04E2054 松雪公彦

03E1302	和田	康資	
指導教員	河村	良行	

1. 緒言

羽ばたき運動を用いて飛行する鳥や昆虫は固定翼の 飛翔体とは異なり,自由度の高い飛行を行っている. そのような羽ばたき飛行を人工的に模擬することがで きれば,これまでの固定翼機とは違うより高効率な飛 翔体を作ることができる可能性がある.

本研究室ではこれまで小型羽ばたき飛翔体の研究を 行ってきており、その結果よく長100 mmの羽ばたき 飛翔体の開発に成功した.しかし異なる翼の形状や大 きさによって得られる空気力や効率の違い、また翼膜 の動きと空気力の関係もわかっていない.本研究では、 平均揚力測定と動的揚力測定を行い、またその翼や翼 膜の動きを解析するための高解像度ストロボ撮影装置 を開発し、翼膜の動きの撮影を行った.

2. 実験装置と実験方法

2.1 実験装置

本研究室では,翼の形状を2枚翼機,交叉4枚翼機, 翼長を200 mm,150 mm,100mmの翼を用い研究を 行った.

羽ばたき運動によって発生する空気力を測定するた めの装置の概要を図1に示す.計測装置はロードセル (VISHAY社 MODEL 1004,定格荷重3 kgf),動ひず み測定器(NEC 三栄,AS1503),低速風洞,オシロス コープ,定電圧電源,パーソナルコンピュータによっ て構成される.2 個のロードセルを用い,水平力,垂 直力を測定する.ギア部に反射型フォトインタラプタ を搭載し,翼が特定の位置に来た瞬間をトリガとして 用いた.2 枚翼機は翼が最も下にあるとき,4 枚翼機 は翼が上下に完全に開いている状態をトリガとした. またジョイント部とギアボックスを一対にし各所に軽 量化を施して測定時の機械振動を減少させるようにし た.

2.2 飛行状態の再現

飛行中の羽ばたき翼が得る空気力を計測するため に,低速風洞を用いて模擬的な飛行状態を再現した. 低速風洞から一定の風速を送り,羽ばたき翼を一定周 波数で羽ばたかせ,風による抗力と羽ばたき運動の推 力が釣り合うことで飛行状態を再現できる.この際, 風速の変化によって羽ばたき周波数も変化するため, 設定周波数になるように入力電圧を操作し羽ばたき周 波数を調節する.また同時に推力の平均値が0gfにな るように風速も調節することで飛行状態を再現した. 2.3 デジタルフィルタリング

ロードセルからの信号には羽ばたき運動によって得 られる空気力以外に,全体の機械振動による共振現象 に起因する信号も含まれる.そこで,フーリエ解析の 手法を用いデジタルフィルタリングを行った.まず羽 ばたき運動1周期分のデータをフーリエ級数展開し, パワースペクトルを得る.得られたパワースペクトル からロードセルの固有振動成分を判断し,その後羽ば たき運動の空気力のみを逆フーリエ変換を用いて波形 に復元した.これらの操作によりロードセルの固有振 動成分を除いた羽ばたき運動の空気力成分のみを取り

出すことができる. 2.4 測定用モータについて

実験機の動力にはモータ(DIDEL 社, MK07-1.7)を 用いた.モータ特性には電圧,電流に比例する特徴が ありその特徴からトルク計として用いることができ る.

モータ特性の測定は停動トルクと無負荷時回転数を 電圧パラメータで測定し近似式を求めた.この測定結 果から,トルク (e,i)の算出式を作成した.

$$\tau_{(e,i)} = \frac{\tau_{\mathrm{m}(e)} - \tau_{\mathrm{s}(e)}}{I_{\mathrm{m}(e)} - I_{\mathrm{s}(e)}} i - \frac{\tau_{\mathrm{m}(e)} - \tau_{\mathrm{s}(e)}}{I_{\mathrm{m}(e)} - I_{\mathrm{s}(e)}} I_{\mathrm{s}(e)}$$
(1)

$$W = 2 \quad N \cdot \tau \tag{2}$$

式中の m(e)は停動トルク, s(e)は無負荷時トル ク, Im(e)は停動電流, Is(e)は無負荷時電流である. この式(1)より求めたトルク (e,i)と測定した回転数 N から式(2)を用いてモータ出力を求め羽ばたき運動 の効率を比較した。

3. 揚力測定の結果

3.1 翼長 150 mm 機の揚力測定結果

150 mm 羽ばたき翼機の2枚翼,4枚翼羽ばたき機 構それぞれの平均揚力測定の結果を図2,図3に示す. 羽ばたき周波数を 10 Hz, 15 Hz, 20 Hz の 3 種類に設 定し, それぞれ迎角を 0 deg. から 30 deg. まで変化さ せ飛行状態を再現した.その結果,平均揚力値では15 Hz,20 Hz においては2枚翼機よりも4枚翼機の方が2 倍程度揚力に関して有利なことがわかった.

また,測定値においては2枚翼機が上向き下向きの 力が相殺するのに対し,4 枚翼機の場合,連続的に上 向きの力が発生しており,効率に関しても周波数の上 昇に従い4枚翼の効率が有利であることが分かった.

羽ばたき運動の軌跡 図 7

4. 高速度ストロボ撮影装置の開発

4.1 撮影装置開発の目的

本研究に用いた羽ばたき機構は翼膜に柔軟性に非常 に富むポリエチレンを用いているため, 翼膜が空気力 によって複雑な変形をしている.羽ばたき機構におけ る揚力の動的な変化は測定可能であるが 今回の測定 結果から見られるような揚力の変化が翼の翼膜とどの ような動きによってもたらされたものか知ることはで きない.運動中の翼の動きを視覚的に正確に捉え,定 量的に解析することで揚力発生のメカニズムをより深 く理解する必要がある.そこで市販の 1000 万画素の デジタルカメラ(Canon 社, EOSkiss)とキセノンスト ロボスコープ(ライン精機社, SS-2000)を組み合わせ 高精細な連続ストロボ写真を撮り、その画像を元に翼 の状態を観察することを目的として開発を行った. 4.2 撮影方法

反射型フォトインタラプタをギア部に搭載し,翼が 特定の位置に来た瞬間をトリガとして用い,パーソナ ルコンピュータで読み取る.トリガ信号に応じてデジ タルカメラのシャッターを開け,任意のタイミングで ストロボを照射して撮影を行う.ただし,各装置には 個々にディレイ及びジッターが存在し全体で約73 µ s となる.

4.3 撮影結果

翼長 150 mm の羽ばたき機構に対し,周波数 20 Hz, 撮影間隔を1 ms として撮影を行った.解析画像の結 果を図 7 に示す.(自動トラッキングの様子は以下 http://www.fit.ac.jp/~y-kawa/packages/images/movies/kaiseki01.mpg) 翼 膜の動きの様子を高画質で捉え,2次元動画計測ソフ トによって翼膜の軌跡を行うことに成功した.

5. 結言

2 枚翼機,4 枚翼機の揚力測定を行い,翼の形状や サイズ別の揚力を得た.この結果,2 枚翼と 4 枚翼に おける揚力発生の特徴を測定した.またストロボ撮影 装置開発により任意のタイミングでの翼の撮影に成功 し,2次元画像解析を用い翼膜上の点を追うことがで きた.今後,撮影した画像を3次元的に解析,翼と翼 膜の状態と空気力の関係を調べる必要がある.

参考文献

(1) 早田智史,河村良行,「ホバリング可能な小型羽ば たき飛行機の開発」、日本機械学会流体力学部門講演 会講演論文集, P149, 2006