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Abstract

We have recently proposed a novel paradigm for solving problems with uncertainty, called
Uncertainty Paradigm. Under this paradigm, solving such a problem deterministically is re-
solved into the plain AND/OR tree search, which we call Uncertainty Paradigm Search. It
uses a metaposition as a node of a game tree instead of a position and a metamove instead of
a move. We have shown the applicability and justifiability of this paradigm to both a single-
agent problem and an adversary-agent problem. The previous implementation of the search
under this paradigm was based on a simple depth-first full-width search with iterative deep-
ening, which did not use a transposition table. In this contribution, we have examined several
methods for encoding a metaposition into some value with fewer bits. Then, a transposition
table using these encoding methods is incorporated into the search. To confirm the effective-
ness of the use of a transposition table, we have chosen the domain of Tsuitate-Tsume-Shogi
(mating problems of Kriegspiel-like variant of Shogi). The experiments performed with a
test set show us that the efficiency of search with a transposition table is turned out to be
higher than the case without it at most by a factor of fourteen. As for encoding methods of a
metaposition, we have confirmed that the method that simply sums up each code of position
in the metaposition is efficient and allowedly collision-resistant in this domain.

Keywords: Problem solving; Uncertainty Paradigm; Metaposition; Metamove;
Uncertainty Paradigm Search; Tsuitate-Tsume-Shogi; Zobrist method; Transposition table

1 Introduction

The game-tree search has been the most important part in developing a computer program for
games with perfect information. Each node and edge in a game tree is called a position and a
move respectively. Even in programming a game with imperfect information, a node of a game
tree has been anyway a position. In addition, information sets[13] arisen from uncertainty have
been used with nodes while searching.

We have recently proposed a novel paradigm for solving problems with uncertainty, called Un-
certainty Paradigm[19]. We have shown the applicability and justifiability of this paradigm to
both a single-agent problem (Counterfeit Coin Problem) and an adversary-agent problem (mating
problem of Kriegspiel-like Shogi variant). Here, we need to mention our terminology in this paper.
We use the term single-agent problem as a problem that has only one agent (or player) related to
the problem, and the term adversary-agent problem as a problem that has two agents (or players)
related to the problem, respectively. Moreover, the term multi-person game means a game that
has more than two players.
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†Email: iida@cs.inf.shizuoka.ac.jp.
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In the previous study, we used a simple depth-first full-width search with iterative deepening for
solving problems under this paradigm. Since this search did not use a transposition table, it was
a somewhat inefficient search algorithm. Moreover, without using a transposition table, we could
not apply some efficient search algorithms for AND/OR tree such as PN*[20], PDS[10, 11], or
df-pn[12], all of which are the depth-first variants of proof-number search[1, 2]. We thus need to
exploit a transposition table in the search by encoding a metaposition into some value with fewer
bits. In this paper, we examine several methods for encoding a metaposition and apply them for
searching with a transposition table.

2 Uncertainty Paradigm for Problems with Incomplete In-
formation

Uncertainty Paradigm is a way of thinking that recognizes the uncertain situation as it really is.
Under this paradigm, an uncertain situation is a hybrid of several certain situations. Here we
would like to give a brief sketch of this paradigm. We use the term solver and opponent in the
special meaning indicated bellow.

solver : the player or the agent to solve the problem
opponent : the other players or the other agents of the problem

A metaposition is a hybrid of possible positions that are not distinguishable for the solver. Let Φ
be a metaposition, ϕi be a position in the metaposition, the metaposition for deterministic solving
is then represented as:

Φ =
np∑
i

ϕi

By using the symbol of summation, the localized state ϕi and the delocalized state Φ are rep-
resented. The count of the possible positions np in the metaposition can be recognized as the
uncertainty index.

A metamove is a move for the metaposition. In the case that a metamove is one of definite moves,
a metamove µ is represented as:

µ = m ∈M
where m is one of definite moves and M is a set of possible moves for all positions in the meta-
position. On the other hand, in the case that a metamove is a hybrid of moves, a metamove µ is
represented as:

µ =
np∑
i

nmi∑
j

mij

where nmi is the number of possible moves for i-th position and mij is one of moves for i-th
position.

Here we represent a position after a certain move and a metaposition after a certain metamove
respectively as follows:

m(ϕ) : a position from the position ϕ after the move m
µ(Φ) : a metaposition from the metaposition Φ after the metamove µ

When a metamove µ for a metaposition Φ is a definite move m, making the metamove corresponds
to making the move m for each position in the metaposition.

