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1 Introduction on Nonlinear PDEs on compact met-

ric graphs

Recently, mathematical studies of nonlinear PDEs on compact or non-compact metric

graphs have been done in various topics, e.g. the mathematical analysis of the existence

and stability of the ground state for the nonlinear Schrödinger equation ([AST], [KNP]

and the references therein) and the studies the existence and the asymptotic behavior of

solutions for reaction-diffusion equations or systems ( [Y], [JM], [DLPZ], [CC] and the

references therein).

In this talk, we present recent studies on the effect of metric graphs on the location

of peaks of stationary solutions for some singular perturbed variational problem and for

Schnakenberg model, one of the pattern formation model which describe autocatalytic

phenomena in chemical reaction.

Basic Question: How the network structure of the metric graph G affects the structure

of solutions to PDEs on G?
The first part of this talk is based on a joint work with Prof. Masakata Shibata (Meijo

Univ.) and the second part is based on a joint work with Prof. Yuta Ishii (National

Institute of Technology, Ibaraki College).

1.1 Sobolev spaces on compact metric graphs

Let G := (E, V ) is a connected and compact metric graph, which consists of the set

of edges E := {ej}Nj=1 and the set of vertices V . Each edge e ∈ E can be written as

e = {v, v′} with associated vertices v and v′. For each edge e = {v, v′} ∈ E, with

v, v′ ∈ V , we identify e = {v, v′} with the interval [0, l(e)] and v = 0, v′ = l(e) with a local

coordinate, where l(e) is the length of the edge. We denote

Vint := {v ∈ V | deg(v) ≥ 3}, Vend := {v ∈ V | deg(v) = 1}.

We may assume that V = Vint ∪ Vend. In some case, we assume that the graph has no

self-loop, namely each edge e = {v, v′} ∈ E has different vertices (v ̸= v′).

Now, we introduce Sobolev spaces on a compact metric graph G = (V,E). For l = 0, 1, 2,

define

H l(G) := {u ∈ C(G) | u(e) := u|e ∈ H l(e) (∀e ∈ E)}

and L2(G) := H0(G). Although one can consider complex-valued functions, in this talk

we only consider real-valued function on the metric graphs. In particular, H1(G) is a

Hilbert space with the inner product:

(u, v)H1(G) :=

∫
G
uv dx+

∫
G
u′v′ dx =

N∑
j=1

∫
ej

(
u(e)(x)v(e)(x) + (u(e))′(x)(v(e))′(x)

)
dx
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and the associated norm:

∥u∥H1(G) =
√

(u, u)H1(G) =

(∫
G
(|u′|2 + |u|2) dx

) 1
2

.

It is well-known that on an interval I a function u ∈ H1(I) can be identified with a

continuous function on I and satisfies the formula of the integration by parts. Since

u ∈ H1(G) is continuous, u still satisfies the formula of the integration by parts. Thus we

have the following estimate for u ∈ H1(G):

|u(P )− u(Q)| ≤ dG(P,Q)
1
2∥u′∥

1
2

L2(G) (∀P,Q ∈ G),

where dG(P,Q) is the natural distance on G between P and Q. Also, there exists a

constant C such that

∥u∥L∞(G) ≤ C∥u∥H1(G).

So, as in the interval case, we have the compact embedding H1(G) ⊂ C(G). We also

consider the Sobolev space

H1
0 (G) := {u ∈ H1(G) | u(e)(v) = 0 (∀v ∈ Vext such that e ≻ v)}.

1.2 nonlinear elliptic PDEs on compact metric graphs

We briefly explain a weak solution u for a nonlinear elliptic equation −du′′ = g(x, u)

on a compact metric graph G = (V,E) under several boundary conditions, where d > 0

is a diffusion constant and g(x, t) is a certain given nonlinearity. If u ∈ H1(G) satisfies

d

∫
G
u′φ′ dx =

∫
G
g(x, u(x))φ(x) dx (∀φ ∈ H1(G)),

we say that u ∈ H1(G) is a (Neumann-)weak solution to the problem:

−du′′(x) = g(x, u(x)) (∀e ∈ E),∑
e≻v

∂u(e)(v) = 0 (∀v ∈ Vint),

and

∂u(e)(v) = 0 (∀v ∈ Vext such that e ≻ v).

Here, e ≻ v means that e is incident to v ∈ V and ∂u(e)(v) is the outward derivative of

u(e) at v. Note that the condition
∑

e≻v ∂u
(e)(v) = 0 (∀v ∈ Vint) is called the Kirchhoff

condition which naturally appears at v ∈ Vint as in the Neumann boundary condition.

