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ABSTRACT This study proposes a positioning system that allows a drone to determine its location
independently of external data sources. The system is one of the key factors in achieving blindfolded flight,
which is the ability to follow a predetermined flight route using only the aircraft’s internal data, even in
the presence of spoofing, interference, or unavailability of any positioning systems. The system remains
operational even when the sensor signals are of low quality. The GPS spoofing detection method based on
this system effectively manages slow drift attacks, and its stability is demonstrated by the small coefficients
of variation (CVs) of detection delays.
The prediction of the current position is based on deep learning rather than motion equations. Existing
approaches to blindfolded flight are constrained by cost, flight time, or flight distance. The proposed system
does not significantly suffer from these limitations. The flight time limitations of the latest studies are
approximately 100 s. The system demonstrates no tendency for prediction error to increase over time during
the 360-second flight, regardless of the presence of GPS spoofing attacks.

INDEX TERMS Drone, GPS spoofing, neural network, sensor, time series

I. INTRODUCTION

Drones, which are unmanned aerial vehicles discussed in this
paper, are expanding into various industrial sectors, including
logistics, construction, networking, and agriculture [1], [2].
Following significant expansion in the near future, they will
inevitably become primary targets of cyberattacks, similar
to those experienced by smartphones. A multitude of papers
have been published on the topics of GPS spoofing, jamming,
and denied environments. This is not only because these
challenges hinder drones from playing important roles in the
aforementioned fields but also because drones have access
to various alternative means to determine their positions.
Examples include signals from Wi-Fi/cellular base stations,
infrared/visible/ultraviolet images, reflected laser light, vari-
ous beacons, and ambient signals not originally intended for
positioning [3], [4].

Cyberattacks will inevitably target all these positioning
methods, not just GPS [5]. There are numerous spoofing
attacks (fake GPS, fake Wi-Fi/cellular stations, fake ground
stations, fake beacons, etc.) and jamming attacks [5]. Relying
on other external positioning sources during GPS outages [4]
is a temporary measure. Additionally, because attacks and de-
fenses are in a constant state of co-evolution, any countermea-
sures focused on a specific attack technique are temporary
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FIGURE 1. Four existing approaches aiming at the intersection of the
three conditions.

[6]. While adopting strong authentication technologies [7]
(which may require infrastructure updates) can be effective
against spoofing attacks, it does not offer protection against
jamming or unavailability. Without long-term, broadly appli-
cable safety mechanisms, the widespread use of drones can
become both dangerous and costly.

Such a safety mechanism will ultimately require drones to
perform "blindfolded flight," a permanently effective coun-
termeasure against both known and unknown attack methods.
In this paper, the term blindfolded flight refers to the ability
of a drone to automatically follow a predetermined flight
route using only internal data, even in an environment where

VOLUME 11, 2023 1



Kazumasa Oida et al.: Blindfolded Flight: A Novel Approach for Secure Drone Flight

positioning systems are spoofed/jammed/rejected. Fig. 1 intu-
itively illustrates blindfolded flight as the intersection of three
requirements. In addition, it presents four existing approaches
(detailed later) that are expected to enable blindfolded flight
under a variety of conditions; the fourth is our approach.

Approaches 1-3 focus on minimizing sensor noise or its
effects by improving part of the drone’s control mechanism.
However, approach 4 does not modify the drone’s control
mechanism because its aim is to introduce a new positioning
system that transmits current positions to the control mecha-
nism. Most current drones are controlled using proportional-
integral-derivative (PID) controllers, which require numerical
integration and differentiation to determine control quanti-
ties. Therefore, the traditional focus has been on acquiring
high-quality (low noise and frequently sampled) sensor data.
Our approach is different. We use internal sensors to control
drones on coarser time scales, just as humans use vision to
control them on coarse time scales. One of the key contribu-
tions of this study is the demonstration that calculating drone
positions on a coarse time scale (e.g., 1 to 10 s) provides the
following advantages.

• Increasing sensor noise from 0 to 10,000 times the sig-
nal does not significantly degrade the performance of
the proposed system. Greater noise immunity results in
improved safety and reduced cost.

• Increasing the data collection interval from 1 to 10 s
does not degrade the performance of the system. A
longer interval requires less communication, memory,
and computation.

• The system shows no tendency for prediction errors to
increase over time during a 360-second flight, which is
crucial for long blindfolded flights.

The remainder of this paper is organized as follows. Section
II presents research relevant to this study. Section III provides
an overview of the drone autopilot technology and Perceiver,
the deep-learning model used in this work. Section IV de-
scribes the proposed system, including data preprocessing
and the algorithm for efficiently predicting drone positions.
Section V describes how the preprocessing and algorithm pa-
rameters affect system behavior. Section VI proposes a GPS
spoofing detection method based on the proposed system.
Section VII compares our approach with existing studies in
terms of prediction errors and GPS outage times. Section VIII
discusses the limitations of the system, potential applications,
and ethical considerations. Finally, section IX concludes the
paper and suggests directions for future research.

II. RELATED WORK
A. SENSOR SPOOFING
Sensor spoofing attacks are conducted by transmitting mal-
formed signals, altering sensor measurements, or disrupting
the normal operation of sensors. The primary objective of
these attacks is to deceive systems that depend on sensors for
decision-making, including navigation and security. Several
sensors have recently become primary targets of these attacks

TABLE 1. Comparisons with existing approaches.

Approach adv disadv app time scale
1. new IMU high quality expensive aerospace very fine
[27]–[29] output military < 1 ms
2. INS/GPS no prior limited versatile fine
[26], [30], [31] training flight time INS/GPS
3. Tethered no prior limited indoor fine
[32]–[34] knowledge flight area tracking PID
4. MOR data quality prior versatile coarse
[35] insensitive training human

[5]: GPS [8], [9], light detection and ranging (LiDAR) [10],
[11], camera [12], [13], inertial measurement unit (IMU)
[14], [15], ultrasonic sensor [16], [17], and millimeter wave
(MMW) radars [18], [19]. These sensors are indispensable for
controlling autonomous vehicles, robots, drones, etc. Exten-
sive research has been conducted on individual sensors and
attack vectors, and new attack schemes continue to emerge
[20].

B. DEAD RECKONING
Dead reckoning is a traditional navigation method used to
estimate the current position of a moving object, such as a
ship, vehicle, or person. The position is determined based on
the initial position, speed, direction, and elapsed time. Dead
reckoning is useful in environments where GPS signals are
unavailable or unreliable, such as indoors, underground, or in
urban areas where tall buildings block satellite signals. This
technology is being explored for its potential in detectingGPS
spoofing [6]. A modern implementation of dead reckoning,
the inertial navigation system (INS), uses IMUs (consisting
of accelerometers, gyroscopes, etc.) along with a computer
to determine the position, orientation, and speed of a moving
object without relying on external references.
Dead reckoning is prone to error accumulation, as changes

in speed and direction can cause significant errors over time.
Additionally, it does not consider external factors, such as
wind and currents, that can affect the actual path of move-
ment. Therefore, various technologies are being developed,
including sensor fusion [21], [22], visual/radar odometry
[23], [24], and machine learning [25], [26]. At the de-
vice level, advancements are being made with technologies,
such as quantum accelerometer/gyroscope [27] and fiber-
optic/ring-laser gyroscope devices [28], [29].

