放物型偏微分方程式における動的特異点

柳田英二（東京工業大学）

with S．Sato，M．Hoshino，J．Takahashi，K．P．P．Htoo， M．Fila，T．Kan，C．Bandle，J．－L．Chern，G．Hwang

第7回偏微分方程式レクチャーシリーズ in 福岡工業大学 2019年5月11日－12日。

Plan of my lectues:

Part I: Introduction

Part II: Linear equations
Heat equation:

$$
u_{t}=\Delta u
$$

Dynamic Hardy potential: $\quad u_{t}=\Delta u+\frac{\lambda(t)}{|x-\xi(t)|^{2}} u$

Part III: Nonlinear equations
Nonlinear diffusion:
$u_{t}=\Delta u^{m}$
Absorption equation:
Fujita equation:
$u_{t}=\Delta u-u^{p}$
$u_{t}=\Delta u+u^{p}$

Part IV: Related topics

Part I: Introduction

Singularity:
A point at which a given mathematical object is not defined or not well-behaved (e.g., infinite or not differentiable).

- Gravitational theory, Material science, Meteorology
- Algebraic geometry

Singular point of an algebraic variety:
A point where an algebraic variety is not locally flat.

- Differential geometry

Singular point of a manifold:
A point where the manifold is not given by a smooth embedding of a parameter.

- Complex analysis

Poles and essential singularities.

Is it good news or bad news to encounter singularities?

Riemann's Removability Theorem (1851)
Let $f(z)$ be any holomorphic function on a punctured domain $\Omega \backslash\{\xi\} \subset \mathbb{C}$. The singularity ξ is removable (i.e., $f(z)$ is holomorphically extendable to Ω) if and only if

$$
f(z)=o\left(|z-\xi|^{-1}\right) \quad(z \rightarrow \xi)
$$

In fact, he classified all possible isolated singularities :

- Removable singularities.
- Poles of order $n=1,2, \ldots$
- Essential singularities.

$$
\begin{array}{ll}
f(z)=\frac{1}{(z-\xi)^{n}} & (n \in \mathbb{N}) \\
\cdots \text { pole, non-removable. } \\
f(z)=\frac{\sin (z-\xi)}{z-\xi} & \cdots \text { removable by setting } f(\xi)=1
\end{array}
$$

Any non-removable singularity must be a pole of order $\exists n \geq 1$ or an essential singularity.

There have been many studies on singularities in linear and nonlinear elliptic PDEs.

Laplace equation:

$$
\Delta u=0 \quad \text { on } \Omega \backslash\{\xi\}
$$

where $\Omega \subset \mathbb{R}^{N}, N \geq 3$.

- The singularity is removable if and only if

$$
u(x)=o\left(|x-\xi|^{-(N-2)}\right) \quad(x \rightarrow \xi)
$$

... Weyl (1940)

- The fundamental solution

$$
u(x)=C_{N}|x-\xi|^{-(N-2)}
$$

has a non-removable singularity.

Other results on the removability of singularities:

- Heat equation: Weyl (1940)
- Harmonic maps: Sacks-Uhlenbeck (1981)
- Nonlinear parabolic equation: Brezis-Friedman (1983)
-

Question

For parabolic PDEs, what if a singularity $\xi=\xi(t)$ is moving?

Moving singularity

Time-space domain

$$
D=\{(x, t): x \in \Omega \backslash\{\xi(t), 0 \leq t \leq T\}
$$

Target: Moving singularities

Removability

Local and global existence
Non-existence
Asymptotic profile
Uniqueness and Classification

Part II: Linear equations

[Heat equation with a moving singularity]
... with Jin Takahashi, Khin Phyu Phyu Htoo, Toru Kan

$$
u_{t}=\Delta u, \quad x \in \mathbb{R}^{N} \backslash\{\xi(t)\}, \quad t \in(0, T)
$$

Basic assumptions:

- $N \geq 3$ mostly, $N=2$ ot $N=1$ occasionally.
- Consider nonnegative solutions only.
- $u(x, t)$ satisfies the equation in the classical sense for $x \neq \xi(t)$.
- $\xi(t)$ is continuous.
$\underline{\text { Standing singularity }} \boldsymbol{\xi}(t) \equiv \xi_{0}$

$$
u_{t}=\Delta u \quad \text { in } \Omega \backslash\left\{\xi_{0}\right\}, \quad t \in(0, T)
$$

- Non-removable singularity

There exists a solution with a singularity

$$
u(x, t)= \begin{cases}\left|x-\xi_{0}\right|^{-N+2}+\cdots & \text { for } N \geq 3 \\ \log \left(\left|x-\xi_{0}\right|^{-1}\right)+\cdots & \text { for } N=2\end{cases}
$$

- Removability ... Hsu (2010), Hui (2010)

For $N \geq 3$, the singular point ξ_{0} is removable if and only if

$$
|u(x, t)|=o\left(\left|x-\xi_{0}\right|^{-N+2}\right) \quad \text { as } \quad x \rightarrow \xi_{0}
$$

uniformly in $t \in(0, T)$.

Removability of a moving singularity

$$
u_{t}=\Delta u, \quad x \neq \xi(t), \quad t \in(0, T)
$$

Theorem (Removability)
Suppose that $\xi(t)$ is locally at least $1 / 2-$ Hölder continuous in $t \in$ $[0, T]$. Then the singularity is removable if and only if

$$
u(x, t)=o\left(|x-\xi(t)|^{-(N-2)}\right)
$$

uniformly in $t \in(0, T)$.

1/2-Hölder continuity is essential.
Brownian motion is $(1 / 2-\varepsilon)-$ Hölder continuous in t.

Proof. By assumption

$$
|u(x, t)|=o\left(|x-\xi|^{-(N-2)}\right) \quad(x \rightarrow \xi)
$$

and $1 / 2-$ Hölder continuity, for any $0<t_{1}<t_{2}<T$, the solution u satisfies

$$
\int_{\Omega} u\left(x, t_{2}\right) \phi\left(x, t_{2}\right)-u\left(x, t_{1}\right) \phi\left(x, t_{1}\right) d x=\int_{t_{1}}^{t_{2}} \int_{\Omega} u\left(\phi_{t}+\Delta \phi\right) d x d t
$$

for all $\phi \in C_{0}^{\infty}(\Omega \times(0, T))$. Here, $1 / 2-$ Hölder continuity is necessary for the construction of suitable cut-off functions around the curve $x=\xi(t)$. Hence $u \in L_{\text {loc }}^{1}(\Omega \times(0, T))$ satisfies the heat equation in $\Omega \times(0, T)$ in the distribution sense.

Then by the Weyl lemma, u satisfies the heat equation in $\bar{\Omega} \times(0, T)$ in the classical sense.

Remark. For $N=2$, the singularity of u at $x=\xi(t)$ is removable if and only if

$$
u(x, t)=o\left(\log |x-\xi(t)|^{-1}\right)
$$

uniformly in $t \in(0, T)$.