Actually, for a nice nonlinearity g(x, t), we can see that a weak solution u ∈ H1(G) belongs
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to H2(G) and satisfies the Kirchhoff conditions at vertices v ∈ Vint and the Neumann

boundary condition at vertices v ∈ Vext. In a similar way, if u ∈ H1
0 (G) satisfies

d

∫
G
u′φ′ dx =

∫
G
g(x, u(x))φ(x) dx (∀φ ∈ H1

0 (G)),

we say that u ∈ H1
0 (G) is a (Dirichlet-)weak solution to the problem:

−du′′(x) = g(x, u(x)) (∀e ∈ E),∑
e≻v

∂u(e)(v) = 0 (∀v ∈ Vint),

and

u(e)(v) = 0 (∀v ∈ Vext such that e ≻ v).

When d > 0 is small, we call these problems as singular perturbed nonlinear elliptic

problems. Solutions for the singular perturbed problems are often localized and have a

spiky profile at several points.

We use the notation:

H2
KN(G) := {u ∈ H2(G) | u satisfies the Kirchhoff conditions at v ∈ Vint and the

Neumann conditions at v ∈ Vext},
H2

KD(G) := {u ∈ H2(G) | u satisfies the Kirchhoff conditions at v ∈ Vint and the

Dirichlet conditions at v ∈ Vext}.

2 Least energy solution to a singularly perturbed

variational problem

Consider positive solutions to the following problem with small constant ϵ > 0:

−ϵ2u′′(x) + u(x) = f(u(x)) (x ∈ G), u(x) > 0 (x ∈ G), (1)∑
e≻v

∂u(v) = 0 (v ∈ Vint), (2)

When Vend ̸= ∅, we also impose Neumann boundary condition:

∂u(v) = 0 (∀v ∈ Vend)

or Dirichlet boundary condition

u(v) = 0 (∀v ∈ Vend),

respectively. Typical nonlinearity is as follows:

f(t) := |t|p−1t (1 < p < +∞).
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For u ∈ H1(G), we define the energy:

Jϵ(u) :=
ϵ2

2

∫
G
|u′(x)|2 dx+

∫
G
u(x)2 dx−

∫
G
F (u(x)) dx,

where F (t) :=
∫ t

0
f(s) ds. In particular, when f(t) = |t|p−1t, we have

Jϵ(u) :=
ϵ2

2

∫
G
|u′(x)|2 dx+

∫
G
u(x)2 dx− 1

p+ 1

∫
G
|u(x)|p+1 dx,

Define

σϵ(G) := inf
u∈H1(G),u ̸=0

(
sup
t>0

Jϵ(tu)

)
.

Proposition 2.1 Fix ϵ > 0. There exists a least energy solution uϵ which satisfies

σϵ(G) = Jϵ(uϵ) and has the least energy among all nontrivial solutions.

Remark 1 We note the following characterization:

σϵ(G) = inf
w∈Nϵ(G

Jϵ(w),

where

Nϵ(G) :=
{
w ≠ 0, w ∈ H1(G) | ϵ2

∫
G
|w′|2 dx+

∫
G
|w|2 dx =

∫
G
|w|p+1 dx

}
.

Nϵ(G) is called the Nehari manifold and its is easy to see that all non-trivial solutions

belongs to Nϵ(G). If f(t) = |t|p−1t, uϵ is also obtained as a minimizer to the following

variational problem:

Σϵ(G) := inf

{
ϵ2
∫
G |v

′|2 dx+
∫
G |v|

2 dx(∫
G |v|p+1 dx

) 2
p+1

| v ̸= 0, v ∈ H1(G)
}
.

Actually, we have the relation:

σϵ(G) = (
1

2
− 1

p+ 1
)Σϵ(G)

p+1
p−1 .

(proof.) The proof is standard. In particular, for the case f(t) := |t|p−1t, by using the

remarks above and the compact embedding H1(G) ⊂ C(G), it is easy to see the existence

of the non-negative minimizer vϵ( ̸= 0) to Σϵ(G). Since the strong maximum principle

also holds on the metric graphs, we can conclude vϵ(x) > 0 (x ∈ G). For certain tϵ > 0,

uϵ(x) = tϵvϵ(x) is a minimizer to σϵ. This completes the proof.

Question: Effect of the geometry of G on the asymptotic shape of uϵ and the location

of the maximum point xϵ of uϵ as ϵ → 0.
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2.1 main results

For simplicity, we assume f(t) = |t|p−1t with 1 < p < +∞. We state main results in

[KS].

Theorem 1 (Neumann problem) Suppose Vint ̸= ∅ and Vend ̸= ∅. Then, for suffi-

ciently small ϵ > 0 we have the followings:

(1) xϵ ∈ Vend.