C. BLINDFOLDED FLIGHT
Table 1 compares four blindfolded-flight approaches illus-
trated in Fig. 1. The first approach focuses on developing
high-quality accelerometers and gyroscopes to reduce sensor
noise. The second approach aims to create an artificial intel-
ligence (AI) system that outperforms the extended Kalman
filter (EKF). These AI systems are trained using GPS signals
when GPS is available, and in the absence of GPS, they work
to reduce INS errors. The flight times during which the AI
system is active range from 40 and 100 seconds, as noted in
[31]. The third approach involves developing cable-tethered
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drones that are resistant to malicious wireless signals, with
the cable length determining the movable range of the drone.
The fourth approach, which is the focus of this paper, involves
developing a system that translates manual operation repre-
sentation (MOR) signals into drone positions. MOR signals
are signals from the human-operated control unit, such as
roll, pitch, yaw, and throttle signals when transmitted to the
quadcopter.

As mentioned in Section I, the key difference between our
approach and existing approaches lies in the time scale at
which they operate on the drone system. Table 1 shows that
approaches 1-3 aim to improve or replace existing compo-
nents (e.g., IMU and EKF) that function on fine time scales.
However, our approach designs a positioning system that
operates on coarse time scales. The system is attached to a
drone as an additional positioning system, thereby reducing
variability of prediction errors at coarser time scales. Our
previous work [35] demonstrated that it is possible to convert
MOR signals to autopilot Python programs. In this study, we
extend that work in three ways. First, we propose an algo-
rithm to convert MOR signals into current positions (rather
than Python programs as in [35]). Second, we examine the
impact of input data quality on system performance. Third,
we introduce a GPS-spoofing detection method.

D. OTHER RELATED WORK
There are two approaches that, although they do not meet the
blindfolded flight requirements, are highly effective against
GPS attacks or GPS-denied environments. The first approach
is signals of opportunity (SOPs) [36], [37], which utilizes
ambient radio-frequency (RF) signals not originally intended
for positioning, navigation, and timing (PNT) sources. These
signals include AM/FM, digital television, cellular, and satel-
lite communication signals. The second approach is coopera-
tive anti-jamming [38], which combines signals frommultiple
homogeneous drone sensors to address intentional or uninten-
tional GPS interference. This method is suitable for cooper-
ation with relative positioning systems in swarm formation
[39], [40].

Even when a drone operates in blindfolded flight mode,
certain IMU devices may be vulnerable to exploitation, po-
tentially disrupting its operations [15]. Experiments in [41]
showed that malicious sound noise could degrade the ac-
curacy of micro-electro-mechanical systems (MEMS) gyro-
scopes. Additionally, malicious acoustic injections have the
potential to damage the digital integrity ofMEMS accelerom-
eters [42]. The authors in [43] demonstrated that sensor recon-
figuration attacks caused abnormal sensor behavior as well as
led the drone EKF to a complete halt.

III. BACKGROUND
A. DRONE AUTOPILOT
The key components for enabling drone autopilot are PID
controllers and EKFs [44]. The PID controllers adjust the
drone’s attitude, position, and speed in real time to maintain
stable flight. The EKF corrects the estimated drone states,

ensuring that the PID controller receives more accurate input.
The EKF fuses data from multiple sensor devices to perform
optimal state estimation, considering noise and errors of each
device [21], [22]. Various external signals (GPS, cameras,
LiDAR, etc.) are used to correct INS errors. In the absence of
external signals, these errors accumulate over time, causing a
degradation in the accuracy of INS estimates.

B. TRANSFORMER
The Transformer is a deep learning model that has driven
the current AI revolution in natural language processing. One
of its most distinctive features is the use of self-attention
mechanisms, which assess the relevance of different parts
of the input sequence to one another, enabling the model
to capture complex relationships and dependencies [45]. In
certain aspects, Transformer outperforms traditional convo-
lutional neural network (CNN) and recurrent neural network
(RNN) models. For example, Transformers can process mul-
tiple input sequences using graphics processing units (GPUs),
whereas RNNs process input sequences sequentially, leading
to longer training times. Additionally, Transformers excel at
capturing long-range dependencies in the input sequence, a
capability that CNNs lack. This feature is essential for drones
flying routes with long distances between waypoints.
Currently, Transformers are employed in the fields of text,

speech, and image processing, with applications in time series
analysis also underway [46], [47]. Because the CPU and
memory consumption of self-attention scales quadratically
the input size, more efficient Transformer-based architectures
have been developed. This study uses Perceiver, one such
scalable architecture [48], [49].

IV. PROPOSED SYSTEM
This study proposes a system that predicts the three-
dimensional positions (referred to as "the position time se-
ries") of a drone based on the time series of its state (roll,
pitch, yaw, throttle) (referred to as "the state time series").
All experiments in this paper employ GPS to collect position
time series, although the specific positioning system used is
not critical. This study focuses on the control of quadcopters.
If other types of aircraft are considered, the sensor types
in the state time series may vary, and the characteristics of
each aircraft type would be captured in the neural network
parameters through learning.

A. CONFIGURATION
Fig. 2 shows the proposed system, which incorporates Per-
ceiver [48], [49] to translate state time series {rs}1≤s≤t into
position time series {ps}1≤s≤t . Similar to the process used in
natural language machine translation [45], the system does
not perform batch translation from {rs} into {ps}; instead, it
infers current position pt , using {rs}1≤s≤t and all previously
calculated positions {ps}1≤s≤t−1 (see ‘‘positions calculated
before time t’’ in Fig. 2). The input in Fig. 2 includes pt
because it acts as the initial value of position pt (see ‘‘initial
value at time t’’ in Fig. 2).
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FIGURE 2. Proposed system outputs the current position of the drone (x, y , z). The state (position) time series are preprocessed and input into the first
(second) cross-attention of the Perceiver model to embed (extract) features from the state time series into (from) the latent array. A ConvNet is used to
efficiently extract the features, and the MLP is added to enable the system to function as a regression model.

As shown in Fig. 2, both input time series are preprocessed
before being fed into the Perceiver. The state time series first
passes through ConvNet, comprising a one-dimensional CNN
and max pooling (MaxPool), for local feature extraction. The
extracted features are transcribed into a latent array (a 4×128
matrix) through the cross-attention process. The self-attention
mechanism subsequently embeds correlations between all
feature pairs into the array. The second cross-attention pro-
cess reconstructs the position time series from the latent array.
Finally, a multi-layer perceptron (MLP) selects the optimal pt
from the reconstructed time series.

The Perceiver compresses the state time series into a small
latent array, thereby reducing the computation and memory
requirements for self-attention [48]. The ConvNet and MLP
are implemented using the open source library Pytorch [50],
while Perceiver is available on Hugging Face [51]. The hyper-
parameter values used in the experiments are as follows. The
kernel size and stride of the CNN (MaxPool) are 3 and 1 (2
and 2), respectively. The number of heads (blocks) for cross-
attention and self-attention are both set to 4 (1). The initial
value of the latent array is assigned randomly.

