拡張現実感における視点移動自由度の改善~回り込み移動~

松隈吏司

1. はじめに

近年コンピュータの性能の向上に伴い新たな表現として 3DCG が注目されている. これはディスプレイなどの平面上の 媒体に3次元情報を表現する技術を指す. これにより物体の 奥行きの再現や、仔細な構造も把握できるようになった. 現 在、現実世界に仮想空間を組み込む拡張現実感(AR)が着目 され, 医療分野における手術技術支援など活躍の幅は広い. ARToolKit[1][2]はそうしたARを構築するためのC言語ライ ブラリである. ARToolKit はビジュアルマーカ毎にそれらを サインとしてカメラから取得した映像に 3D オブジェクトを 生成する. ARToolKit を用いた AR 環境では、3D オブジェク トを表示させるために、ビジュアルマーカをカメラ視野内に 入れておく必要があり、視点移動の自由度の問題がある.本 研究ではWebカメラを使い画面上に出現させた3Dオブジェク トを回り込んで観測できるシステムを提案する.

2. 関連研究

船津丸[3]はHMDとWebカメラを利用して視点移動の自由度 を改善している.マーカによりその空間的な位置を把握させ, HMD のジャイロセンサにより、回転角度を取得することによ り一平面に360°に展開できるAR空間を単一マーカで行 っている(図1).

本研究では出現させたオブジェクトを中心にカメラを円状 に動かす事によってオブジェクトの裏に回り込んで観測を行 うことができる. こうしたカメラの動きを本稿では「回り込 み移動」と呼び図2にその概略を示す.

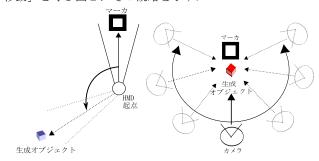


図1. 回転移動

図2. 回り込み移動

3. 回り込み視点移動システム

3. 1 システム 構成

本研究では AR を使うために ARToolkit, 3D オブジェクトを 描写するために OpenGL を用いている. 開発言語はC言語であ る、また、画像取得のため Web カメラを利用している、その 他の開発環境は表1の通りである.

表 1. 開発環境

	0S	Windows Vista Home premium
	CPU	AMD Athlon 64 ×2 2.30GHz
	メモリ	2046MB
	開発環境	Microsoft Visual C++
	ライブラリ	ARtoolKit, OpenGL
	カメラ	Qcam® S 7500

3. 2 システムの設計

本システムは5つのビジュアルマーカA~Eを水平に張り 付けて使用する. 図3に様子を示す. この内, 1つがマスタ ーマーカとなり、3D オブジェクトは常にこのマーカに対して 描画される. 本システムでは、Cマーカである. システムは 隣り合ったマーカ同士の変換行列 M_{AB} , M_{BC} , M_{DC} , M_{ED} を

把握している. 求めたい変換行列は, 目的行列Moである. シ ステムは、現在撮影されているマーカをもとに目的行列を求 める. 図の例ではカメラはマーカEを向いているため, M_0 = $M_{DC}^{-1} \times M_{ED}^{-1} \times M_{real}$ のように M_{O} を求める.この演算を繰り 返し行うことで, どのマーカからも 3D オブジェクトが描写さ れるようになり、カメラの回り込み移動を可能にする.

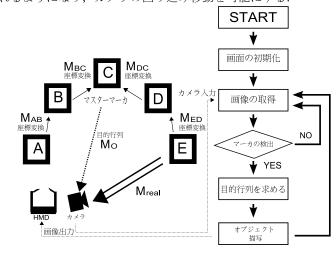


図3. マーカと座標変換例及び処理の流れ

4. 実行例

図4には5つのビジュアル マーカとそれらの設置例を示

図5と図6ではシステム動 作中にカメラで左右の回り込 み移動し、地球の CG を眺めて いる風景である.

マーカの位置関係

図5. 左への回り込み

図6. 右への回り込み

5. まとめ

本研究では複数のマーカを使う事で,一つのオブジェクト を回り込んで見られるようになった.これにより、キーボー ドなど間接的なインターフェイスに頼ることなく立体を確認 できた. 今後の課題としてはマーカの配置の制限を無くして の,より視点移動自由度が高いシステムの構築が求められる.

[参考文献]

[1]橋本 直, "ARToolKit 拡張現実感プログラミング入門", ASCII メディア・ワークス, 2008

[2]谷尻 豊寿, "ARToolKit プログラミングテクニック", カットシステム,2008

[3]船津丸 貞文, "誘導サインメタファを用いた AR 案内シ ステムの構築", 平成二〇年度卒業研究発表会予稿集, [C16], P. 80, 2009

[担当教員] 石原 真紀夫