(2) Let xϵ ∈ e ∈ E and idenfify e = [0, l(e)] with xϵ = 0. Then, uϵ(ϵx) → Φ(x) in

C2
loc([0,+∞), where

−Φ′′ + Φ = f(Φ), Φ(x) > 0 (x ∈ R), Φ(0) = maxΦ, Φ(x) → 0 (|x| → ∞).

(3) e is the longest edge in Eend := {e ∈ E | e ≻ v ∈ Vend}, i.e.

l(e) = max
e′∈Eend

l(e′)(:= l∗N).

(4) The asymptotic behavior of the energy:

σϵ = ϵ

{
σ

2
+ exp

(
−2l∗N

ϵ
(1 + o(1))

)}
(ϵ → 0).

Here, σ > 0 is the least energy associated with Φ on R.

Theorem 2 (Dirichlet problem) Suppose Vint ̸= ∅ and G has no self-loop. (may

Vend = ∅). Then, for sufficiently small ϵ > 0 we have the followings:

(1) xϵ ∈ G \ V .

(2) Let xϵ ∈ e ∈ E and idenfify e = [0, l(e)]. Then xϵ → l(e)
2
. Then, uϵ(xϵ + ϵx) → Φ(x)

in C2
loc(R). (3) e is the longest edge in E, i.e.

l(e) = max
e′∈E

l(e′)(:= l∗D).

(4) The asymptotic behavior of the energy:

σϵ = ϵ

{
σ + exp

(
− l∗D

ϵ
(1 + o(1))

)}
(ϵ → 0).

•Related results:

(1) Ni and Takagi [NT1, NT2] studied the same Neumann problem on a domain Ω ⊂
RN . When N ≥ 2, the least energy solution concentrates near the point P ∈ ∂Ω which

has the maximum mean curvature.

(2) Ni and Wei [Ni-Wei] studied the same Dirichlet problem on a domain Ω ⊂ RN . When

N ≥ 2, the least energy solution concentrates near the point P ∈ ∂Ω which has the

maximum distance to ∂Ω.
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(3) Dovetta et al (2020) [DGMP] studied essentially same Neumann problem:

−u′′ + λu = up (x ∈ G)

with large λ > 0 on metric graphs. However, their result does not give the precise location

of the maximum point xϵ ∈ V and the precise asymptotic expansion of the energy σϵ. They

also construct one-peak solution which concentrates at any vertex v ∈ V and multi-peak

solutions which concentrate at several vertices by using the Lyapunov-Schmidt method.

(4) In [BMP] they proved similar results for the special case f(t) = |t|2t by using elliptic

functions. Our results can be applied fro more general nonlinearity.

(5) Shibata [Shi2] also constructed a solution vϵ which concentrates near each vertex

v ∈ Vint with degv = 3 such that Jϵ(vϵ) = ϵ(3
2
σ + o(1)).

2.2 Sketch of the proof

We only give a sketch of the proof of Theorem 1.

Let u(y) := u(ϵy) for y ∈ Gϵ := 1
ϵ
G, which is the rescaled graph w.r.t. the origin

identifying the edge e ∈ E with [0, l(e)]. Then, we have

Jϵ(u) = ϵIϵ(u),

where

Iϵ(u) = I(u;Gϵ) :=
1

2

∫
Gϵ

(u′(y))2 + (u(y))2 dy − 1

p+ 1

∫
Gϵ

|u(y)|p+1 dy.

So,

σϵ = ϵσϵ,

where

σϵ = inf
v∈H1(Gϵ),v ̸=0

(
sup
t>0

I(tv;Gϵ)

)
= I(uϵ).

2.2.1 Upper bound

Take ê∗ = [0,
l∗N
ϵ
]. Write l∗ := l∗N , for simplicity. Consider the function wϵ ∈ H1(Gϵ) as

follows:

wϵ(y) :=


Φ(y) (0 ≤ y ≤ l∗

ϵ
− 1)

Φ( l
∗

ϵ
− 1)( l

∗

ϵ
− y) ( l

∗

ϵ
− 1 ≤ y ≤ l∗

ϵ
)

0 (y ∈ Gϵ \ ê∗).
Then, we have

σϵ ≤ sup
t>0

I(twϵ;Gϵ) = sup
t>0

I(twϵ; [0,
l∗

ϵ
]) = I(tϵwϵ; [0,

l∗

ϵ
])

= I(tϵΦ; [0,
l∗

ϵ
− 1]) + I(tϵwϵ; [

l∗

ϵ
− 1,

l∗

ϵ
])

7



for some tϵ > 0. Note tϵ = 1+ o(1), since Φ is the least energy solution on [0,+∞). Here,

note that

I(tϵΦ; [0,
l∗

ϵ
− 1]) = I(tϵΦ; [0,+∞))− I(tϵΦ; [

l∗

ϵ
− 1,+∞))

≤ I(tϵΦ; [0,+∞)) ≤ sup
t>0

I(tΦ; [0,+∞)) =
σ

2
.