B. PREPROCESSING

Fig. 2 shows that preprocessing consists of four operations:
smoothing, aperiodization, geo-transformation, and noise ad-
dition. Fig. 3 describes how these operations transform the
sensor signals (roll, pitch, yaw, throttle, longitude, latitude,
and altitude) into inputs for the proposed system. Note that the
position time series are used as ground truth (initial values) in
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FIGURE 3. Input of the proposed system is generated through four
operations: smoothing, aperiodizing, geo-transforming, and adding noise.
The adding noise enclosed by the dashed rectangle is performed only in
the inference phase. R, P, Y, and T denote roll, pitch, yaw, and throttle
signals, respectively.

the learning (inference) phase. For performance evaluation,
the noise addition operation enclosed by the dashed rectangle
in Fig. 3 is performed to generate initial values. Fig. 4 illus-
trates smoothing and aperiodization. As shown in the figure,
smoothing generates a time series consisting of the arithmetic
means of the windows, with each window centered on each
step. Unless otherwise specified, the window size w and step
size ` satisfy w = `/2. All time series in this paper were
collected at a sampling interval of 0.1 s. Aperiodization adds
(or subtracts) 360 degrees to (from) the angle of roll, pitch, or
yaw to ensure the correct amount of signal change.
Algorithm 1 describes the aperiodization operation, where
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FIGURE 4. Upper: Smoothing generates a time series of arithmetic means,
each of which is derived from a window of size w , and each step of size `
has one window. Lower: Aperiodization transforms time series {r ′s} into a
smoother one by replacing the solid line with the dashed line.

Algorithm 1 Aperiodization.
Precondition: Without mod 360 operation, |r ′s+1−r ′s | < 180
Input: {r ′s}1≤s≤t
Output: {r ′s}1≤s≤t
1: for s = 1 to t − 1 do
2: if r ′s+1 − r ′s ≤ −180 then
3: stat ← stat + 1
4: else if r ′s+1 − r ′s ≥ 180 then
5: stat ← stat − 1
6: end if
7: r ′s+1 ← r ′s+1 + 360× stat
8: end for
9: return {r ′s}1≤s≤t

the variable stat indicates the number of times to add (sub-
tract) 360 to (from) r ′s if the stat is positive (negative). Geo-
transformation converts GPS signals (altitude, latitude, lon-
gitude) to Cartesian coordinates x = (x1, x2, x3), where
the origin (0, 0, 0) is the takeoff location of the drone. The
positive x1, x2, and x3 are the east, north, and up, respectively.
For simplicity, x1, x2, and x3 are referred to as the x, y, and z
coordinates, respectively.

To verify stability against noise, preprocessing adds noise
to the state time series by introducing different random num-
bers nr to the roll, pitch, yaw, and throttle signals rt as

rt ← rt + nr , nr ∼ N (µ, σ2), (1)

where ∼ denotes nr follows a normal distribution N (µ, σ2),
with mean µ and standard deviation σ selected according to
one of two rules: they are gm(≥ 0) times greater than r̄ , the
arithmetic mean of samples {rs}; i.e.,

µ = σ = gmr̄ (2)

or they are gs(≥ 0) times greater than each sample rs; i.e.,

µ = σ = gsrs. (3)

From (2)-(3), the coefficient of variation (CV) is 1. Note that
(2) implies µ and σ are invariant with time step s and (3)
implies they vary with s.
The preprocessing adds noise to the position time series

by introducing a three-dimensional random vector np to the
position pt as follows:

pt ← pt + np, (4)

np = (λ+ ωu)v, u ∼ U[−1,1], (5)

where U[−1,1] is the uniform distribution within the range
[−1, 1], and v is a 3-dimensional vector. From (4)-(5), position
pt is shifted from the correct position by (λ + ωu)‖v‖2 in
the v direction, where ‖v‖2 :=

√
|v1|2 + |v2|2 + |v3|2 if

v = (v1, v2, v3). Therefore, real numbers λ and ω influence
the size and variation of the position shift, respectively. Be-
cause the training phase uses the position time series as the
correct labels, noise np is added only in the inference phase.
This study investigates whether the system can determine the
correct position pt , starting from the noisy initial position
pt + np.

C. TRAINING AND DATASETS
The proposed system was trained using datasets consisting
of pairs of state time series and position time series, with
the latter serving as the true labels. Each pair corresponds
to a single flight route, thus the size of a dataset (K ) is
determined by the number of flight routes. The loss function
assesses the error between predicted and true positions using
the Euclidean distance ‖ · ‖2. In this study, the number of
training epochs is set to 500. Unless otherwise mentioned,
training and test are performed using leave-one-out cross-
validation (LOOCV), which is a special case of k-fold cross-
validation where k = K .
The study employed two identical quadcopters, both con-

figured with the open source software ArduPilot [44] and the
flight controller Pixhawk [52]. Two datasets were obtained
from the log data of Pixhawk: one dataset (K = 40) was
collected at the seaside during the summer and the other
(K = 31) in an urban area during the winter. The two distinct
collection sites and seasons provide datasets that account for
a variety of wind strengths and temperatures. Additionally,
this study uses a dataset (K = 40) obtained from the SITL
simulator [53].

D. INFERENCE PHASE
Algorithm 2, which employs the trained proposed system,
includes the following notations (see Appendix A for quick
reference):
• mod : Modulo operation, which returns the remainder

of a division.
• [P]: Iverson bracket of statement P; i.e., [P] = 1 if P is

true; otherwise, [P] = 0. [q = 0] implies bit inversion of

VOLUME 11, 2023 5



Kazumasa Oida et al.: Blindfolded Flight: A Novel Approach for Secure Drone Flight

q if q ∈ {0, 1}; i.e., [q = 0] = 0 ([q = 0] = 1) if q = 1
(q = 0).

• β[i]: (i+1)-th element of two-dimensional vector β; i.e.,
β = (β[0], β[1]).

• �: Hadamard product; i.e., (δ[0], δ[1]) � ([q = 0], [q =
1]) = (δ[0][q = 0], δ[1][q = 1]).

• R(θ)1t : Product of two-dimensional rotation matrix
R(θ) and transposed vector of 1 = (1, 1); i.e.,

R(θ)1t =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
1
1

)
. (6)

If all elements of a vector have the same value, the vector can
be expressed in terms of the value of its single element. For
example, B = 10 implies B = (10, 10).

Algorithm 2 Algorithm for approaching p∗t
Input: M , θ,B, δ, p0

t , {p̄∗s }1≤s≤t−1, {rs}1≤s≤t
Output: p̄∗t

Initialization: γ ← 4
`← (∞,∞), c← (0, 0), µ← (0, 0), β ← (0, 0)

1: for k = 1 to M do
2: q← k mod 2
3: δ′ ← δ � ([q = 0], [q = 1])
4: B′ ← B� ([q = 0], [q = 1])
5: β[q]← N (µ[q], δ[q]2)
6: pkt ← p0

t + (β[0], µ[1], 0)[q = 0] + (µ[0], β[1], 0)[q =
1]

7: p̄kt ← mor2pos
(
pkt ; {p̄∗s }s∈[1,t−1], {rs}s∈[1,t]

)
8: if `[q] > ‖pkt − p̄kt ‖2 then
9: `[q]← ‖pkt − p̄kt ‖2
10: p̄∗t ← p̄kt [`[q] < `[[q = 0]] + p̄∗t [`[q] ≥ `[[q = 0]]]
11: c[q]← c[q] + 1
12: if c[q] = γ then
13: µ[q]← µ[q] + δ′R(θ − π

4 )1t

14: end if
15: else
16: c[q]← c[q]− 1
17: if c[q] = −γ then
18: µ[q]← µ[q]− δ′R(θ − π