Remark. For $N=1$, if we define \tilde{u} by

$$
\tilde{u}(x, t):= \begin{cases}u(x, t) & \text { for } x \neq \xi(t) \\ \liminf _{x \uparrow \xi(t)} u(x, t) & \text { for } x=\xi(t)\end{cases}
$$

then the singularity at $x=\xi(t)$ is removable if and only if $\tilde{\boldsymbol{u}}$ is continuously differentiable at $x=\xi(t)$ for any $t \in(0, T)$.

Non-removable singularity
Theorem (Existence of a moving singularity)
Let $N>2, T>0$. Given any $\xi(t):[0, T] \rightarrow \mathbb{R}^{N}$ and any positive continuous function $a(t)$, there exists a solution with a singularity

$$
u(x, t) \simeq a(t)|x-\xi(t)|^{-N+2}
$$

at $x=\xi(t)$.

$$
\begin{cases}u_{t}=\Delta u+g(x, t), & x \in \mathbb{R}^{N}, t>0 \\ u(x, 0)=u_{0}(x), & x \in \mathbb{R}^{N}\end{cases}
$$

Representation formula of the solution:

$$
u(x, t):=\int_{\mathbb{R}^{N}} G(x, y, s) u_{0}(y) d y+\int_{0}^{s} \int_{\mathbb{R}^{N}} G(x, y, s) g(y, s) d y d s
$$

where

$$
G(x, y, t)=\frac{1}{(4 \pi t)^{-N / 2}} \exp \left(-\frac{|x-y|^{2}}{4 t}\right)
$$

Proof. Consider the initial value problem

$$
\left\{\begin{array}{l}
u_{t}-\Delta u=C_{N} a(t) \delta(x-\xi(t)), \quad x \in \mathbb{R}^{N}, t>0 \\
u(x, 0)=0, \quad x \in \mathbb{R}^{N},
\end{array}\right.
$$

where $\delta(\cdot)$ denotes the Dirac delta. Then

$$
u(x, t)=\int_{0}^{t} \frac{a(s)}{(4 \pi(t-s))^{N / 2}} \exp \left(-\frac{|x-\xi(s)|^{2}}{4(t-s)}\right) d s
$$

is the desired singular solution.
This is intuitively clear from the representation formula

$$
u(x, t)=\int_{0}^{t} \int_{\mathbb{R}^{N}} G(x, y, s) a(s) \delta(y-\xi(s)) d y d s=\int_{0}^{t} G(x, \xi(s), s) a(s) d s
$$

but this needs a proof.

Key observation

$$
\begin{aligned}
\exp \left(-\frac{|x-\xi(s)|^{2}}{4(t-s)}\right) & =\exp \left(-\frac{|x-\xi(t)+\xi(t)-\xi(s)|^{2}}{4(t-s)}\right) \\
& \simeq \exp \left(-\frac{|x-\xi(t)|^{2}}{4(t-s)}\right) \cdot\left(-\exp \left(-\frac{|t-s|^{2 \gamma}}{4(t-s)}\right)\right. \\
& \simeq \exp \left(-\frac{|x-\xi(t)|^{2}}{4(t-s)}\right)
\end{aligned}
$$

Related results

- If $\boldsymbol{\xi}(\boldsymbol{t})$ has less regularity, anomalous singularities may appear. In fact, the singularity could be weaker and asymmetric.
... Kan-Takahashi (2016)
- More general inhomogeneous term

$$
u_{t}-\Delta u=g(x, t): \text { Radon measure }
$$

.... Kan-Takahashi $(2016,2017)$

- Higher dimensional singular set with the codimension 3 or higher. ... Htoo-Takahashi-Y (2018)

[Dynamic Hardy potential]

with Jann-Long Chern, Jin Takahashi, Gyeongha Hwang

Parabolic equation with a Hardy potential

$$
u_{t}=\Delta u+\frac{\lambda}{\left|x-\xi_{0}\right|^{2}} u, \quad x \in \mathbb{R}^{N} \backslash\left\{\xi_{0}\right\}
$$

where $N \geq 3$. Baras-Goldstein (1984) showed that

$$
\lambda_{c}:=\frac{(N-2)^{2}}{4}>0
$$

is critical in the following sense:
(i) if $0<\lambda \leq \lambda_{c}$, there exists a global solution satisfying

$$
u(x, t) \geq c\left|x-\xi_{0}\right|^{-\alpha_{1}}, \quad\left|x-\xi_{0}\right|<1
$$

(ii) If $\boldsymbol{\lambda}>\boldsymbol{\lambda}_{c}$, then there exist no positive solutions.

Steady state

$$
\Delta u+\frac{\lambda}{\left|x-\xi_{0}\right|^{2}} u, \quad x \in \mathbb{R}^{N}
$$

Substituting $u=r^{-\alpha}, r=\left|x-\xi_{0}\right|$, then

$$
u_{r r}+\frac{N-1}{r} u_{r}+\frac{\lambda}{r^{2}}=\{\alpha(\alpha-1)+(N-1) \alpha+\lambda\} r^{-\alpha-2}=0 .
$$

Hence α must satisfy

$$
\alpha^{2}-(N-2) \alpha+\lambda=0
$$

If $\lambda<\lambda_{c}=(N-2)^{2} / 4$, the quadratic equation has two real roots $0<\alpha_{1}<\alpha_{2}<N-2$:

$$
\begin{gathered}
0<\alpha_{1}=\frac{N-2-\sqrt{(N-2)^{2}-4 \lambda}}{2}<\frac{N-2}{2} \\
<\alpha_{2}=\frac{N-2+\sqrt{(N-2)^{2}-4 \lambda}}{2}<N-2
\end{gathered}
$$

$\underline{\text { Heat equation with a dynamic Hardy term }}$

$$
u_{t}=\Delta u+V(x, t) u, \quad x \in \mathbb{R}^{N} \backslash\{\xi(t)\}
$$

Assumptions

- $V(x, t)$ is positive and continuous in $(x, t) \in \mathbb{R}^{N} \backslash\{\xi(t)\} \times[0, T]$, and is bounded for $|x|>1$.
- $V(x, t)$ is singular at $\xi(t)$:

$$
V(x, t)=\lambda(t)|x-\xi(t)|^{-2}+O\left(|x-\xi(t)|^{-2+\varepsilon}\right) \quad(x \rightarrow \xi(t))
$$

- $\xi=\xi(t)$ is γ-Hölder continuous with $\gamma>1 / 2$.
- $\lambda(t)$ is a smooth positive function of $t \in[0, T]$.