Here, we used I(tϵΦ; [
l∗

ϵ
− 1,+∞)) ≥ 0, since Φ is small enough on [ l

∗

ϵ
− 1,+∞). On the

other hand, it follows

I(tϵwϵ; [
l∗

ϵ
− 1,

l∗

ϵ
]) ≤ t2ϵ

2

∫ l∗
ϵ

l∗
ϵ
−1

(w′
ϵ)

2 + (wϵ)
2

=
2

3
t2ϵΦ

2(
l∗

ϵ
− 1) ≤ Φ2(

l∗

ϵ
− 1).

Thus, we obtain

σϵ ≤
σ

2
+ Φ2(

l∗

ϵ
− 1).

Here, we note Φ(x) = exp(−x(1 + o(1))) as x → +∞. Therefore, we conclude

σϵ ≤
σ

2
+ exp(−2l∗

ϵ
(1 + o(1))).

2.2.2 Lower bound

First, we can show that ϵ has its maximum at some xϵ = v ∈ V . Actually, this follows

from the rough upper bound σϵ ≤ σ
2
+ o(1).

Let xϵ = v ∈ V ∈ ê1 with ê1 = [0, l(e1)
ϵ
] with the identification xϵ = 0. Write l := l(e1),

for simplicity. Then, we want to claim that

Claim: We have

σϵ ≥
σ

2
+ exp(−2l

2
(1 + o(1))).

Let ∂ê = {v1, v0} with v1 := xϵ ∈ Vend, v0 ∈ Vint and let k := deg(v0) ≥ 3. Let

{êi}ki=1 = {ê ∈ Ê | ê ≻ v0}.
Decompose Gϵ into G ′

ϵ := ({v1, v0}, ê1) and G ′′
ϵ := (V \ {v1}, Ê \ {ê1}).

Now,

σϵ = sup
t>0

I(tuϵ) ≥ I(tuϵ;G ′
ϵ) + I(tuϵ;G ′′

ϵ )

for any t > 0. Define vϵ ∈ H1(0,+∞) such that

vϵ(y) =

{
uϵ(y) (0 ≤ y ≤ l

ϵ
)

mϵe
l
ϵ
−y ( l

ϵ
≤ y < +∞)

where mϵ := uϵ(
l
ϵ
) = uϵ(v0). Choose tϵ > 0 so that

I(tϵvϵ; [0,+∞)) = sup
t>0

I(tvϵ; [0,+∞)) ≥ σ

2
.
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Note that tϵ = 1 + o(1), since we can show vϵ → Φ. Now,

I(tϵuϵ;G ′
ϵ) = I(tϵvϵ; [0,+∞))− I(tϵvϵ; [

l

ϵ
,+∞)).

So, we have

σϵ ≥
σ

2
− I(tϵvϵ; [

l

ϵ
,+∞)) + I(tuϵ;G ′′

ϵ ).

Here,

I(tϵvϵ; [
l

ϵ
,+∞)) ≤ t2ϵ

2

∫ ∞

l
ϵ

(v′ϵ)
2 + (vϵ)

2 =
t2ϵ
2
m2

ϵ =
1

2
m2

ϵ(1 + o(1)).

Thus, it follows

σϵ ≥
σ

2
− 1

2
m2

ϵ(1 + o(1)) + I(tuϵ;G ′′
ϵ ).

First, since ∥uϵ∥L∞(G′′
ϵ ) = mϵ = o(1), we have

I(tuϵ;G ′′
ϵ ) =

t2ϵ
2

∫
G′′
ϵ

(uϵ
′)2 + (uϵ)

2 dx− tp+1
ϵ

p+ 1

∫
G′′
ϵ

|uϵ|p+1 dx

=
1

2
(1 + o(1))

∫
G′′
ϵ

(uϵ
′)2 + (uϵ)

2 dx

=
1

2
(1 + o(1))

∫
G′′
ϵ

(uϵuϵ
′)′ + |uϵ|p+1 dx

≥ 1

2
(1 + o(1))

∫
G′′
ϵ

(uϵuϵ
′)′

=
1

2
(1 + o(1))

( k∑
i=2

(∂uϵ|êi(v0))uϵ(v0)

)
.