4 )1t

19: end if
20: end if
21: if |c[q]| = γ then
22: c[q]← 0
23: if µ[q] > 0 then
24: µ[q]← min(µ[q], |B′R(θ − π

4 )1t |)
25: else
26: µ[q]← max(µ[q],−|B′R(θ − π

4 )1t |)
27: end if
28: end if
29: end for
30: return p̄∗t

Algorithm 2 outputs the optimal prediction of the drone
position at time t (p̄∗t ) by iteratively executing mor2pos, the

trained proposed system. Line 7 of the algorithm

p̄kt ← mor2pos
(
pkt ; {p̄∗s }s∈[1,t−1], {rs}s∈[1,t]

)
, (7)

implies that mor2pos derives p̄kt (the k-th prediction of the
drone position at time t) from initial value pkt . Other inputs
to mor2pos in (7), {p̄∗s }s∈[1,t−1] and {rs}s∈[1,t], remain fixed
during the calculation of p̄kt , k = 1, 2, . . . ,M , whereM is the
number of iterations and p̄∗t (the optimal prediction at t) is
defined by lines 8-10 as:

p̄∗t := p̄`t if ` = arg min
1≤k≤M

‖pkt − p̄kt ‖2. (8)

Note that {p̄∗s }s∈[1,t−1] in (7) represents all optimal predic-
tions before time t calculated by Algorithm 2. Let p∗t be the
true drone position at t . Equation (8) implies Algorithm 2
approaches p∗t by minimizing ‖pkt − p̄kt ‖2.
Fig. 5 illustrates the behavior of Algorithm 2. In the upper

left panel, it indicates that a loop is formed by three opera-
tions: executing mor2pos as in (7), deriving a new input pk+1

t ,
and replacing the previous input with the new one. In the
lower left panel, starting from p0

t , M predictions p̄1
t , . . . , p̄

M
t

are sequentially generated. The optimal prediction p̄∗s (red
triangle) defined in (8) is considered the closest to the true
position p∗t (green circle).

Line 2 indicates that q = 0 (q = 1) if integer k is even
(odd). On line 6, the input pkt is selected as

pkt ← p0
t + (β[0], µ[1], 0)[q = 0] + (µ[0], β[1], 0)[q = 1].

(9)

From Iverson’s notation, (9) implies that pkt = p0
t +

(β[0], µ[1], 0) if q = 0; otherwise pkt = p0
t + (µ[0], β[1], 0).

From line 5, a normal distribution generates β[0] if q = 0;
otherwise β[1] is generated. Therefore, pkt moves alternately
in the x and y directions as k increases; however, it does not
move in the z direction. This is because the z-coordinate of p̄kt
remains close to the true altitude, even when k is small.

Let us next describe how to update µ. From lines 8, 11, 15,
and 16, the counter c is incremented (decremented) by one
whenever the smallest ‖pkt −p̄kt ‖2 is (not) found. If the counter
reaches the threshold γ (−γ), µ is increased (decreased) by
δ′R(θ − π

4 )1t at line 13 (line 18), ensuring that µ stays
longer in regions where distance ‖pkt − p̄kt ‖2 is small. Here
δ′ indicates how much µ moves at a time, and θ represents
the direction of p∗t as observed from p0

t . The threshold-based
method was introduced because the loss function may not be
sufficiently smooth to obtain the minimum using numerical
differentiation. Lines 23-27 state that µ is bounded as:

−|B′R(θ − π

4
)1t | ≤ µ[q] ≤ |B′R(θ − π

4
)1t |. (10)

Fig. 5(right) shows bound (10) when θ = π
4 . In this case, from

(10), µ ∈ Φ, where

Φ = {(x, y)|x ∈ [−B[0],B[0]], y ∈ [−B[1],B[1]]}. (11)

The rectangle rotates counterclockwise around point p0
t as θ

increases. In the figure, the small circle in the top right-hand
corner of the rectangle represents the position of µ, and the
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FIGURE 5. Basic behavior of Algorithm 2. Upper left: three operations are performed repeatedly to generate M predictions p̄1
t , . . . , p̄

M
t . Lower left: M

predictions are calculated, each progressively approaching the true position p∗t . Right: µ is restricted within the rectangle and the dashed circle intuitively
represents the sampling range of new input pk

t .

FIGURE 6. True {p∗s } (green) and predicted positions {p̄s} (red) are
expressed as trajectories on the x–y (east–north) plane and on the z–t
(altitude–time) plane when {p0

s} = {p∗s }. The step sizes ` are (upper) 50
and (lower) 10. The drone departs from the origin (0, 0), follows a
rectangular trajectory, ascends, and then lands.
(K , gm, λ, ω) = (66, 10, 0, 0).

dashed circle around µ intuitively denotes the sampling range
of pkt .

V. BASIC PERFORMANCE
A. INPUT QUALITY

This section first evaluates mor2pos (without using Algo-
rithm 2) according to the LOOCV test under the condition
that initial positions {p0

s }0≤s≤t are equal to the true positions
{p∗s }0≤s≤t . The aim is to verify whether mor2pos indeed
recognizes the true position. If it does not, then ‖p̄t−p∗t ‖2 6≈ 0
even if {p0

s } = {p∗s }, where p̄t is the predicted position
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FIGURE 7. All graphs show small distances ‖p̄t − p∗t ‖2. Each dot denotes
the mean and standard deviation of distances ‖p̄t − p∗t ‖2, t ≥ 1, of one
of the 66 flight routes. {p0

s} = {p∗s } and (K , `, λ, ω) = (66, 100, 0, 0).

denoted by:

p̄t = mor2pos
(
p0
t ; {p̄s}s∈[1,t−1], {rs}s∈[1,t]

)
. (12)

Fig. 6 shows that mor2pos recognizes {p∗s }. From the figure,
{p∗s } (green lines) agrees with {p̄s} (red lines) even under
high noise (gm = 10) and long step size (` = 10, 50)
conditions. Note from (2) that gm = 10 implies the amount
of noise with a CV of one is ten times greater than signal rt .
Additionally, ` = 50 (` = 10) corresponds to 5 s (1 s), as all
time series were originally sampled every 0.1 s.

Fig. 7 statistically verifies ‖p̄t − p∗t ‖2 ≈ 0. The figure
shows the means and standard deviations of the distances
‖p̄t − p∗t ‖2, t ≥ 1, for all K (= 66) flight routes, where
each dot corresponds to one of the routes. For all graphs
in the figure, ` = 100; thus, the input data size is 1% of
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FIGURE 8. Impacts of (upper left) λ, (upper right) ω, (lower left) K , and
(lower right) gm on Dm, Dsd , and P(D > 0). Error bars denote Dsd . The
default values are (K , `, gm, λ, ω) = (66, 100, 0, 0, 0),
(M, θ,B, δ) = (120, 0, 10, 0.08), and v = (1, 1, 0).

the original time series. Figs. 7(a)-(b) demonstrate that the
means and standard deviations are less than 0.12 m and 0.4 m,
respectively, regardless of whether the noise is non-existent
(gm = 0) or overwhelming (gm = 10, 000). Figs. 7(c)-(d)
indicate that using another noise addition rule (gs = 10, 000)
yields almost the same outcome, with Fig. 7(c) (Fig. 7(d))
showing the case where noise addition occurs as the first
(last) operation in the preprocessing. (In Fig. 3, the addition
of noise to the state time series is depicted only as the first
operation). The similarity between Fig. 7(c) and Fig. 7(d)
demonstrates that the effect of the law of large numbers owing
to the smoothing operation is negligible.