Example

$$
u_{t}=\Delta u+\frac{\lambda(t)}{|x-\xi(t)|^{2}} u, \quad x \in \mathbb{R}^{N} \backslash\{\xi(t)\}
$$

Minimal solution

Define

$$
V_{n}(x, t):=\min \{V(x, t), n\}
$$

If $u_{0} \in L^{1}\left(\mathbb{R}^{N}\right)$, then for each $n \in \mathbb{N}$, there exists a unique bounded solution of

$$
\begin{cases}u_{t}(x, t)=\Delta u(x, t)+V_{n}(x, t) u, & x \in \mathbb{R}^{N}, \quad t>0 \\ u(x, 0)=u_{0}(x), & x \in \mathbb{R}^{N}\end{cases}
$$

We denote the unique solution by $u_{n}(x, t)$. In this case, by the comparison theorem, $\left\{u_{n}(x, t)\right\}$ is a monotone increasing sequenced. Hence if $\left\{u_{n}(x, t)\right\}$ is bounded, then

$$
u(x, t):=\lim _{n \rightarrow \infty} u_{n}(x, t)
$$

exists. Then the parabolic regularity implies that the limiting function $u(x, t)$ satisfies the equation for $x \neq \xi(t)$. We call such $u(x, t)$ a minimal solution. For the existence of a minimal solution, it suffices to find a supersolution.

Theorem (Existence of a minimal solution)
Assume

$$
0<V(x, t) \leq \frac{\lambda}{|x-\xi(t)|^{2}}, \quad 0<|x-\xi(t)|<1
$$

for some $0<\lambda<\lambda_{c}$. If the initial value satisfies

$$
u_{0}(x) \leq C|x-\xi(0)|^{-k}, \quad k<\alpha_{2}(\lambda)+2=N-\alpha_{1}(\lambda)
$$

then there exists a minimal solution satisfying

$$
u(x, t) \leq C|x-\xi(t)|^{-\alpha_{1}(\lambda)}
$$

Idea of the proof

STEP 1: Existence in the simplest case (standing singularity).
STEP 2: Comparison with a moving singularity.
STEP 3: Gronwall-like argument.

STEP 1: Existence in the simplest case

$$
u_{t}^{+}=\Delta u^{+}+\frac{\lambda}{|x|^{2}} u^{+}, \quad x \neq 0
$$

Radial solution $u=v(r), r=|x|$, satisfies

$$
\begin{cases}v_{t}=v_{r r}+\frac{N-1}{r} v_{r}+\frac{\lambda}{r^{2}} v, & r>0, \quad t>0 \\ v(r, 0)=v_{0}(r), & r>0,\end{cases}
$$

where $v_{0}(r)$ is continuous in $r>0$. Setting $w(r, t):=r^{\alpha_{1}} v(r, t)$, we obtain the radial heat equation

$$
w_{t}=w_{r r}+\frac{d-1}{r} w_{r}, \quad r>0
$$

where $d=N-2 \alpha_{1}>2$.

Forward self-similar solution $w=t^{-l} \varphi(\rho), \rho=t^{-\frac{1}{2}} r$, must satisfy

$$
\varphi_{\rho \rho}+\frac{d-1}{\rho} \varphi_{\rho}+\frac{\rho}{2} \varphi_{\rho}+l \varphi=0, \quad \rho>0
$$

Lemma (Haraux-Weissler equation)
If $l<d / 2$, then the solution with $\varphi(0)=1$ remains positive for all $\rho>0$. Moreover, there exists a constant $c(l)>0$ such that

$$
\varphi(\rho)=c(l) \rho^{-2 l}+o\left(\rho^{-2 l}\right) \quad \text { as } \rho \rightarrow \infty
$$

Lemma (Radial singular solution)
If $u_{0}(x)=|x|^{-k}$ with $k<\alpha_{2}+2$, there exists a minimal solution given by

$$
u(x, t)=\frac{1}{c(l)} t^{-l}|x|^{-\alpha_{1}} \varphi\left(t^{-1 / 2}|x|\right)
$$

where $l=\left(k-\alpha_{1}\right) / 2$.
Hence there exists a minimal solution in the simple case.

STEP 2: Comparison with the moving singularity
Consider the equations

$$
u_{t}=\Delta u+V_{n}\left(x-\xi_{0}\right) u, \quad x \neq 0
$$

and

$$
\tilde{u}_{t}=\Delta \tilde{u}+V_{n}(x-\xi(t)) \tilde{u}, \quad x \neq 0
$$

with the same initial value

$$
u(x, 0)=\tilde{u}(x, 0)=u_{0}(x)\left(=\left|x-\xi_{0}\right|^{-k}\right)
$$

where $\xi_{0}=\xi(0)$. We shall estimate the difference

$$
w(x, t):=\tilde{u}(x-\xi(t), t)-u\left(x-\xi_{0}, t\right) .
$$

Since $\xi(t)$ may NOT be differentiable, we use the integral formulas
$u(x, t)=\int_{\mathbb{R}^{N}} G(x-y, t) u_{0}(y) d y+\int_{0}^{t} \int_{\mathbb{R}^{N}} G(x-y, t-s) V_{n}(y) u(y, s) d y d s$,
$\tilde{u}(x, t)=\int_{\mathbb{R}^{N}} G(x-y, t) u_{0}(y) d y+\int_{0}^{t} \int_{\mathbb{R}^{N}} G(x-y, t-s) V_{n}(y) \tilde{u}(y, s) d y d s$.

By the change of variables, we have

$$
\begin{gathered}
u\left(x+\xi_{0}, t\right)=\int_{\mathbb{R}^{N}} G(x-y, t) u_{0}\left(y+\xi_{0}\right) d y \\
\quad+\int_{0}^{t} \int_{\mathbb{R}^{N}} G(x-y, t-s) V_{n}(y) u\left(y+\xi_{0}, s\right) d y d s \\
\left.\tilde{u}(x+\xi(t), t)=\int_{\mathbb{R}^{N}} G\left(x-y+\xi(t)-\xi_{0}\right), t\right) u_{0}\left(y+\xi_{0}\right) d y \\
+
\end{gathered} \int_{0}^{t} \int_{\mathbb{R}^{N}} G(x-y+\xi(t)-\xi(s), t-s) V_{n}(y) \tilde{u}(y+\xi(s), s) d y d s .
$$

Hence $w(x, t):=\tilde{u}(x+\xi(t), t)-u\left(x+\xi_{0}, t\right)$ satisfies

$$
\begin{aligned}
w(x, t)= & \left.\int_{\mathbb{R}^{N}}\left\{G\left(x-y+\xi(t)-\xi_{0}, t\right)-G(x-y, t)\right\} u_{0}\left(y+\xi_{0}\right)\right\} d y \\
& +\int_{0}^{t} \int_{\mathbb{R}^{N}} G(x-y+\xi(t)-\xi(s), t-s) V_{n}(y) w(y+\xi(s), s) d y d s \\
& +\int_{0}^{t} \int_{\mathbb{R}^{N}}\{G(x-y+\xi(t)-\xi(s), t-s)-G(x-y, t-s)\} \\
= & I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

Lemma (Estimate of the heat kernel)
If $0<\delta<1$, then there exists a constant $C=C(\delta)>0$ such that the following inequalities hold:
(i) $\left|G\left(x-y+\xi(t)-\xi_{0}, t\right)-G(x-y, t)\right|$

$$
\leq C t^{-N / 2-1+\gamma}\left\{|x-y|+t^{\gamma}\right\} \exp \left(-\frac{(1-\delta)|x-y|^{2}}{4 t}\right)
$$

