boundary.
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Assumptions:

• f(u) = up + O(uq) as u → ∞, where

psg < p <


p∗ for N ≤ 5,

3N + 3

3N − 5
for N > 5,

0 ≤ q < q∗(p) (< p).

• ∂Ω ∈ C1+α (α > 0).

• ξ(t) ∈ C1.

Htoo-Y (Boundary singularity)� �
For any given C1-function a(t), there exists a solution of the form

u(x, t) = L|x − ξ(t)|−m + a(t)|x − ξ(t)|−λ2 + o(|x − ξ(t)|−λ2)

as x → ξ(t), where λ2 = λ2(N, p) < m.� �
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Remark:

• Not only the motion of a singularity but also the curved boundary

affect the asymptotic profile of the singularity.

• If ∂Ω ∈ C1+α, then the boundary effect is minor.
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On-going projects and future plans

[Equations]

• Other parameter regions

• Other equations (types, nonlinearities, nonlocal, anisotropic)

• Other boundary conditions

• Navier-Stokes

... Karch-Zheng (2015), Kozono (?)

[Solutions]

• Sign-changing solutions

• Sudden appearance and disappearance

• Collision and splitting

... Nonuniqueness. Immediate regularization. Classification.

• Traveling solutions, self-similar solutions, periodic solutions.

• Global existence and blow-up
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[Singularities]

• More general singular set

• Anomalous singularity

• Dipole singularity, quadrupole singularity, hexapole singularity, 　
octupole singularity, ... multipole singularity.

• Complicated motion of singularities

... γ-Hölder (γ < 1/2) continuity of ξ(t).

Fractional Brownian motion

[Applications]

• PDE theory

• Geometric flow

... Harmonic flow, Ricci flow, Yamabe flow, Curvature flow

• Stochastic process

• Modelling
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