B. ALGORITHM CONTRIBUTION
Let us evaluate Algorithm 2, which generates p̄kt , k =
1, 2, . . . ,M , assuming that {p0

s } 6= {p∗s }. Let Dt,i represent
the contribution of the algorithm in approaching the true
position p∗t,i defined by:

Dt,i := ‖p0
t,i − p∗t,i‖2 − ‖p̄∗t,i − p∗t,i‖2, (13)

where the subscript i denotes the i-th flight route; e.g., p̄kt,i
represents p̄kt for the i-th route. Let L be the set of all (t, i)
pairs. Fig. 8 shows the impact of λ, ω, K , and gm on the
performance of the algorithm, where the blue bars and error
bars represent the means (Dm) and standard deviation (Dsd )
of {Dt,i}(t,i)∈L . Fig. 8 includes the line graphs of P(D > 0),
the probability of Dt,i > 0, defined by

P(D > 0) :=
1

|L|
∑

(t,i)∈L

[Dt,i > 0], (14)

where [·] is the Iverson bracket.
Fig. 8 reveals two challenges posed by noise np defined in

(4)-(5).

1) From Fig. 8(upper left), as λ increases, Dm increases
slowly compared to the average distance between the
initial and true positions, which is equal to

√
2λ.

FIGURE 9. True {p∗s } (green), initial {p0
s} (black), and predicted positions

{p̄∗s } (red) on the x–y plane when θ = θ∗ and B = λ. Em = 0.06 and
Esd = 0.18. (K , `, gm, λ, ω) = (26, 50, 10, 8, 0),
(M, θ,B, δ) = (200, π, 8, 0.4), and v = (1, 1, 0).

:  
:  ∗

:  ∗

:  
:  ( , )

∆∆

FIGURE 10. Sampling range of pk
t (the union of the dotted circles)

expands by changing θ value.

2) From Fig. 8(upper right), as ω increases, Dsd rises and
P(D > 0) drops significantly.

Meanwhile, Fig. 8(lower left) indicates that a dataset size K
of around 50 is sufficient, and Fig. 8(lower right) reveals high
stability against intense noise, with gm = 10, 000.

C. CALIBRATION
The above-mentioned two challenges originate from the slow
movement of p̄kt , k = 1, 2, . . . ,M . One approach to over-
come these challenges is to adjust inputs M , θ, B, and δ of
Algorithm 2. Fig. 9 demonstrates that the red and green lines
overlap almost perfectly by setting the parameters as θ = θ∗

and B = λ, where θ∗ := arctan2(v[1], v[0]), the correct
value of θ. Thus, B = λ implies that pkt stays around the
boundary. In the figure, the mean Em and standard deviation
Esd of prediction errors Et,i defined by

Et,i := ‖p̄∗t,i − p∗t,i‖2, (15)

for all (t, i) ∈ L are significantly small (Em = 0.06 m and
Esd = 0.18 m).

Incorrect selection of parameter values (θ 6= θ∗ or B 6=
λ) could cause a sharp increase in Et,i. Fig. 10 illustrates a
countermeasure, where ∆θ is added to θ twice to ensure that
θ∗ ∈ [θ, θ + 2∆θ]. Let F(M , θ, p0

t ) represent Algorithm 2,
where parameters irrelevant to the explanation (B and δ) have
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FIGURE 11. Calibration. Upper left: Em = 1.58 when θ∗ − θ = π/24. Upper
right: Increasing θ by π/48 twice decreases Em to 1.15. Middle left:
Em = 2.96 when λ− B = 2. Middle right: Increasing B by 2 m twice
decreases Em to 1.19. Lower left: Em = 0.97 when δ = 0.4 and ω = 1.
Lower right: Decreasing δ twice (0.5 to 0.2 and 0.2 to 0.01) decreases Em
to 0.65. (K , `, gm, λ, ω) = (26, 50, 10, 8, 0), (M, θ,B, δ) = (200, π, 8, 0.4),
(M1,M2,M3) = (100, 50, 50), and v = (1, 1, 0).

been omitted. Precisely, the countermeasure executesF three
times as

F(M3, θ + 2∆θ,F(M2, θ + ∆θ,F(M1, θ, p0
t ))), (16)

where the total number of iterations remains the same (M1 +
M2 +M3 = M ).

Fig. 11(upper) demonstrates that (16) reducesEm from 1.58
to 1.15. Similarly, Fig. 11(middle) shows a decrease in Em
from 2.96 to 1.19 by increasing B by 2 m twice. If the initial
positions {p0

s } contain randomness ω (> 0) defined in (4)-
(5), the same method can be applied as well. Fig. 11(lower)
shows that Em at ω = 1 decreases from 0.97 to 0.64 by
employing three different δ values (δ = 0.5, 0.2, 0.01), where
δ adjusts the size of the sampling range, as shown in Fig.
5. Note that Figs. 9 and 11 are obtained under high noise
(gm = 10).

VI. EXTERNAL ATTACK
A. DATASET TYPES
In the previous sections, p0

t is correlated to p∗t because p0
t =

p∗t + np, where np is a random vector as defined in (5). This
section considers the following two types of independent pair
p0
t and p

∗
t , both obtained from the same flight route:

Type 1:{p0
s } is obtained from a simulator [53] and {p∗s }

consists of real sample data.
Type 2:Both {p0

s } and {p∗s } are real sample data collected
independently.

FIGURE 12. Trajectories of (upper) type 1 and (lower) type 2 pairs on the
x–y and z–t planes. ` = 4.

FIGURE 13. Upper: Twelve Bt0
points of (left) type 1 and (right) type 2

pairs. Lower: Means (black line) and standard deviations (blue error bars)
of {θs,i − θt0,i

}s∈[1,t0] of (left) 40 type 1 pairs and (right) 12 type 2 pairs.
` = 4 and t0 = 165 (66 s).

Fig. 12 shows typical trajectories for the two types. In Fig.
12(upper), the simulation data (green line) is unique for
producing a trajectory that perfectly follows the flight path,
showing no deviation or feedback behavior. Therefore, the
real and simulation trajectories occasionally diverge signifi-
cantly from each other. In Fig. 12(lower), each real sample
has its unique trajectory, but the distance between the two
trajectories is not large.
Algorithm 2 requires initial values of θ and B to properly

select the sampling range of pkt . This study assumes that no
attack occurs for the first t0 seconds after takeoff, during
which the initial values are calculated. Specifically, the initial
values θt0 and Bt0 are derived from{

θt = arctan2(ȳt , x̄t),

Bt = (x̄t , ȳt),
(17)

and x̄t (ȳt ) denotes the mean of {xs}s∈[1,t] ({ys}s∈[1,t]), and xs
(ys) corresponds to the x-coordinate (y-coordinate) of p∗s −p0

s .
Fig. 13(upper) shows Bt0 = (x̄t0 , ȳt0) on the x–y plane,

where t0 = 165 s (66 s). The figure indicates that type 2
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FIGURE 14. Histograms of {Ds,i} (orange) and {Es,i} (blue) for (left) type
1 and (right) type 2. (t0, K ) is equal to (left) (22, 40) and (right) (6, 31).
(`, gm, λ, ω) = (30, 10, 7, 0) and v = (1, 1, 0).

pairs tend to result in a shorter distance ‖Bt0‖2. Fig. 13(lower)
shows themeans and standard deviations of {θs,i−θt0,i}s∈[1,t0]

of all flight route i, where θs,i is θs for the i-th flight route
and t ≤ t0 = 165. Fig. 13(lower) visualizes how quickly θt,i
approaches θt0,i. From the figure, the standard deviation of
type 2 pairs decreases more quickly. Accordingly, if t0 should
be significantly small, a type 2 pair is more appropriate.