Φchild = µ(Φ) =
np∑
i

m(ϕi) =
nchild

p∑
i

ϕchild
i

When a metamove µ for a metaposition Φ is a hybrid of several moves, making the metamove
corresponds to making all the moves for each position in the metaposition. Consequently, the
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number of positions in the metaposition increases. This is a diffusion of the metaposition.

Φchild = µ(Φ) =
np∑
i

nmi∑
j

mij(ϕi) =
nchild

p∑
i

ϕchild
i

The count of positions in the metaposition increases to nchild
p . If the solver cannot get any clue

in such metamoves, the uncertainty of the metaposition soon explodes combinatorially. However,
there are observations or clues that help the solver. By these observations, the metaposition splits
into several metapositions with less uncertainty i.e. metapositions that have fewer positions in it.

We have defined the observable as an element of which value the solver can get as a clue. An
observable o always acts on a metaposition (and positions in the metaposition) and returns the
corresponding value automatically. Here we represent the value to be returned by an observable
o as follows:

o(ϕ) : a value returned by acting on the position ϕ
o(Φ) : a value returned by acting on the metaposition Φ =

∑np

i ϕi

o(Φ) =
{

v if for all i (1 ≤ i ≤ np) o(ϕi) = v
uncertain otherwise

Let no be the number of observables, ol be a observable, and (ts1, ts2, . . . , tsno) be a no-tuple of the
indexes of observable values that represents s-th split (1 ≤ s ≤ nchild

s ). And for each observable
ol, let nvl be the number of possible values for the observable, and {vlt | 1 ≤ t ≤ nvl} be a set
of possible values for the observable. Then the splitting of a metaposition is represented as follows:

Φchild
s =

nchild
ps∑
is

ϕchild
is

such that ol(Φchild
s ) = vltsl

(1 ≤ s ≤ nchild
s )

So the metaposition Φchild splits into nchild
s metapositions {Φchild

1 , . . . ,Φchild
nchild

s
}. Since the solver

should accept this splitting in a passive manner, he/she has to solve all the split metapositions.
Therefore, it is an AND-splitting of a metaposition even in case of the single-agent puzzles.

For all solving problems with uncertainty, the search graph(tree) under Uncertainty Paradigm is
AND/OR graph(tree), which we have denoted as Uncertainty AND/OR graph(tree). The search
graph(tree) under Uncertainty Paradigm is a plain AND/OR graph(tree), as well as the solution
graph(tree). The search under Uncertainty Paradigm is a plain AND/OR graph(tree) search,
which we call Uncertainty Paradigm Search (UPS).

3 Encoding a Metaposition under Uncertainty Paradigm

Implementation of a metaposition can be categorized into two types: representing a metaposition
as itself, or an array of possible positions. As for the case that a metaposition is represented as
itself, encoding can be performed same as encoding a position. So no further discussion is needed
here.

The problem is how we can encode a metaposition that is represented as an array of positions.
First we explain the general method for this problem, and consequently we would focus on that
for the specific domain.

3.1 Encoding a Position of a Board Game

Before discussing encoding a metaposition, we would like to describe the encoding method of a
position of a board game. Zobrist method is well-known for efficient encoding of a position of
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general games, especially board games[22].

Suppose there are m distinguishable types of pieces and n locations on the board. There are
at most m × n possibilities for placing a type of piece at a board location, thus every game
configuration corresponds to a unique subset of these m× n possibilities. We take m× n integers
from a random sequence and assign each of them to each placement possibility. Then the code for
a board configuration is an exclusive-OR summation of all pieces on the board.

The board code bp of a position is represented as:

bp =
⊕∑
i

rp[i]

where rp[i] is a random integer corresponding to one piece in the board. ⊕ indicates a summation
by means of an operator of exclusive-OR.

This method has a great advantage that the computation of a position code is incorporated with
making (or unmaking) a move for the position and the position code can be incrementally updated
by least additional computing. In the domain of computer chess, this method has been successfully
applied for years[8].

3.2 General discussion on encoding a metaposition

We assume that each position has its own code that is computed by whatever method used.
Moreover, we can assume a metaposition has a certain property that is common for all positions
in the metaposition. Considering these, let cc be a code of the common property for all positions
in a metaposition, n be the number of positions in the metaposition, and pc[1], ..., pc[n] be a code
of each position in the metaposition respectively. Then a code of the metaposition mc can be
represented as:

mc = h(cc, n, pc[])

h() is a kind of a hash function, which hashes all of cc, n, pc[1], ..., pc[n] on a certain integer. This
is classified as one-way hash functions. h() should be selected such as its computation is fast and
it minimizes collisions[7].