(ii) $G(x-y+\xi(t)-\xi(s), t-s)$

$$
\leq \frac{1}{(4 \pi(t-s))^{N / 2}} \exp \left(-(1-\delta) \frac{|x-y|^{2}}{4(t-s)}\right)
$$

(iii) $|G(x-y+\xi(t)-\xi(s), t-s)-G(x-y, t-s)|$

$$
\leq C(t-s)^{-N / 2-1+\gamma}\left\{|x-y|+(t-s)^{\gamma}\right\} \exp \left(-\frac{(1-\delta)|x-y|^{2}}{4(t-s)}\right)
$$

Lemma (Estimate of the integrals)
There exists a constant $C=C(\delta)>0$ and $R=R(\delta)$ independent of x, t, n such that the following inequalities hold for $|x|<R$:
(i) $\left|I_{1}\right| \leq C|x|^{2 \gamma-1} \int_{\mathbb{R}^{N}} G(x-y, t /(1-2 \delta)) u_{0}(y+\xi(0)) d y$.
(ii) $\left|I_{2}\right| \leq C|x|^{2 \gamma-1}$

$$
\cdot \int_{0}^{t} \int_{\mathbb{R}^{N}} G(x-y,(t-s) /(1-2 \delta)) \cdot V_{n}(y)|w(y, t-s)| d y d s
$$

(iii) $\left|I_{3}\right| \leq C|x|^{2 \gamma-1}$

$$
\int_{0}^{t} \int_{\mathbb{R}^{N}} G(x-y,(t-s) /(1-2 \delta)) V_{n}(y) u(y, t-s) d y d s
$$

STEP 3: Gronwall-like argument

$$
\begin{aligned}
|w(x, t)|= & I_{1}+I_{2}+I_{3} \\
\leq & \int_{0}^{t} \int_{\mathbb{R}^{N}} G(x-y,(t-s) /(1-2 \delta)) \frac{\lambda}{|y|^{2}}|w(y, s)| d y d s \\
& \quad+C_{1}|x|^{\gamma-1 / 2} u^{+}(x, t /(1-2 \delta))+C_{2}
\end{aligned}
$$

for all $x \in \mathbb{R}^{N}$. Let $W(x, t)$ denote the right-hand side of this inequality. Then we have

$$
\begin{aligned}
W_{t} \leq & \frac{1}{1-2 \delta} \Delta W+\frac{\lambda}{|x|^{2}} W \\
& +C\left\{|x|^{\gamma-1 / 2} u_{t}^{+}(x, t /(1-2 \delta))-\Delta\left\{|x|^{\gamma-1 / 2} u^{+}(x, t /(1-2 \delta))\right\}\right\}
\end{aligned}
$$

This implies that W is a subsolution of

$$
\begin{aligned}
W_{t}= & \frac{1}{1-2 \delta} \Delta W+\frac{\lambda}{|x|^{2}} W \\
& +C\left\{|x|^{\gamma-1 / 2} u_{t}^{+}(x, t /(1-2 \delta))-\Delta\left\{|x|^{\gamma-1 / 2} u^{+}(x, t /(1-2 \delta))\right\}\right\}
\end{aligned}
$$

On the other hand,

$$
W^{+}:=A e^{A t}|x|^{-\alpha_{1}} t^{-l} \varphi(\rho), \quad \rho=(1-2 \delta)^{1 / 2} t^{-1 / 2}|x|
$$

is a supersolution if $A>0$ is sufficiently large. Since $\tilde{\boldsymbol{u}}$ satisfies

$$
\tilde{u}<u^{+}+A e^{A t}|x|^{-\alpha_{1}} t^{-l} \varphi(\rho) \leq C t^{-l-1}|x|^{-\alpha_{1}}
$$

for small $|x|$, the proof is (almost) complete.

Theorem (Lower bound)
Assume

$$
V(x, t) \geq \frac{\lambda}{|x-\xi(t)|^{2}}, \quad 0<|x-\xi(t)|<1
$$

for some $\boldsymbol{\lambda}>0$. Then any positive solution satisfies

$$
u(x, t) \geq C|x-\xi(t)|^{-\alpha_{1}(\lambda)}, \quad|x-\xi(t)|<1
$$

Idea of the proof:

STEP 1: Consider the simplest case.
STEP 2: Compare with the moving singularity.
STEP 3: Gronwall-like argument.

$$
u_{t}^{-}=\Delta u^{-}+\frac{\lambda}{|x|^{2}} u^{-}, \quad x \neq 0
$$

Radial solution $u=v(r, t), r=|x|$, satisfies

$$
v_{t}=v_{r r}+\frac{N-1}{r} v_{r}+\frac{\lambda}{r^{2}} v, \quad r>0 .
$$

Setting $w(r, t):=r^{\alpha_{1}} v(r, t)$, we have the radial heat equation

$$
w_{t}=w_{r r}+\frac{d-1}{r} w_{r}, \quad r>0
$$

where $d=N-2 \alpha_{1}>2$.

Lemma (Positivity)
If $d \geq 2$, any nonnegative and nontrivial solution satisfies $w(r, t)>0$ for $r \geq 0$ and $t>0$.

Proof. Let $G^{d}(r, t)$ be the d-dimensional radial heat kernel defined by

$$
G^{d}(q, r, t):=\int_{|y|=q} G(x-y, t) d y, \quad r=|x|
$$

whichl is explicitly written as

$$
G^{d}(q, r, t)=\frac{1}{4 t(q r)^{d / 2-1}} I_{d / 2-1}(q r / 2 t) \exp \left(-\frac{q^{2}+r^{2}}{4 t}\right),
$$

where $I_{d / 2-1}(z)$ is the modified Bessel function of the first kind of order $d / 2-1$. Then

$$
w^{d}(r, t)=\int_{0}^{\infty} G^{d}(q r, t) w_{0}(q) d q
$$

satisfies the radial heat equation with

$$
w_{r}^{d}(0, t)=0, \quad w^{d}(r, 0)=w_{0}(r)
$$

If $w_{0}(r) \geq 0$ and $w_{0}(r) \not \equiv 0$, then $w^{d}(r, t)>0$ for all $r \geq 0$ and $t>0$.

Lemma (Minimality)
$\boldsymbol{w}^{d}(r, t)$ is the minimal nonnegative solution.

Proof. $w^{d}(r, t)$ is a solution with the Neumann boundary condition at $r=0$. We define a subsolution by

$$
w^{-}(r, t)=\max \left\{w(r, t)-\varepsilon r^{-d+2}, 0\right\}
$$

Here $w=r^{-d+2}$ is a singular steady state. Hence for every $\varepsilon>0$, we have $w(r, t)>w^{-}(r, t)$ for $r>0$ and $t>0$. Taking the limit as $\varepsilon \downarrow 0$, we obtain $w(r, t) \geq w(r, t)$. This proves the lemma.