Claim 1: For each i = 2, 3, · · · , k, we have

(∂uϵ|êi(v0))uϵ(v0)

)
= m2

ϵ(1 + o(1)).

It follows

σϵ ≥
σ

2
+

k − 2

2
m2

ϵ(1 + o(1)).

Claim 2:

mϵ = uϵ(v0) ≥
2M0

k + 1
e−

l
ϵ (1 + o(1)),

where M0 = Φ(0).

(proof.) Consider

−z′′ + z = 0 on (0,
l

ϵ
),

with z(0) = uϵ(0), z
′( l

ϵ
) + kz( l

ϵ
) = 0. By the Kirchhoff condition at v0 and a comparison

theorem, we have

uϵ(y) ≥ z(y) (y ∈ (0,
l

ϵ
)).
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Thus, by using the explicit expression of z(y), we get

mϵ = uϵ = uϵ(v0)

≥ 2uϵ(0)

(k + 1)e
l
ϵ − (k − 1)e−

l
ϵ

=
2

k + 1
e−

l
ϵ (Φ(0) + o(1))(1 + o(1))

=
2M0

k + 1
e−

l
ϵ (1 + o(1)).

Therefore,

σϵ ≥
σ

2
+

k − 2

2
(
2M0

k + 1
)2e−

2l
ϵ (1 + o(1)) =

σ

2
+ exp(−2l

ϵ
(1 + o(1))).

Remark 2 Let E ′
end := {e ∈ Eend | l(e) = l∗N}. If the number of E ′

end is greater than two,

what happens? Recently, when f(t) = |t|p−1t with p > 1, Shibata [S1] answered in the

following way: Let deg v(e∗) := the smallest number of deg v(e) among e ∈ E ′
end, where

v(e) ∈ Vint. Then, he proved

σϵ =
σ

2
+ Cp

deg v(e∗)− 2

deg v(e∗)
exp

(
−2l∗N

ϵ

)
(1 + o(1)).

So, the least energy solution uϵ concentrates on v(e∗).

3 Spiky stationary solutions to the Schnakenberg

model with heterogeneity

Consider positive stationary solutions to

ut = ϵ2uxx − u+ g(x)u2v, ϵvt = Dvxx +
1

L
− cg(x)

ϵ
u2v, (x ∈ G, t > 0), (3)∑

e≻v

∂u(e)(v) = 0,
∑
e≻v

∂v(e)(v) = 0 (v ∈ V ). (4)

Here, L := |G| be the total length of G, ϵ > 0, D > 0, c > 0 are constants, g(x) is a

positive continuous function on G with g ∈ C3(e) for each e ∈ E.　
In the case G = (V,E) with E = {e}, e = [−1, 1], V = {±1}, g(x) = 1, in the seminal

paper [IWW], Iron, Wei and Winter constructed a solution Uϵ, vϵ) such that

uϵ(x) ∼
1

6c
w(

x

ϵ
), vϵ(0) ∼ 6c

for small ϵ > 0 and studied its stability. Here, w(x) is the ground state solution to

−w′′ + w = w2 on R with w(0) = maxw. They also constructed multi-peak symmetric

solutions and studied their stability.

Question: Can we construct such solutions on a given metric graph? How the geometry

of the metric graph determines the location of the concentration points?

We give an answer to this question. We will explain that the geometry of the metric

graphs affects the location of concentration points through the associated Green function

on the metric graph.

10



3.1 The Green function for the metric graph

We introduce the Green function on a metric graph G, which plays an important role

in our analysis.

For
∫
G f dx = 0, a solution η of the following problem:

Dη′′(x) = f(x) (x ∈ G),
∑
e≻v

∂η(v) = 0 (v ∈ V )

can be express as

η(x)− 1

L

∫
G
η(s) ds =

∫
G
G(x, s)f(s) ds.

We also impose
∫
G G(x, s) ds = 0. The function G(x, s) is the Green function associated

with the metric graph G which plays an important role in our study.

We assume some conditions on G(x, s). In particular, there exist functions mij(t), t =

(t1, tj) and Kij(y, z) such that

G(y + ti, z + tj)−G(ti, z + tj) = mij(t)y +Ki,j(y, z) (5)

for ti, y + ti ∈ ei and tj, z + tj ∈ ej with the following properties:

• |Kij| = O(|y|);
•
∫ r

−r
Kij(y, z)P (z) dz is an even function in y, where P (z) is an even function in z for

small r > 0.