There are several alternatives that can be used for such a hash function: simple arithmetic sum,
simple exclusive-OR sum, cyclic redundancy code (CRC), secure hash functions, and so on.

3.2.1 Simple Arithmetic Sum

For n random integers r[1] to r[n], if we can assume the following conditions (Condition A), we
could use a simple arithmetic sum to represent all random integers.

1. Arithmetic addition is calculated by modulo 2w when w is the number of bits of each random
integer.

2. Random numbers are uniformly distributed within the range 0 to 2w − 1.

3. All r[1], ..., r[n] are independent.

The resulting sum is also uniformly distributed within the range 0 to 2w − 1. This can be proved
easily by induction. First, if n is 1, it is obvious. Secondly, we assume

sn =
n∑

i=1

r[i]
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is uniformly distributed within the range 0 to 2w−1. Since r[n+1] is uniformly distributed within
the range 0 to 2w − 1, sn+1 = sn + r[n + 1] is also uniformly distributed.

If we can nearly assume the above conditions with respect to cc, n and pc[i], we can use this
for encoding a metaposition. This encoding has a commutative feature for each position in a
metaposition. Therefore, it doesn’t need sorting positions in a metaposition before encoding.

3.2.2 Simple Exclusive-OR Sum

Similarly as above, for n random integers r[1] to r[n], if we can assume the following conditions
(Condition E), we could use a simple exclusive-OR sum to represent all random integers.

1. All bits of each random integer have a possibility of 1/2 as 0, 1/2 as 1.

2. All r[1], ..., r[n] are independent.

All bits of the resulting sum have a possibility of 1/2 as 0, 1/2 as 1. Hence, the resulting sum is also
uniformly distributed within the range 0 to 2w − 1 when w is the number of bits of each random
integer. This can be proved easily by induction, too. This encoding also has a commutative feature
for each position in a metaposition. Therefore, it doesn’t need sorting positions in a metaposition
before encoding.

3.2.3 Cyclic Redundancy Code (CRC)

Cyclic redundancy code (CRC) is used especially for the error detecting of transmission[3, 21]. It
can distinguish all errors such that the received value is several bits different from the original
value. However, CRC can be also used for representing the sequence of integers. This encoding
doesn’t have a commutative feature for each position in a metaposition. Therefore, it is necessary
to sort positions in a metaposition before encoding in some particular order.

There are several standards of CRC codes depending on the polynomial concerned: CRC-12,
CRC-16, CRC-CCITT, CRC-32. We can select one of them for encoding in accordance with the
target domain.

3.2.4 Secure Hash Functions

Secure hash function such as MD5 or SHA-1 is used for data-encryption and has an excellent
collision-resistant feature[9]. However, it takes much time to compute these codes because these
functions are specially designed to defend against possible decoding attacks by humans or man-
made programs.

For encoding a metaposition, because it is meaningless to defend against decoding, we cannot
get much advantage but only lose the efficiency of search by using these functions. If we have to
encode metapositions each of which is consisted of nearly same codes of positions and consequently
we have to be very sensitive to collisions, these encoding might be necessary.

3.3 Domain-specific consideration: encoding a metaposition in Tsuitate-
Tsume-Shogi

As an application of Uncertainty Paradigm to the adversary-agent problems with uncertainty, we
have chosen the domain of Tsuitate-Tsume-Shogi (TTS). Tsuitate-Shogi is a Shogi variant which
is one of the best known and most popular among all variants as well as Kriegspiel[15] being in

5



chess. Tsuitate-Tsume-Shogi is a mating problem of Tsuitate-Shogi[5], which is also a variant of
Tsume-Shogi, a mating problem of Shogi[4]. The detailed rules of TTS have been given in [19] or
[16]. We have also shown the simple explanation and a sample problem of TTS in the Appendix.

First, we should mention the encoding method of a position. As described in a previous section,
the Zobrist method has been successfully applied for years in the domain of computer chess.
However, in the case of Shogi, there is additional factor than chess. Different from that of chess, it
is necessary to represent a position of Shogi in terms of its pieces in the board as well as pieces in
hand of both sides. Though pieces in the board can be coded efficiently using the Zobrist method
same as chess, pieces in hand of both sides cannot be represented by this encoding. Therefore, in
most Shogi programs including ours, a position is coded as a code of its board as well as a code
of pieces in hand of one player. (If both a code of the board and a code of pieces in hand of one
player in a certain position are same as those in another position, two positions can be recognized
as to be same.)