Summary for the existence
Heat equation with a dynamic Hardy term

$$
u_{t}=\Delta u+V(x, t) u, \quad x \in \mathbb{R}^{N} \backslash\{\xi(t)\}
$$

Assumptions

- $V(x, t)$ is positive and continuous in $(x, t) \in \mathbb{R}^{N} \backslash\{\xi(t)\} \times[0, \infty)$, and is bounded for $|x|>1$.
- $V(x, t)$ is singular at $\xi(t)$:

$$
V(x, t)=\lambda(t)|x-\xi(t)|^{-2}+O\left(|x-\xi(t)|^{-2+\varepsilon}\right) \quad(x \rightarrow \xi(t))
$$

- $\xi=\xi(t)$ is γ-Hölder continuous with $\gamma>1 / 2$.
- $\lambda(t)$ is a smooth positive function of $t \in[0, T]$.

If $\lambda(t)<\lambda_{c}$, the quadratic equation

$$
\alpha^{2}-(N-2) \alpha+\lambda(t)=0
$$

has two positive roots $0<\alpha_{1}(t)<\alpha_{2}(t)$.

Theorem (Minimal solution)
(i) Assume

$$
0<V(x, t) \leq \frac{\lambda}{|x-\xi(t)|^{2}}, \quad 0<|x-\xi(t)|<1
$$

for some $0<\boldsymbol{\lambda}<\boldsymbol{\lambda}_{c}$. If the initial value satisfies

$$
u_{0}(x) \leq C|x-\xi(0)|^{-k}, \quad k<\alpha_{2}(\lambda)+2=N-\alpha_{1}(\lambda)
$$

then there exists a minimal solution satisfying

$$
u(x, t) \leq C|x-\xi(t)|^{-\alpha_{1}(\lambda)}, \quad|x-\xi(t)|<1
$$

(ii) Assume

$$
V(x, t) \geq \frac{\lambda}{|x-\xi(t)|^{2}}, \quad 0<|x-\xi(t)|<1
$$

for some $\boldsymbol{\lambda}>\boldsymbol{0}$. Then any positive solution satisfies

$$
u(x, t) \geq C|x-\xi(t)|^{-\alpha_{1}(\lambda)}, \quad|x-\xi(t)|<1
$$

Corollary

Suppose that $\lambda(t)<\lambda_{c}$ for $t \in[0, T]$. If the initial value satisfies

$$
u_{0}(x) \leq C|x-\xi(0)|^{-k}, \quad k<\alpha_{2}(\lambda)+2=N-\alpha_{1}(\lambda)
$$

for some $k<\alpha_{2}(0)+2$, then for any $\varepsilon>0$, the minimal solution satisfies

$$
c_{1}|x|^{-\alpha_{1}(t)+\varepsilon} \leq u(x, t) \leq c_{2}|x|^{-\alpha_{1}(t)-\varepsilon}, \quad|x|<1
$$

for every $t \in(0, T]$.

Corollary
Suppose that $\lambda(t) \equiv \lambda \in\left(0, \lambda_{c}\right)$ is constant. If initial value satisfies

$$
u_{0}(x) \leq C|x-\xi(0)|^{-k}, \quad k<\alpha_{2}(\lambda)+2=N-\alpha_{1}(\lambda)
$$

for some $k<\alpha_{2}(0)+2$, then the minimal solution satisfies

$$
c_{1}|x|^{-\alpha_{1}}<u(x, t)<c_{2}|x|^{-\alpha_{1}}, \quad|x|<1
$$

for every $t \in(0, T]$.

Theorem (Nonexistence)
If $\boldsymbol{\lambda}(0)>\lambda_{c}$, then there are no positive solutions.

Proof. Consider the integral equation

$$
\begin{array}{rl}
u=T[u]:=\int_{\mathbb{R}^{N}} & G(x-y, t) u_{0}(y) d y \\
& +\int_{0}^{t} \int_{\mathbb{R}^{N}} G(x-y, t-s) \frac{\lambda}{|y-\xi|^{2}} u(y, s) d y d s
\end{array}
$$

Suppose $\lambda(0)>\lambda_{c}$. If $U>|x|^{-\alpha_{1}(0)}$ for $|x|<1$, then

$$
T[U]>(1+\delta) U(x, t) \quad|x|<1
$$

[Other results]

- More precise asymptotics in the case $\lambda(t)$ depends on t.

$$
u(x, t) \sim|x-\xi(t)|^{-\alpha_{1}(t)}(\log |x-\xi(t)|)^{\beta}
$$

- Critical case $\lambda(t)=\lambda_{c}$.
- Existence of a solution with a stronger singularity

$$
u \sim \boldsymbol{C}|\boldsymbol{x}-\boldsymbol{\xi}(t)|^{-\alpha_{2}(t)}
$$

- Uniqueness

$$
\begin{aligned}
u_{1}(x, 0)= & u_{2}(x, 0),\left|u_{1}(x, t)-u_{2}(x, t)\right|=o\left(|x|^{-\alpha_{1}}\right) \\
& \Longrightarrow u_{1} \equiv u_{2} .
\end{aligned}
$$

- Classification

Part III: Nonlinear equations

[III-1: Nonlinear diffusion]

with Marek Fila, Jin Takahashi

Equation of porous medium type

$$
u_{t}=\Delta u^{m}, \quad x \in \mathbb{R}^{N} \backslash\{\xi(t)\}, \quad t>0
$$

where $m>0$ and $\xi \in C^{1}\left([0, \infty) ; \mathbb{R}^{N}\right)$.
$\underline{\text { Singular steady state }}$

$$
u=\varphi(x):=K|x|^{-\frac{N-2}{m}}, \quad x \neq 0
$$

where K is an arbitrary positive constant.

$$
u_{t}=\Delta u^{m}=m \operatorname{div}\left(u^{m-1} \nabla u\right)
$$

$m<1 \Longrightarrow$ slow diffusion for large u $m>1 \Longrightarrow$ fast diffusion for large u

Known facts:

- Vázquez-Winkler (2011): $0<m<\frac{N-2}{N}$

Evolution of standing singularities of proper (minimal) solutions.

- Lukkari $(2010,2012): m>\frac{N-2}{N-1}$

$$
v_{t}-\Delta v^{m}=M(y, t)
$$

where M is a nonnegative Radon measure on $\mathbb{R}^{n} \times \mathbb{R}$.

Consider

$$
u_{t}=\Delta u^{m}, \quad x \in \mathbb{R}^{\boldsymbol{N}} \backslash\{\xi(t)\}
$$

where $\xi \in C^{1}$ and the derivative ξ^{\prime} is locally Hölder continuous.

Theorem (Existence)

Let $n \geq 3$ and $m>m_{*}:=(N-2) /(N-1)$. Then for any positive function $k \in C^{1}$, there exists a solution such that

$$
v(y, t)=k(t)|x-\xi(t)|^{-\frac{N-2}{m}}+O\left(|x-\xi(t)|^{-\lambda}\right)
$$

as $y \rightarrow \xi(t)$ for each $t \geq 0$, where $\lambda<(N-2) / m$.