3.1.1 The Green function for Y -shaped graph

For the Green function for Y -shapede graph, we have

Lemma 3.1 For x ∈ ej, we have

G(x, s) =
1

D

{
1

2

[
|x− s| − (x+ s)

]
χej(s)−

1

2L
(x− lj)

2 +
l2j
2L

− 1

2L

3∑
k−1

(s− lk)
2χek(s) +

1

2L

3∑
k=1

l2kχek(s)−
1

3L2

3∑
k=1

l3k.

For the proof of this Lemma, see [KS1]. So, if x, s ∈ e1, it follows

G(x, s) =
1

D

{
1

2
(|x− s| − (x+ s))− 1

2L
(x− l1)

2 +
l21
2L

− 1

2L
(s− l1)

2 +
1

2L
l21 −

1

3L2

k∑
k=1

l3k

}
.

11



Thus, we get

G(y + t1, z + t1)−G(t1, z + t1) =
1

D

{
1

2
(|y − z| − |z|)− (

1

2
+

t1 − l1
L

)y − 1

2L
y2
}

:= m11(t)y +
1

2D
(|y − z| − |z|) +O(y2)

:= m11(t)y +K11(y, z) +O(y2),

where

m11(t) = − 1

D
(
1

2
+

t1 − l1
L

), K11(y, z) :=
1

2D
(|y − z| − |z|).

Note that ∫ r

−r

(|y − z| − |z|)(w(z
ϵ
)χ(z))2 dz

in an even function in y.

3.2 Construction of one peak solution

Now, we state the abstract theorem on the construction of pne-peak solution under

certain assumption the Green function.

Take any edge e ∈ E. Define the function F (t) for t ∈ e as follows:

F (t) := m(t) +
6cg′(t)

g(t)2
,

where m(t) := m11(t).

Theorem 3 ([IK1]) Assume the condition (5). For some edge e ∈ E, we assume that

there exists t0 ∈ (the interior point in e) such that

F (t0) = 0, F ′(t0) ̸= 0.

There exists a stationary solution (uϵ, vϵ) such that |tϵ − t0| ≤ Cϵ
3
4 and

uϵ(x) =
1

6c
w(

x− tϵ
ϵ

)χ(
x− tϵ
r0

) + ϕtϵ(x) := wϵ,tϵ(x) + ϕtϵ(x),

with ∥ϕtϵ∥H2(Gϵ) ≤ C0ϵ, and

vϵ(tϵ) =
6c

g(tϵ)
+O(ϵ).

Here, w(x) is the ground state solution to −w′′ + w = w2 on R with w(0) = maxw and

χ(x) is a suitable even cut-off function around x = 0.

When g(x) = 1 and G is the Y -shaped graph, i.e. G = (V,E), E = {ej}3j=1, V = {O} ∪
{Pj}3j=1, we can say the precise location of the peak of uϵ.
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Theorem 4 ([IK1]) Let g(x) ≡ 1 and G be a Y -shaped graph. Assume on the length

l1 := |e1| of the edge e1 satisfies l1 >
L
2
. Let x0 be the point which has the distance L

2
from

the boundary ∂G. Then, for sufficiently small ϵ > 0 there exists a solution (uϵ, vϵ) such

that:

uϵ(x) =
1

6c
w(

x− xϵ

ϵ
)χ(x) + ϕϵ(x), ∥ϕϵ∥H2(Gϵ) ≤ Cϵ, vϵ(xϵ) = 6c+O(ϵ).

Here, |xϵ − x0| ≤ Cϵ
3
4 .

Remark 3 When g(x) = 1, Ishii proved that this solution is stabe for any D > 0.

However, certain heterogeneity produces the threshould which destabilizes the one-peak

solution (see Ishii-K. [IK2] and Ishii [I1,I2].)

Remark 4 Theorem says that the location of peak of one-peak solution is determined by

non-local effect of the metric graph, in particular does not depend on the distance from

the junction.

Remark 5 For each x ∈ Vext, we can construct a boundary peak solution as an even

solution for the symmetrically extended graph (see e.g. [IK2]).

3.3 Heuristic argument on the approximated solution

Why we look for the solution like

uϵ ∼
1

6c
w(

x− xϵ

ϵ
), vϵ(xϵ) ∼

6c

g(xϵ)
?

Assume that

uϵ ∼ Aw(
x− xϵ

ϵ
)χ(x), vϵ(xϵ) ∼ ξ.

From the second equation, we have

0 = −D

∫
G
v′′ dx =

∫
G

(
1

L
− c

ϵ
gu2v

)
dx = 1− c

ϵ

∫
G
gu2v dx.

Now, define

ũ(y) := u(xϵ + ϵy), ṽ(y) := v(xϵ + ϵy), g̃(y) := g(xϵ + ϵy).