Fig. 14 shows the histograms of {Ds,i} and {Es,i} at t0 = 22
(t0 = 6) for type 1 (type 2) pairs, where {Ds,i} and {Es,i}
are defined in (13) and (15), respectively. As shown in the
figure, type 2 pairs mostly yield smaller Et,i and larger Dt,i
values, with the means Em andDm for type 1 (type 2) are 4.85
and 6.07 (2.02 and 7.96), respectively. Thus, type 2 yields
better results. However, simulation data is easier to collect. A
practical approach would be to initially collect real samples
while using type 1 pairs, and then replace type 1 pairs with
type 2 pairs immediately sufficient real samples have been
gathered.

B. ATTACK DETECTION
The blindfolded flight enables a wide range of applications,
one of which is reconnaissance. Assume that drones equipped
with Algorithm 2 do not deviate from their originally planned
flight routes even when attacked. These drones can create a
map documenting any attacks experienced during the flight
if they can detect the attacks. This section focuses on GPS
spoofing detection.

Assume that Algorithm 2 is used for positioning as well as
for attack detection. The experiments are conducted under the
following conditions:

1) A drone receives current position pext from a malicious
GPS signal, where

pext =

{
p∗t if t ≤ ta,

p∗ta + vat if t > ta.
(18)

Thus, the position before (after) time ta is correct (in-
correct), with the incorrect information indicating that
the drone deviates from the correct position at a speed
of va m/s. Algorithm 2 uses pext as the initial position,
and each time the algorithm outputs p̄∗t , the following
is performed: a spoofing attack is detected if threshold
∆a (m) satisfies:

‖p̄∗t − pext ‖2 > ∆a. (19)

FIGURE 15. True {p∗s } (green), initial {p0
s} (black), and predicted

positions {p̄∗s } (red) when (upper) va = v and td = 12 (60 s) and (lower)
va = 2v and td = 9 (45 s), where v = (2, 1, 0.5). t0 = 4 (20 s), ta = 6 (30 s),
∆a = 1.5, and (K , `, gm, λ, ω) = (31, 50, 10, 0, 0).

TABLE 2. Statistics on detection delays (s) derived from twelve samples.
(K , `, gm, λ, ω) = (31, 50, 10, 0, 0), v = (2, 1, 0.5), and
(t0, ta,∆a) = (4, 6, 0.5).

mean stdev CV max min
va = v 29.2 2.9 0.10 30.0 20.0
va = 2v 15.0 4.3 0.28 25.0 10.0

2) {p0
s } and {p∗s } are type 2 pairs and t0 < ta.

Let td be the time at which the spoofing is detected. The
detection process terminates at td . Fig. 15 shows the true
{p∗s }, initial {p0

s }, and predicted positions {p̄∗s }, where the
initial and predicted positions before (after) td are the input
and output of Algorithm 2 used for detection (positioning),
respectively. From Fig. 15(upper), the attack causes the black
line to move linearly in the direction of vector va and the red
line moves along the black line. The two lines gradually move
apart, and finally, at time step td = 12, the condition in (19)
holds, where the two lines in Fig. 15(upper left) show pointed
shapes.

Because the attack begins at ta = 6, Fig. 15(upper) indi-
cates that the detection delay is |td − ta| = 6 (30 s). If va
doubles, Fig. 15(lower) demonstrates that the attack ends at
td = 9, resulting in a delay of |td − ta| = 3 (15 s). Thus,
doubling the velocity va halves the detection delay |td − ta|.
Table 2 statistically verifies this relationship and shows small
CVs regardless of va. These results suggest that the CV, which
reflects detection stability, might be more important than the
detection delay, which heavily depends on the attack strategy
va.
Two more insights can be drawn from Fig. 15.
1) Algorithm 2 reacts slowly to the attack. As discussed

in Section V, this slow response is owing to the gradual
movement of p̄kt , k = 1, 2, . . . ,M . If the initial posi-
tions {p0

s } are provided in advance, then the slowmove-
ment is improved by obtaining θt0 and Bt0 . However, in
the case of an attack, the initial position {pext }, is not
available beforehand.
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TABLE 3. Statistics on distances ‖p̄∗t,i − p0
t,i‖2 (m) for no attack and type

2 pairs. FPRs are obtained with ∆a = 1.0. L denotes set {(s, i )}.
(K , gm, λ, ω) = (31, 10, 0, 0).

` mean stdev max FPR |L|
100 0.056 0.087 0.493 6.5× 10−13 84
50 0.055 0.16 1.796 4.8× 10−4 168
30 0.029 0.064 0.655 9.3× 10−24 288

2) Spoofing attacks may be detected earlier by analyzing
changes in direction and velocity of the predicted drone
trajectory p̄∗t . However, slow drift attacks [54], which
gradually deviate from the correct route, can bypass
such methods. The following results support the idea
that as ‖p∗t − pext ‖2 increases, (19) eventually detects
any type of GPS spoofing:
• Appendix B shows that (19) holds on average

if ∆a ∈ (0,Dm). Furthermore, ∆a ∈ (0,Dm)
eventually holds as ‖p∗t − pext ‖2 increases because
Fig. 8(upper left) shows that Dm increases with λ,
where λ = ‖p∗t,i − p0

t,i‖2/‖v‖2 and ‖v‖2 =
√

2.
• Table 2 demonstrates that detection delays exhibit

small CVs.

C. FALSE POSITIVE RATE
A smaller threshold ∆a results in a shorter detection delay,
but increases false positive rate (FPR). However, the false
negative rate (FNR) can approach zero if attackers enlarge
‖p∗t − pext ‖2 significantly. Let us find appropriate threshold
values that achieve short detection delays and small FPRs. Ta-
ble 3 shows how ‖p̄∗t,i− p0

t,i‖2 fluctuates under no attack. The
table indicates that the standard deviation reaches its highest
value when the step size is ` = 50. This implies that the FPR
is highest at ` = 50. Assume that ‖p̄∗t,i − p0

t,i‖2 ∼ MB,
then the FPR at ` = 50 is 4.8 × 10−4 when ∆a = 1.0,
whereMB is the Maxwell-Boltzmann distribution provided
in Appendix C. Therefore, ∆a = 1.0 seems to be a good
threshold. However, because the maximum value at ` = 50
is large (1.796), three values (∆a = 1.0, 1.5, 2.0) are selected
as appropriate thresholds.