Remarks:

- $m=\frac{N-2}{N-1}$

The critical case looks delicate. We have not found any obstacle for the existence, but our method cannot be modified easily.

- $m<\frac{N-2}{N-1}$

The result of Chasseigne (2003) on the "pressure equation" indicates that there is no solution with a moving singularity.

- $\frac{N-2}{N}<m<\frac{N-2}{N-1}$

The problem is well-posed for a standing singularity, but there is no solution with a moving singularity.

- $m<\frac{N-2}{N}$

Formal analysis suggests that the singularity is "half frozen". The singularity may NOT be asymptotically radially symmetric.

$$
u_{t}=\Delta u^{m}=m \operatorname{div}\left(u^{m-1} \nabla u\right)
$$

$$
\frac{N-2}{N-1}<m<1 \Longrightarrow \quad \text { slow diffusion for large } u
$$

$$
u_{t}=\Delta u^{m}=m \operatorname{div}\left(u^{m-1} \nabla u\right)
$$

$$
\frac{N-2}{N}<m<\frac{N-2}{N-1} \Longrightarrow \text { very slow diffusion for large } u
$$

$$
u_{t}=\Delta u^{m}=m \operatorname{div}\left(u^{m-1} \nabla u\right)
$$

$m<\frac{N-2}{N} \Longrightarrow$ extremely slow diffusion for large u

[III-2: Absorption equation]

with Jin Takahashi

Absorption equation

$$
u_{t}=\Delta u-u^{p}
$$

Stationary problem

$$
\Delta u-u^{p}=0, \quad x \neq \xi
$$

If $1<p<\frac{N}{N-2}$, there is a radially symmetric singular solution

$$
u=K|x-\xi|^{-\frac{2}{p-1}},
$$

where

$$
K=K(N, p):=\left\{\left(\frac{2}{p-1}\right)^{2}-\frac{2(N-2)}{p-1}\right\}^{\frac{1}{p-1}}>0 .
$$

Veron (1981)
If $1<p<\frac{N}{N-2}$, any isolated singularity is one of the following three types:
(i) Removable singularity.
(ii) $u(x)=c|x-\xi|^{2-N}+\cdots$, where c is an arbitrary constant.
(iii) $u(x)=K|x-\xi|^{-\frac{2}{p-1}}+\cdots$

Brezis-Veron (1980), Baras-Pierre (1984)
If $p \geq \frac{N}{N-2}$, then any isolated singularity is removable.

Removability of a moving singularity
Consider positive solutions of

$$
u_{t}=\Delta u-u^{p}, \quad x \neq \xi(t), \quad t \in(0, T)
$$

Theorem (Removability)
Suppose that $\xi(t)$ is at least $1 / 2-$ Hölder continuous in $t \in[0, T]$.
(i) If $1<p<\frac{N}{N-2}$ and

$$
u(x, t)=o\left(|x-\xi(t)|^{-(N-2)}\right) \quad(x \rightarrow \xi(t))
$$

locally uniformly in $t \in(0, T)$, the singularity is removable.
(ii) If $p \geq \frac{N}{N-2}$, any singularity is removable.

Outline of the proof
STEP 1: By applying the method of Poláčik-Quittner-Souplet (2007), derive an a priori estimates which depend only on the parabolic distance from the boundary of a time-space domain.

Time-space domain

STEP 2: Use the estimate to show that u satisfies the absorption equation in $\Omega \times(0, T)$ in the distribution sense.

STEP 3: Apply the parabolic regularity theory by Brézis and Friedman (1983) to show $u \in L_{\text {loc }}^{\infty}(\Omega \times(0, T))$ and $u \in C^{2,1}(\Omega \times(0, T))$.

Classification of singularities
Formal asymptotic analysis suggests that non-removable singularities can be classified as follows:

- Type F: $u(x, t)=a(t)|x-\xi(t)|^{-(N-2)}+\cdots$.
(Fundamental)
- Type $\mathrm{N}: u(x, t)=K|x-\xi(t)|^{-\frac{2}{p-1}}+\cdots$.
(Nonlinear)
- Type A: Others
(Anomalous)

$$
u_{t}=\Delta u-u^{p} \quad \text { on } \mathbb{R}^{N} \backslash\{\xi(t)\}, \quad t \in(0, T)
$$

Theorem (Existence of Type F)
Let

$$
1<p<\frac{N}{N-2}
$$

Suppose that $\xi(t) \in C^{1}(0, T)$. Then for any positive function $a(t) \in$ $C^{1}(0, T)$, there exists a singular solution if Type F :

$$
u(x, t)=a(t)|x-\xi(t)|^{-(N-2)}+\cdots
$$

Outline of the proof

STEP 1: Let U be a solution of

$$
U_{t}-\Delta U=a(t) \delta(x-\xi(t)) \quad\left(x \in \mathbb{R}^{N}\right)
$$

where $a(t) \in C^{1}(0, T)$. Then we have a singular solution such that

$$
U(x, t)=C_{N} a(t)|x-\xi(t)|^{-(N-2)}+\cdots
$$

If $p<\frac{N}{N-2}$, then U is a nice approximate solution.
STEP 2: Construct suitable comparison functions by modifying the approximate solution U.

STEP 3: Construct a sequence of approximate solutions on annular domains, and show the convergence to the desired solution.

Singularities of Type N for

$$
u_{t}=\Delta u-u^{p} \quad \text { on } \mathbb{R}^{N} \backslash\{\xi(t)\}, \quad t \in(0, T)
$$

Theorem (Existence of Type N)
Let

$$
1<p<\frac{N}{N-2}
$$

Suppose that $\xi(t) \in C^{1}(0, T)$. Then there exists a singular solution of Type N :

$$
u(x, t)=K|x-\xi(t)|^{-\frac{2}{p-1}}+\cdots
$$

Idea of the proof

Let U be a solution of

$$
U_{t}-\Delta U=\delta(x-\xi(t)) \quad\left(x \in \mathbb{R}^{N}\right)
$$

Then we have a singular solution such that

$$
U(x, t)=C_{N}|x-\xi(t)|^{-(N-2)}+\cdots
$$

The singular solution of (A) is well approximated by

$$
u(x, t) \simeq K\left\{\frac{U(x, t)}{C_{N}}\right\}^{\frac{2}{(p-1)(N-2)}}=K|x-\xi(t)|^{-\frac{2}{p-1}}+\cdots
$$

The remaining part of the proof is similar to the case of Type F.

Non-existence of Type A

Theorem (Non-existence of Type A)
Let

$$
1<p<\frac{N}{N-2}
$$

Suppose that $\xi(t)$ is $\mathbf{1 / 2 - H o ̈ l d e r}$ continuous in $t \in[0, T]$. If

$$
u=\alpha(t)|x-\boldsymbol{\xi}(t)|^{-\beta(t)}+\cdots
$$

for some positive functions $\alpha(t) \in C(0, T)$ and $\beta(t) \in C^{1}(0, T)$. Then one of the following holds for $t \in(0, T)$:
(i) Type F: $\beta(t) \equiv N-2$.
(ii) Type $\mathrm{N}: \alpha(t) \equiv K$ and $\beta(t) \equiv \frac{2}{p-1}$.