The board code bp of a position is represented as:

bp =
⊕∑
i

rsp[i] ⊕
⊕∑
i

rdp[i]

where rsp[i] is a random integer corresponding to the pieces of one player, and rdp[i] is a random
integer corresponding to the pieces of the other player.

We have had to pay careful attention to the selection of random numbers. Many generators of
pseudo-random numbers have been developed and studied deeply[6]. Here we have adopted the
pseudo-random numbers based on pseudo-DES algorithm[14]. Each random number is a 64-bit
integer generated by this algorithm and it is assigned to each placement possibility. Each board
position is computed using the above Zobrist method.

Pieces in hand of one player are represented as an array of the number of pieces according to a
type of piece, npi[ for all types of pieces in hand ]. This can be recognized as a set:
{ tpi | tpi is one type of pieces in hand }.
For example:
npi Rook(T ) Bishop(V ) Gold(X ) Silver(Z ) Knight(\ ) Lance(^ ) Pawn(` )

1 0 2 1 0 3 4
is equivalent to a set:

{ Rook, Gold, Gold, Silver, Lance, Lance, Lance, Pawn, Pawn, Pawn, Pawn }.

npi[] can be packed into an integer cpi of a certain bits (32 bits) with perfect information. cpi is
a code of pieces in hand.

In our program of solving TTS, each board position is coded into a 64-bit integer. We can assume
both the equi-distribution within the range of 0 to 264− 1 and the equi-possibility (0 or 1) of each
bit for this random number. In TTS, since the solver of course knows the placements of his/her
own pieces, he/she can distinguish two positions both in which the placements of his/her pieces
differ. Consequently, all positions in a metaposition have the same placements with respect to
pieces of the solver. Therefore, we have separated pieces of both sides and computed a board code
of each side respectively.

The board code sbp of a position with respect to the solver’s pieces and the board code dbp of a
position with respect to the opponent’s pieces are represented as:

sbp =
⊕∑
i

rsp[i]

dbp =
⊕∑
i

rdp[i]
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where rsp[i] is a random integer corresponding to the pieces of the solver, and rdp[i] is a random
integer corresponding to the pieces of the opponent (defender).

Secondly, let us proceed to the encoding method of a metaposition. We have also separated a code
with respect to board pieces and a code with respect to pieces in hand of the solver. Since the
code with respect to pieces in hand of the solver is common for all positions in a metaposition, we
can handle this code exactly same in normal Shogi programs. Codes with respect to board pieces
are different among positions in a metaposition, so we have to sum up these codes.

Let spb be a random integer corresponding to the board pieces of solver in a metaposition and f
be the number of fouls that have been committed so far, both of which are codes of the common
properties for all positions in the metaposition, and let n be the number of positions in the
metaposition, dpb[i] be a random integer corresponding to the pieces of the opponent for each
position in the metaposition. Then, a code of the metaposition mc can be represented as:

mc = h(spb, f, n, dpb[])

Please notice that each dpb[i] is not independent. Let gcdpb be a greatest common code for all
dpb[i], and deladpb[i] be a characteristic code for each dpb[i], dpb[i] is represented as:

dpb[i] = gcdpb ⊕ deltadpb[i]

Because codes of metapositions are not so collision-sensitive in this domain, we reasonably think
we don’t have to examine some secure hash functions such as MD5. Therefore, we have examined
three methods discussed in the previous section: simple arithmetic sum, simple exclusive-OR sum,
and CRC.

First, let us consider encoding by means of a simple arithmetic sum. We can nearly assume the
equi-distribution of spb and dpb[i] within the range from 0 to 264 − 1. Moreover, though each
dpb[i] is dependent in the relation of exclusive-OR, we can roughly assume their independence
with respect to arithmetic addition. Consequently, the Condition A roughly holds in this case,
thus we can use a simple arithmetic sum for encoding metaposition.

Secondly, let us consider encoding by means of a simple exclusive-OR sum. We can nearly assume
the equi-possibility (0 or 1) of each bit in spb and dpb[i]. However, since each dpb[i] is dependent
in the relation of exclusive-OR, the Condition E obviously does not hold in this case. Therefore,
encoding a metaposition by means of a simple exclusive-OR sum may be not so appropriate.