Then y ∈ G̃ϵ ∼ R and

0 = 1− c

∫
G̃ϵ

g̃ũ2ṽ dy ∼ 1− cg(xϵ)

∫
R

A2w(y)2ξ dy.

Since,
∫
R
w2(y) dy = 6, it follows

1 = 6cg(xϵ)A
2ξ.
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On the other hand, we have

−ũ′′(y) + ũ(y) = g̃(y)(ũ(y))2ṽ(y).

Thus, we have

−Aw′′(y) + Aw(y) ∼ g(xϵ)A
2w(y)2ξ2.

Since, −w′′ + w = w2, it follows

1 = g(xϵ)Aξ.

These relations imply

A =
1

6c
, ξ =

6c

g(xϵ)
.

3.4 How about two-peak solutions?

We present only a typical result for the Y -shaped graph.

In this case, we can construct two type of two-peak solutions. First, we consider the

case in which two peaks locate on a different edges, e.g. e1 and e2. Assume l1 := |e1| > L
4
,

l2 := |e2| > L
4
and l1 = l2. We identify the junction v0 as 0 on each edges. Under this

identification, Let t01 := l1 − L
4
∈ e1 and t02 := l2 − L

4
∈ e2. Then, we have a two-peak

solution which behaves

uϵ(x) ∼
2∑

k=1

1

12c
w(

x− tk
ϵ

), vϵ(tk) ∼ 12c (k = 1, 2)

with tk = tk(ϵ) ∼ t0k.

Remark 6 In this case, the locations of two peaks feel the total length and the distance

from the junction.

Secondly, we consider the case in which two peaks locate on a same edge, e.g. e1. Assume

l1 > 3
4
L. Let t01 := l1 − L

4
∈ e1, t

0
2 := l1 − 3

4
L ∈ e1. Then, we have a two-peak solution

which behaves

uϵ(x) ∼
2∑

k=1

1

12c
w(

x− tk
ϵ

), vϵ(tk) ∼ 12c (k = 1, 2)

with tk = tk(ϵ) ∼ t0k.

3.5 Basic strategy of the proof

First, for a given u we can solve the second equation

−Dv′′ +
c

ϵ
g(x)u2v =

1

L
(x ∈ G)
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with the Kirchhoff condition at vertices. We denote by v(x) := T [u](x). Since

D(T [u])′′ =
c

ϵ
g(x)u2(x)(T [u])(x)− 1

L
.

So, we have

T [u](x)− 1

L

∫
G
T [u] ds =

∫
G
G(x, y)

{
c

ϵ
g(y)u2(y)(T [u](y))

}
dy.

So, the problem is reduced to find a solution u ∈ H2
KN(G) of

S(u) := −ϵ2u′′(x) + ug(x)u2(x)(T [u])(x) = 0 (x ∈ G).

We will find a solution in the form

u(x) =
1

6c
w(

x− t

ϵ
)χ(

x− t

r0
) + ϕ(x)

with |t− t0| ≤ Cϵ
3
4 and

v(x) ∼ ξ(t) =
6c

g(t)
.

Then, actually,

v(x) = T [wϵ,t + ϕ](x).

Now, using

T [wϵ,t + ϕ] = T [wϵ,t] + ⟨T ′(wϵ,t), ϕ⟩+N(ϕ),

we arrive at

S(wϵ,t + ϕ)

:= −ϵ2ϕ′′ + ϕ− 2gwϵ,tT [wϵ,t]ϕ− gw2
ϵ,t⟨T ′(wϵ,t), ϕ⟩+Rϵ +N1(ϕ) = 0,

where Rϵ := −ϵ2w′′
ϵ,t + wϵ,t − g(x)T [wϵ,t]w

2
ϵ,t and N1(ϕ) is a higher order term of ϕ. Now,

we consider the equation for z(y) := z(ϵy) fo a function z(x). Thus,

S(wϵ,t + ϕ)

:= −ϕ
′′
+ ϕ− 2gwϵ,tT [wϵ,t]ϕ− gwϵ,t

2⟨T ′(wϵ,t), ϕ⟩+Rϵ +N1(ϕ) = 0.

Let

Lϵ,tϕ := −ϕ
′′
+ ϕ− 2gwϵ,tT [wϵ,t]ϕ− gwϵ,t

2⟨T ′(wϵ,t), ϕ⟩.

Then, we have

Lϵ,tϕ+Rϵ +N1(ϕ) = 0.