Idea of the proof
Consider the balance of flux on an annular region.

Inward and outward flux.
The inward flux and the outward flux are balanced only if

$$
u(x, t)=\alpha(t)|x-\xi(t)|^{-(N-2)}+\cdots
$$

or

$$
u(x, t)=K|x-\xi(t)|^{-\frac{2}{p-1}}+\cdots
$$

Summary for the absorption equation with a moving singularity

$$
\begin{gathered}
u_{t}=\Delta u-u^{p} \quad \text { on } D \backslash\{\xi(t)\} . \\
u(x, t) \sim|x-\xi(t)|^{-\beta}
\end{gathered}
$$

[Part III-3: Fujita equation]

with Shota Sato

Fujita equation

$$
u_{t}=\Delta u+|u|^{p-1} u
$$

Stationary problem (Lane-Emden equation)

$$
\Delta u+u^{p}=0, \quad u>0 \quad \text { on } \mathbb{R}^{N} \backslash\{\xi\}
$$

- There are radially symmetric singular solutions such that

$$
u= \begin{cases}C|x-\xi|^{-(N-2)}+\cdots & \text { for } p<\frac{N}{N-2} \\ L|x-\xi|^{-\frac{2}{p-1}} & \text { for } p>\frac{N}{N-2}\end{cases}
$$

where $C>0$ is an arbitrary constant and

$$
L=L(N, p):=\left\{-\left(\frac{2}{p-1}\right)^{2}+\frac{2(N-2)}{p-1}\right\}^{\frac{1}{p-1}}>0
$$

Gidas-Spruck (1981)
Let u be a stationary solution.
(i) If $1<p \leq \frac{N}{N-2}$, then any isolated singularity is removable.
(ii) Let $\frac{N}{N-2}<p<\frac{N+2}{N-2}$. If $u=o\left(|x-\xi|^{-\frac{2}{p-1}}\right)$, then the singularity is removable.
$\underline{\text { Removability of a standing singularity } \xi(t) \equiv \xi_{0} \text { for }}$
Hirata-Ono (2014)
Let $1<p<\frac{N}{N-2}$. The singularity is removable if and only if

$$
u=o\left(\left|x-\xi_{0}\right|^{-(N-2)}\right) \quad\left(x \rightarrow \xi_{0}\right)
$$

$\underline{\text { Classification of singularities }}$

$$
u_{t}=\Delta u+u^{p}, \quad x \neq \xi(t)
$$

Formal asymptotic analysis suggests that non-removable singularities can be classified as follows:

- Type F: $u(x, t)=a(t)|x-\xi(t)|^{-(N-2)}+\cdots$.
(Fundamental)
- Type $\mathrm{N}: u(x, t)=L|x-\xi(t)|^{-\frac{2}{p-1}}+\cdots$.
(Nonlinear)
- Type A: Others
(Anomalous)

Existence of a solution with a moving singularity

$$
u_{t}=\Delta u+u^{p}, \quad x \in \mathbb{R}^{N} \backslash\{\xi(t)\}, t \in(0, T)
$$

Kan-Takahashi (2016) (Existence of Type F)
If $p<\frac{N}{N-2}$, then there exists a singular solution of Type F:

$$
u(x, t)=a(t)|x-\xi(t)|^{-(N-2)}+\cdots
$$

Theorem (Existence of Type N)
If

$$
\frac{N}{N-2}<p<p_{c}=\frac{N+2 \sqrt{N-1}}{N-4+2 \sqrt{N-1}}
$$

then there exists a singular solution of Type N :

$$
u(x, t)=L|x-\xi(t)|^{-\frac{2}{p-1}}+a(t)|x-\xi(t)|^{-\lambda(N, p)}+\cdots
$$

Why $\frac{N}{N-2}<p<p_{c}$?
We formally expand the solution $u(x, t)$ in terms of $r=|x-\xi(t)|$ as follows:

$$
u(x, t)=L r^{-m}+a(t) r^{-\lambda}+\sum_{i=1}^{[m]} b_{i}(\omega, t) r^{-m+i}+v(y, t) .
$$

Substitute this expansion into the equation and equate each power of r to obtain a system of equations for $b_{i}(\omega, t)$. These equations are solvable and the remainder term $v(y, t)$ must satisfy

$$
v_{t}=\Delta v+\xi_{t} \cdot \nabla v+\frac{p L^{p-1}}{|y|^{2}} v+o\left(|y|^{-2}\right)
$$

This equation is well-posed if and only if

$$
0<p L^{p-1}<\frac{(N-2)^{2}}{4}
$$

These inequalities hold if

$$
N>2 \text { and } \frac{N}{N-2}<p<p_{c}=\frac{N+2 \sqrt{N-1}}{N-4+2 \sqrt{N-1}} .
$$

Summary for the Fujita equation

$$
\begin{gathered}
u_{t}=\Delta u+u^{p}, \quad x \neq \xi(t) \\
u(x, t) \sim|x-\xi(t)|^{-\beta}
\end{gathered}
$$

Comparison of the absorption equation and the Fujita equation

$$
u(x, t) \sim|x-\xi(t)|^{-\beta}
$$

[Other results for the Fujita equation]

- Time-global solution with a moving singularity.
... Sato-Y (2010)
- Sudden appearance of a moving singularity.
... Sato (2011)
- Emergence of an anomalous singularity.
... Sato-Y (2012)
- Convergence to a singular steady state
... Sato-Y (2012), Hoshino-Y (2016)

Part IV: Related topics
[Higher dimensional singularities]

$\Gamma(t)$ is a curve or a surface with codimension $\tilde{N} \geq 3$.

Htoo-Takahashi-Y (Higher dimensional singularity.
If $\tilde{N} /(\tilde{N}-2)<p<p_{c}(\tilde{N})$, then the Fujta equation has a solution of the form

$$
u(x, t)=\tilde{L}|x-\xi|^{-\frac{2}{p-1}}+a(\xi, t)|x-\xi|^{-\lambda(\tilde{N}, p)}+\cdots,
$$

where \tilde{N} is the codimension, $\tilde{L}=\tilde{L}(\tilde{N}, p), \xi=\xi(x, t)$ is the nearest point on $\Gamma(t)$, and $a(\xi, t)$ is arbitrary.

The asymptotic profile depend on the distance from $\Gamma(t)$. For the proof, we need to consider the effect of the shape of $\Gamma(t)$.

Remarks.