Thirdly, Cyclic redundancy code (CRC) can be used for encoding a metaposition after sorting posi-
tions in the metaposition in some particular order. We have used two CRC-32 codes corresponding
to high 32 bits and low 32 bits respectively.

4 Searching with a transposition table

Iteration has to be doubly nested to find the solution with the shortest steps and the least fouls.
The outer iteration is that of the search depths of checks and responses, while the inner iteration
is that of the allowed count of fouls. After deciding the solvable steps and fouls, the search with
the multiple iterative deepening at OR nodes is performed to determine the best solution sequence
of metamoves. A sequence is recognized better when

The number of steps of one sequence is less than that of another sequence.
If the above is same, the number of fouls is less than that of another sequence.
If the above is same, the number of pieces in hand at the mated position is larger than
that of another sequence.

A metaposition that has the best sequence is selected at every OR node, while a metaposition
that has the worst sequence is selected at every AND node or at every AND-splitting.
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Table 1: Performance results of solving TTS problems
NOTP ADD XOR CRC

correct answer 24 24 23 24
code collision - - Found -
maximum time 199839 (1) 14260 (0.071) 13895 (0.070) 14387 (0.072)
arithmetic mean time 10516 (1) 867.3 (0.082) 928.3 (0.088) 875.1 (0.083)
geometric mean time 64.49 (1) 46.17 (0.716) 47.47 (0.736) 46.93 (0.728)
maximum nodes 28345500 (1) 7340640 (0.259) 7150850 (0.252) 7340640 (0.259)
arithmetic mean nodes 2445750 (1) 758924 (0.310) 746951 (0.305) 758924 (0.310)
geometric mean nodes 134419 (1) 97704 (0.727) 97275 (0.724) 97704 (0.727)

”NOTP” represents a program with no transposition table. Similarly, ”ADD”, ”XOR” and ”CRC”
represent a program with the transposition table using the following encoding method: simple arithmetic
sum, exclusive-OR sum, and CRC-32, respectively. The numbers in the parenthesis indicate the ratios of
the values to the case without the transposition table.

4.1 Experimental Results and Discussions

Experiments have been performed using a test set that contains 39 problems from the source[5].
Here we have tried to solve 24 problems among them. They vary from some easy problems with 7
or 9 steps to some hard problems with 19 steps within 3 permitted fouls. We have tried to solve
24 problems of TTS using a simple depth-first full-width search with iterative deepening, in which
a transposition table is exploited.

Experiments have been done under the following environment:

Gateway2000, G6/GP6 Series (TB298-0109) Pentium II 450MHz, RAM: 384MB
Windows 98.

The summary of results of the experiments are shown in Table 1. For reference, the results
by our previous program without the transposition table are also included. The programs have
solved most problems and shown the correct solution sequences except one problem, in which it
is necessary to omit the useless interposing move.

All programs could solve all tested problems and give the correct answers. The only exception was
that the XOR-encoding (denoted by ‘XOR’ in Table 1) program was unable to solve one problem
correctly. This is caused by the collisions of codes of metapositions. As expected, XOR-encoding
is not proper encoding method for the domain of TTS problems.

As for the efficiency of the search, the methods exploiting the transposition table is faster than
one without the transposition table by a factor about from 1.4 to 14. Both the solving time by the
program without the transposition table and that by the program with ADD-encoding (denoted
by ‘ADD’ in Table 1) are plotted in Figure 1. The total number of metapositions generated in the
search exploiting the transposition table is also fewer by a factor about from 1.4 to 4.

As for the encoding methods, the XOR-encoding is out of the question because of the collisions of
codes. Moreover, the ADD-encoding has a little advantage over the CRC-encoding (denoted by
‘CRC’ in Table 1) with respect to solving speed by roughly one percent. This is obviously caused
the difference of quantity of computing those codes and sorting positions required only before the
CRC-encoding. Those results show that the ADD-encoding is superior to other encoding methods
for a metaposition of TTS problems.

In addition to the above 24 problems, we have tried to solve another problem with 43 steps and
4 fouls, which is shown in Figure 2. The program without the transposition table could not solve
this problem due to deep steps. However, the programs with the transposition table have solved
it with the search of 37 steps in 70 seconds and settled the solution sequence with the search of
39 steps in about 2850 seconds. This is entirely owing to the power of the transposition table.
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5 Conclusions

We have extended a recently proposed paradigm for solving problems with uncertainty, Uncertainty
Paradigm, by encoding a metaposition and exploiting the transposition table in searching.