Let Π⊥
ϵ,t be the projection L2(Gϵ) to

C⊥
ϵ,t := {f ∈ L2(Gϵ) |

∫
Gϵ

fwϵ,t
′ dy = 0}.
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We first solve

Π⊥
ϵ,t ◦

(
Lϵ,tϕ+Rϵ +N1(ϕ)

)
= 0

on ϕ ∈ B(C0ϵ) ∩K⊥
ϵ,t for a suitable C0, where

B(C0ϵ) := {u ∈ H2
KN(Gϵ) | ∥ϕ∥H2(Gϵ) ≤ C0ϵ},

K⊥
ϵ,t := {u ∈ H2

KN(Gϵ) |
∫
Gϵ

fwϵ,t
′ dy = 0}.

• Claim: L⊥
ϵ,t := Π⊥

ϵ,t ◦ Lϵ,t is a bijection from K⊥
ϵ,t to C⊥

ϵ,t. Moreover, there exists a

constant λ > 0 such that

∥L⊥
ϵ,tϕ∥L2(Gϵ) ≥ λ∥ϕ∥H2(Gϵ) (∀ϕ ∈ K⊥

ϵ,t).

We note ∥Rϵ∥L2(Gϵ) ≤ C1ϵ for some C1 > 0. Then, by using the contraction mapping

principle, for a suitable C0 such that C0 >
2C1

λ
, we have a unique solution ϕϵ,t ∈ B(C0ϵ)∩

K⊥
ϵ,t of

ϕ = −(L⊥
ϵ,t)

−1{Rϵ +N1(ϕ)} := M(ϕ).

Finally, determine t in the region |t− t0| ≤ Cϵ
3
4 so that

W (t) :=
1

ϵ

∫
Gϵ

S(wϵ,t + ϕϵ,t)ξ(t)wϵ,t
′ dy = 0.

Recall

S(wϵ,t + ϕϵ,t) = −wϵ,t
′′ + wϵ,t − gw2ϵ, t

2
T (xϵ,t) + Lϵ,t(ϕϵ,t) +N1(ϕϵ,t).

Here, we have
1

ϵ

∣∣∣∣∫
Gϵ

Lϵ,t(ϕϵ,t)wϵ,t
′ dy

∣∣∣∣ ≤ 1

ϵ
×O(ϵ∥ϕϵ,t∥L2) ≤ O(ϵ)

and
1

ϵ

∣∣∣∣∫
Gϵ

N1(ϕϵ,t)wϵ,t
′ dy

∣∣∣∣ ≤ O(ϵ).

We also note that, since w̃ϵ,t(y) = wϵ,t(t + ϵy) = 1
6c
w(y)χ( ϵy

r0
) is an even function and

w̃ϵ,t
′(y) is an odd function, we have

1

ϵ

∫
Gϵ

(−wϵ,t
′′ + wϵ,t)wϵ,t

′ dy =

∫
G
(−w′′

ϵ,t + wϵ,t)w
′
ϵ,t dx =

1

ϵ

∫
R

(−w̃ϵ,t
′′ + w̃ϵ,t)w̃ϵ,t

′ dy = 0.

Thus we have

W (t) = −1

ϵ

∫
R

g̃w̃ϵ,t
2T̃ [wϵ,t]ξ(t)w̃ϵ,t

′ dy +O(ϵ).

Now, using

g̃(y) = g(t+ ϵy) = g(t) + g′(t)ϵy +O(ϵ2y2),
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we have

W (t) = −g(t)ξ(t)

ϵ

∫
R

(
T̃ [wϵ,t](y)− T̃ [wϵ,t](0)

)
w̃ϵ,t

2w̃ϵ,t
′ dy

− g′(t)ξ(t)

∫
R

yT̃ [wϵ,t](y)w̃ϵ,t
2w̃ϵ,t

′ dy +O(ϵ).

Here, we also need the following key estimates:

T̃ [wϵ,t](y)− T̃ [wϵ,t](0) = ϵm(t)y +K(y) +O(y2ϵ2)

and

T̃ [wϵ,t](y) = ξ(t) +O(ϵy).

We arrive at

W (t) =
1

(6c)3

(
−g(t)ξ(t)m(t)

∫
R

yw2(y)w′(y) dy − g((t)ξ(t)2
∫
R

yw2(y)w′(y) dy

)
+O(ϵ).

Using ξ(t) = 6c
g(t)

and∫
R

yw(y)2w′(y) dy =

∫
R

(
w3

3
)′ dy = −1

3

∫
R

w3 dy,

we get for some constant C ̸= 0

W (t) = C(−m(t)− 6cg′(t)

g(t)2
) +O(ϵ) = CF (t) +O(ϵ)

for |t − t0| ≤ Cϵ
3
4 . So, there exists tϵ such that |tϵ − t0| ≤ Cϵ

3
4 with W (tϵ) = 0. This

completes the proof.
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