- Codimension 2: Logarithmic term appears in asymptotic profile.
- When $1<p<N /(N-2)$, a quite general result was obtained by Kan-Takahashi $(2016,2017)$ for

$$
u_{t}-\Delta u=M(x, t)
$$

where M is a nonnegative Radon measure on $\mathbb{R}^{N} \times \mathbb{R}$.
[Singulairity of codimension 1]

$$
\begin{cases}u_{t}=\Delta u-f(u), & x \in \Omega(t), t>0 \\ u \rightarrow+\infty, & x \rightarrow \partial \Omega(t), t>0\end{cases}
$$

where $f \in C([0, \infty)$) is a nondecreasing nonnegative function and $\Omega(t)$ is a bounded domain in \mathbb{R}^{N} depending on t.

Large solution with a moving boundary.

For f, we assume $f(u)>0$ and the Keller-Osserman condition

$$
\int^{\infty} \frac{d t}{\sqrt{F(t)}}<\infty, \quad F(t)=\int_{0}^{t} f(s) d s
$$

The the one-dimensional problem has a solution:

$$
\begin{cases}\phi^{\prime \prime}(x)-f(\phi)=0, & x>0 \\ \phi(x) \rightarrow \infty, & x \downarrow 0\end{cases}
$$

$$
\begin{cases}u_{t}=\Delta u-f(u), & x \in \Omega(t), t>0 \\ u \rightarrow+\infty, & x \rightarrow \partial \Omega(t), t>0\end{cases}
$$

Bandle-Kan-Y (Large solution)

There exists a solution of the form

$$
u(x, t)=\phi(d(x, t))+o(d(x, t)) \quad \text { as } x \rightarrow \partial \Omega
$$

where

$$
d(x, t):=\operatorname{dist}(x, \partial \Omega(t))=\inf _{\xi \in \partial \Omega(t)}|x-\xi|, \quad x \in \Omega(t)
$$

For the proof, we need to consider the effect of the motion and shape of $\partial \Omega(t)$, which appears in the second-order term. In fact, to construct suitable comparison functions, we use a solution of the equation

$$
\phi^{\prime \prime}-\mu \phi^{\prime}-f(\phi)=0,
$$

where μ depends on the curvature and the normal velocity of $\partial \Omega(t)$.
[Point singularity on boundary]

$$
\begin{cases}u_{t}=\Delta u+u^{p}, & x \in \Omega \\ \frac{\partial}{\partial \nu} u=0 & x \in \partial \Omega \backslash\{\xi(t)\} \\ u(x, t) \rightarrow \infty, & x \rightarrow \xi(t)\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain.

Moving singularity on the boundary.

Assumptions:

- $f(u)=u^{p}+O\left(u^{q}\right)$ as $u \rightarrow \infty$, where

$$
\begin{aligned}
& p_{s g}<p< \begin{cases}p_{*} & \text { for } N \leq 5 \\
\frac{3 N+3}{3 N-5} & \text { for } N>5\end{cases} \\
& 0 \leq q<q_{*}(p)(<p)
\end{aligned}
$$

- $\partial \Omega \in C^{1+\alpha}(\alpha>0)$.
- $\xi(t) \in C^{1}$.

Htoo-Y (Boundary singularity)
For any given C^{1}-function $a(t)$, there exists a solution of the form

$$
u(x, t)=L|x-\xi(t)|^{-m}+a(t)|x-\xi(t)|^{-\lambda_{2}}+o\left(|x-\xi(t)|^{-\lambda_{2}}\right)
$$

as $x \rightarrow \xi(t)$, where $\lambda_{2}=\lambda_{2}(N, p)<m$.

Remark:

- Not only the motion of a singularity but also the curved boundary affect the asymptotic profile of the singularity.
- If $\partial \Omega \in C^{1+\alpha}$, then the boundary effect is minor.

On-going projects and future plans

[Equations]

- Other parameter regions
- Other equations (types, nonlinearities, nonlocal, anisotropic)
- Other boundary conditions
- Navier-Stokes
... Karch-Zheng (2015), Kozono (?)
[Solutions]
- Sign-changing solutions
- Sudden appearance and disappearance
- Collision and splitting
... Nonuniqueness. Immediate regularization. Classification.
- Traveling solutions, self-similar solutions, periodic solutions.
- Global existence and blow-up
[Singularities]
- More general singular set
- Anomalous singularity
- Dipole singularity, quadrupole singularity, hexapole singularity, octupole singularity, ... multipole singularity.
- Complicated motion of singularities
... γ-Hölder $(\gamma<1 / 2)$ continuity of $\boldsymbol{\xi}(t)$.
Fractional Brownian motion
[Applications]
- PDE theory
- Geometric flow
... Harmonic flow, Ricci flow, Yamabe flow, Curvature flow
- Stochastic process
- Modelling

References

1. S. Sato and E. Yanagida, Solutions with moving singularities for a semilinear parabolic equation, J. Differential Equations 246 (2009), 724-748.
2. S. Sato and E. Yanagida, Forward self-similar solution with a moving singularity for a semilinear parabolic equation, Discrete Contin. Dyn. Syst. 26 (2010), 313-331.
3. S. Sato and E. Yanagida, Singular backward self-similar solutions of a semilinear parabolic equation, Discrete Contin. Dyn. Syst. Ser. S 4 (2011), 897-906.
4. S. Sato and E. Yanagida, Appearance of anomalous singularities in a semilinear parabolic equation, Commun. Pure Appl. Anal. 11 (2012), no. 1, 387-405.
5. S. Sato and E. Yanagida, Asymptotic behavior of singular solutions of a semilinear parabolic equation, Discrete Contin. Dyn. Syst. 32 (2012), 4027-4043.
6. T. Kan and J. Takahashi, On the profile of solutions with time-dependent singularities for the heat equation, Kodai Math. J. 37 (2014), 568-585.
7. J. Takahashi and E. Yanagida, Time-dependent singularities in the heat equation, Commun. Pure Appl. Anal. 14 (2015), no. 3, 969-979.
8. M. Hoshino and E. Yanagida, Convergence rate to singular steady states in a semilinear parabolic equation, Nonlinear Analysis 131 (2016), 98-111.
9. J. Takahashi and E. Yanagida, Time-dependent singularities for a semilinear parabolic equation with absorption, Commun. Contemp. Math. 18 (2016), 1550077 (27 pages).
10. T. Kan and J. Takahashi, Time-dependent singularities in semilinear parabolic equations: Behavior at the singularities, J. Diff. Equations 260 (201 6), 7278-7319.
11. T. Kan and J. Takahashi, Journal of Differential Equations Time-dependent singularities in semilinear parabolic equations: Existence of solutions Journal of Differential Equations J. Diff. Equations 263 (2017), 6384-6426.
12. Khin Phyu Phyu Htoo and E. Yanagida, Singular solutions of a superlinear parabolic equation with homogeneous Neumann boundary conditions, Nonlinear Analysis 151 (2017), 96-108.
13. Khin Phyu Phyu Htoo, J. Takahashi and E. Yanagida, Higher dimensional moving singularities in a superlinear parabolic equation, J. Evol. Equ. 18 (2018), 1575-1593.
14. M. Fila, J. Takahashi and E. Yanagida, Solutions with moving singularities for equations of porous medium type, Nonlinear Analysis 179 (2019), 237253.