Let Li be the detection delay (s) for the i-th flight route.
Table 4 presents statistics on {Li} obtained under the con-
dition that a malicious GPS signal guides the drone to reach
destination pa in 20 s, where va = 1

4 (pa−p∗ta). From the table,
the means of {Li} at step size ` = 50 or 100, which are be-
tween 20 s and 30 s, are smaller than those at ` = 30. Assume
that Li follows a normal distribution, then the probability that
the delay exceeds one minute is less than 10−6 (0.023) for all
∆a ∈ {1.0, 1.5, 2.0} if ` = 50 or 100 (` = 30). Thus, a large
` should be selected to avoid long detection delays.
A larger ` tends to result in shorter mean delays. This seems

unrealistic according to conventional wisdom. Additionally, a
larger threshold ∆a tends to yield a smaller CV. Therefore, a
larger threshold does not necessarily cause a rapid increase in
delay.

FIGURE 16. Histograms of {Ds,i} and {Es,i}. Left: gm = 0. Right:
gm = 104. (K , `, λ, ω) = (31, 50, 6, 0), (t0, ta,∆a) = (4, 6, 1.5), and
pa = 20× (4, 2, 1).

D. LOW-QUALITY INPUTS
One of the most fascinating results obtained through the
experiments is the stability of the proposed system for low-
quality inputs {rs}. Fig. 16 compares two extreme cases:
gm = 0 and gm = 104. Note from (2) that the noise in
{rs} is gm times greater than signal. As shown in the figure,
the histograms for both cases are similar. This may seem
unrealistic according to conventional wisdom.

Table 5 represents a statistical comparison of three cases:
gm = 0, gm = 104, and a 50–50 mixture of gm = 0 and
gm = 104. The table provides new insights. Over 140 samples
of {Ds,i} and {Es,i} suggest that the mixture case yields the
largest algorithm contribution (the largest mean of {Ds,i}) and
the best prediction (the smallest mean of {Es,i}). Moreover,
the mixture case demonstrates stability as it provides the
smallest CVs for the three criteria {Ds,i}, {Es,i}, and {Li}.
Thus, datasets created under various noise intensities can
enhance the stability of the proposed system.

VII. COMPARISON
Table 6 shows the root mean square (RMS) and maximum
prediction errors reported in the latest INS/GPS studies (RNN
[26], LSTM-PI-FGO [30], OSS-Transformer [31], and CNN-
LSTM-A [55]) and those of the proposed system, where
the INS/GPS studies employ AI models to reduce INS error
during GPS outages. From the table, target vehicles and out-
age times are not homogeneous. Several studies considered
multiple travel routes for experiments. All studies obtained
the prediction errors for each outage period, except that the
authors in [30] reported errors during each test period that has
various short outages. Evaluation of our system, denoted as
MOR in the table, includes errors after spoofing attack detec-
tion. In this experiment, the attacks affect input {ps}1≤s≤t−1

(‘‘positions calculated before time t’’ in Fig. 2) of the pro-
posed system. However, as shown in the table, the attack has
little impact on the performance of the system.

According to [55], existing INS/GPS methods tend to in-
crease prediction errors over time (see Fig. 6 in [55]). There-
fore, as shown in Table 6, the outages in most existing results
do not exceed 115 s. Whereas, our system is evaluated with
flight times of 140 and 360 s. Studies in [31] and [55] dealt
with long outages (100–115 s) using land vehicles. Our sys-
tem is noteworthy in that its distance errors (‖·‖2) are smaller
than OSS-Transformer in [31] and its x and y directional
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TABLE 4. Statistics on detection delays {Li}1≤i≤12. (t0, ta) = (4, 6), pa = 20× (4, 2, 1), and (K , gm, λ, ω) = (31, 10, 0, 0).

∆a = 1.0 ∆a = 1.5 ∆a = 2.0
` mean CV min–max mean CV min–max mean CV min–max

100 22.5 0.20 20–30 24.2 0.21 20–30 30.0 0.14 20–40
50 23.8 0.26 10–30 27.5 0.23 15–35 29.2 0.19 20–35
30 38.3 0.35 3–51 52.5 0.05 45–54 54.8 0.05 51–57

TABLE 5. Statistics on {Ds,i} (m), {Es,i} (m), and {Li} (s) for different
gm values. (t0, ta,∆a) = (4, 6, 1.5), pa = 20× (4, 2, 1), and
(K , `, λ, ω) = (31, 50, 6, 0).

{Ds,i} {Es,i} {Li}
gm mean CV mean CV mean CV
0 6.43 0.33 1.85 1.08 37.9 0.27

104 6.28 0.34 1.87 1.06 29.6 0.28
mix 6.47 0.3 1.73 1.02 35.4 0.09

FIGURE 17. Long flight experiments, including an attack. (Upper left): 360
second flight (route 1). (Upper right): Flight with large directional changes
(route 2). (Lower left): errors (m) in the x, y, and z directions and Es,i for
route 1. (Lower right): errors for route 2.
(K , `,w , gm, λ, ω) = (31, 50, 30, 10, 6, 0), (ta,∆a) = (0.5, 0.5), and
pa = 20× (4, 2, 1).

errors are smaller than CNN-LSTM-A in [55], although our
system has longer GPS-independent flight times.

Fig. 17(upper) shows the prediction results on the x–y
plane for 360 (route 1) and 140 (route 2) second flights. Fig.
17(lower) denotes time variability of the prediction errors
for routes 1 and 2. As shown in Fig. 17(lower), because
prediction {p̄∗s } is moving away from true position p∗s during
the spoofing attack, Es,i rises sharply and then falls as the
attack is detected. From Fig. 17(lower), while the complexity
of the flight route could affect the mean of the errors, our
system has no tendency of error increase over time, even if
an attack occurs. This is an essential nature for long-duration
blindfolded flights. Note that the errors after attack detection
in Table 6 are calculated from errors after the Es,i fall.
Table 7 shows the percentages of increase or decrease in

mean Em and standard deviation Esd of {Es,i}, where the
baseline is that ConvNet is used and smoothing parameters
satisfy (`,w) = (50, 30). From the table, the disuse of
ConvNet decreases Em by 1.7% and increases Esd by 3.3%.

Thus, ConvNet helps reduce the variability of Es,i. If the step
and window sizes (`,w) decrease to (10, 5), Esd rises largely
and Em remains almost the same, regardless of the presence
of ConvNet. Therefore, small ` and w should not be selected.
Note that reducing ` increases the computational complexity,
as more predictions p̄∗s must be computed.

VIII. DISCUSSION
The blindfolded flight does not imply that drones are com-
pletely immune to external signal attacks. As discussed in
Section II, attacks can be initiated through the exploitation
of the physical nature of sensor devices or by breaching
the security of companion computers (e.g., Raspberry Pi) at-
tached to the drones. Although attack patterns are diverse, the
blindfolded flight is valuable because it considerably narrows
down the possible attack patterns that should be considered.

The ability to fly blindfolded can be valuable in emergen-
cies, as a last resort, or under special circumstances such
as: (1) Systems requiring a higher level of safety, such as
flying taxis. (2) Environments with limited signals, such as
outer space. (3) Areas where malicious signals may arrive,
including anti-drone guns. (4) Areas with high GPS power
consumption, such as mountainous areas.

The blindfolded flight achieved by the proposed system
would have a wider range of applications. For example, if
trained with a high-quality positioning system, such as real
time kinematic (RTK), drones could fly with higher precision
than typical GPS flights. When trained, the drone no longer
requires RTK, offering an economic advantage. Additionally,
the blindfolded flight could be used in the areas where sensor-
signal quality is compromised, such as high electromagnetic
interference (EMI) sites.