As to the encoding methods of a metaposition, we have considered several methods and tested
ADD-encoding, XOR-encoding and CRC-encoding in the domain of Tsuitate-Tsume-Shogi. By
using the transposition table, the efficiency of search has been enhanced by a factor about from 1.5
to 14. We have confirmed that ADD-encoding method outperforms the other encoding methods
considered in this paper. Moreover, no collision of codes has detected with this encoding.

Though our programs have succeeded to solve all the problems in the test set of Tsuitate-Tsume-
Shogi, there still are other hard problems that have not yet been solved. These are problems
with quite long steps, or problems that have considerably large branching factors. To solve such
problems in a short time, we should examine the other search algorithms that have best-first
manners using the transposition table, which are PDS, and df-pn. We have examined these
algorithms to the adversary-agent problem with complete information, on 6x6 Othello and Tsume-
Shogi and confirmed the excellence of these searches[17, 18]. Since UPS is also the AND/OR
tree search same as the search of the adversary-agent problem with complete information, we
think these algorithms represented by PDS would also work efficiently in UPS. However, some
modifications or specialization of these algorithms will be required in UPS because there are
additional factors derived from uncertainty. Now that we have implemented the encoding of a
metaposition, we are ready to examine these searches in UPS. This should be the next subject.
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A simple explanation and a sample problem of TTS

Here we give a summary of rules of Tsuitate-Tsume-Shogi (TTS). The rules of TTS are fairly
similar to those of Tsume-Shogi except several cases. There are two agents in TTS: the attacker
as the solver and the defender as the opponent. In TTS, the attacker is unable to see the opponent’s
pieces and response except the initial position of a mating problem considered. The goal of solving
a TTS problem is to mate the opponent’s king after the sequence of check and its response as well
as in Tsume-Shogi. However, in TTS, the attacker is unable to see the definite information on the
defender’s responses, while the defender has the perfect information on both sides. The attacker
must lead to a checkmate whatever moves the defender may play. The attacker is allowed to try
the foul moves in a certain number of times, typically eight times or less. The foul move is defined
as the subset of the illegal move. It is the move that seems to be legal on the board only with the
own pieces but is illegal on the board with pieces of both sides. Thus, the foul moves are:

1. The sliding piece (rook, bishop, lance) jumps over the opponent piece.
2. Drop a piece into the square where there is the opponent piece.
3. The pawn-drop move that causes the dropped pawn mate.
4. The king of the attacker remains in check or come to be in check after the move, for problems

with double kings.

Please notice that the attacker cannot cancel the move that has been once tried and it has to be a
check move if it has turned out to be a legal move. The attacker should try to guess the position
of the defender’s pieces as the mating search progresses by trying moves that can be either legal
or illegal with respect to the full position.
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Figure 3: A sample problem

Next, let us show a sample TTS problem and its solution. A sample TTS problem is shown in
Figure 3. This is a definite initial position. The attacker first makes the silver-dropping move
1. Z *2c. There are three moves as its response, 1. . . . R 1a, 1. . . . R 1c, and 1. . . . R 3a. The
attacker should make the move that checks the defender’s king (R ) for all three possibilities. So
the attacker makes the move 2. V *2b. If the king is at 1a or 1c, the position is turned out to lead
to checkmate. Otherwise, the defender has two possible moves 2. . . . R 4a or 2. . . . R 4b as the
response. Then the attacker makes the move 3. V 3a+ that checks the king for both possibilities.
There are three responses, 3. . . . R x3a, 3. . . . R 5a, or 3. . . . R 5b. If the defender choices the
move 3. . . . R x3a, the attacker knows it because the promoted bishop at 3a disappears. So the
attacker can make the final move 4. X *3b and checkmate the king. Otherwise, the attacker knows
that the defender moves the king either to 5a or to 5b. Then the attacker can make the final
move 4. X *6b and checkmate the king. The solution sequence with 7 steps is either of the below:

1. Z *2c (–) 2. V *2b (–) 3. V 3a+ (3a) 4. X *3b mate.
1. Z *2c (–) 2. V *2b (–) 3. V 3a+ (–) 4. X *6b mate.

‘(–)’ indicates a response of the defender after which no capturing has occurred, and ‘(3a)’
indicates a response after which the piece at 3a has been captured by some defender’s piece.
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