Drones can be used as weapons or for covert surveil-
lance, and the realization of blindfolded flight derived from
our system could advance applications in these areas. The
blindfolded flight is resistant to anti-drone guns. In addition,
high resistance to gyro noise, a side effect of our approach,
makes drones more resistant to gyro disruption attacks. Con-
sequently, drones can enter previously inaccessible areas
and perform activities, such as voyeurism, espionage, and
sabotage. Appropriate safeguards against blindfolded flight
abuse should be considered from a variety of perspectives.
These include technical as well as legal, ethical, and social
perspectives.

IX. CONCLUSIONS
This study proposed a positioning system that predicts the
current position using only internal sensor signals (roll, pitch,
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TABLE 6. RMS and maximum prediction errors (m) during GPS outages (s) derived from the latest INS/GPS results and our experimental results (MOR).
[30] reported errors during the test periods, including numerous brief GPS outages. ‖ · ‖2 denotes a two-dimensional or three-dimensional distance, and
x, y, and z represent the errors in the x, y, and z directions, respectively.

No attack (RMS/max) After attack detection (RMS/max) Outage time Vehicle
x y z ‖ · ‖2 x y z ‖ · ‖2 (test time)

MOR 1 0.41/1.01 0.20/0.55 0.57/1.51 0.73/1.84 0.42/1.01 0.20/0.56 0.57/1.50 0.73/1.84 360
2 0.76/2.05 0.72/2.19 1.42/2.16 1.77/2.67 0.75/2.05 0.77/2.18 1.38/2.12 1.75/2.67 140 aerial
3 0.99/1.97 1.10/2.31 0.81/1.60 1.69/2.93 1.02/1.98 1.13/2.31 0.79/1.46 1.71/2.91 140
4 1.57/3.34 0.80/2.22 0.65/1.23 1.88/3.44 1.45/3.30 0.86/2.22 0.66/1.19 1.81/3.35 140

[26], 2020 1 1.86/ 2.42/ 1.75/ - - - - - 15 aerial
[30], 2024 1 0.27/1.31 0.33/1.41 - - - - - - 0 (1600)

2 0.27/0.90 0.37/1.19 - - - - - - 4–9 (850) land
3 0.79/3.41 0.79/3.89 - - - - - - 2–27 (850)

[31], 2024 1 2.74/5.55 0.79/1.62 - 3.24/6.02 - - - - 40
2 2.55/5.19 3.73/8.17 - 5.09/9.81 - - - - 100 land
3 1.40/2.37 4.23/6.07 - 4.46/6.21 - - - - 40
4 4.10/9.20 6.85/11.49 - 8.01/11.52 - - - - 115

[55], 2025 1 4.14/7.12 3.51/10.49 - - - - - - 100 land

TABLE 7. Impacts of ConvNet and smoothing processes on the mean and
standard deviation of {Es,i} (m). Their increase (+) or decrease (–)
percentages are calculated compared to the baseline setting where
ConvNet is used and (`,w) = (50, 30). The four flight routes used in the
calculation are the same as those used in Table 6.

Smoothing ConvNet
(`,w) use disuse

mean stdev mean stdev
(50,30) 1.42 m 0.65 m –1.7% +3.3%
(10,5) –0.1% +9.7% –0.2% +9.5%

yaw, throttle). The system included Perceiver, a deep learn-
ing model, which operated on coarse time scales (1 to 10
s) to reduce the variability of prediction errors on coarse
time scales. The system demonstrated high tolerance to low-
quality inputs. Evenwith noise level 10,000 times greater than
the signal, the error in the predicted position remained within
a few meters. The system showed smaller prediction errors
than the latest methods although it experienced longer GPS-
independent periods (140 to 360 s). The 360-second flight
experiment showed no tendency for the prediction error to
increase with time, even when a spoofing attack occurred.

An algorithm was introduced to iteratively execute the
trained proposed system, aiming to refine the drone’s position
accuracy. The number of iterations can be reduced by using
either previous flight data or simulation data as initial values.
Using previous flight data resulted in better outcomes. In
the case of GPS spoofing attacks, the algorithm took longer
to detect the attacks, as the initial values for the iterations
were unavailable beforehand. However, the coefficient of
variations (CVs) in detection delays remained small.

Drones equipped with the proposed system will need to
undergo various field tests in the future for stable, long-
duration blindfolded flight. The system has potential applica-
tions across a variety of mobility and transportation systems.
We plan to explore its application to fixed-wing, vertical
takeoff and landing (VTOL), and jet airplanes.

APPENDIX A
GLOSSARY
Table 8 lists technical notations and their definitions for clar-
ity and prevention of misunderstanding.

TABLE 8. Technical notations used in this paper and their definitions.

Notation Definition
Iverson bracket [P] [P] = 1 if P is true, [P] = 0 if P is not true
Hadamard product � (a1, a2)� (b1, b2) = (a1b1, a2b2)
Mor signals Signals from human-operated control units
mor2pos Trained proposed system in Fig. 2
v[i] (i + 1)-th element of vector v
arctan2(y, x) Direction in which (x, y) lies relative to (0, 0)
Et,i Prediction error at time t and route i
Dt,i Error reduction by Algorithm 2

APPENDIX B
(19) AVERAGELY HOLDS
Because ‖p̄∗t,i − p0

t,i‖2 = ‖(p̄∗t,i − p∗t,i) − (p0
t,i − p∗t,i)‖2, the

reverse triangle inequality argues that

|‖p̄∗t,i − p∗t,i‖2 − ‖p0
t,i − p∗t,i‖2| ≤ ‖p̄∗t,i − p0

t,i‖2. (20)

From (13), Dt,i := ‖p0
t,i − p∗t,i‖2 − ‖p̄∗t,i − p∗t,i‖2. Therefore,

Dm ≤
1

|L|
∑

(t,i)∈L

|Dt,i| ≤
1

|L|
∑

(t,i)∈L

‖p̄∗t,i − p0
t,i‖2. (21)

By replacing p0
t,i with p

ex
t,i in (21),

1

|L|
∑

(t,i)∈L

‖p̄∗t,i − pext,i‖2 > ∆a if ∆a ∈ (0,Dm), (22)

where (22) corresponds to the arithmetic mean of (19).

APPENDIX C
FPR DERIVATION
The Maxwell-Boltzmann distribution describes the distribu-
tion of the magnitude of velocities v = (vx , vy, vz) of particles
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in a gas. The components of the velocity are assumed to be
independent and follow a normal distribution N (0, a2), i.e.,

vx , vy, vz ∼ N (0, a2), (23)

where the scaling parameter a affects the spread of the distri-
bution. Let x := ‖v‖2. The probability density function of the
Maxwell-Boltzmann distribution is given by

f (x; a) =

√
2

π

x2

a3
exp

(
− x2

2a2

)
. (24)

This study assumes that ‖p̄∗t,i − p0
t,i‖2 has a Maxwell-

Boltzmann distribution if {p0
s,i} and {p∗s,i} are type 2 pairs

and no attack occurs. In this case, from (24), the FPR is

FPR = 1−
∫ ∆a

0

f (x; a)dx, (25)

where ∆a is the threshold in (19). The values of the scale
parameter a, which can be obtained from either the mean or
the standard deviation of ‖p̄∗t,i− p0

t,i‖2, were derived from the
latter, which always yielded larger a values (i.e., larger FPRs).
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