
100 Int. J. Reasoning-based Intelligent Systems, Vol. 3, No. 2, 2011

Copyright © 2011 Inderscience Enterprises Ltd.

Mechanisms for converting circuit grammars to
definite clauses

Takushi Tanaka
Department of Computer Science and Engineering,
Fukuoka Institute of Technology,
3-30-1 Wajiro-Higashi Higashi-ku,
Fukuoka 811-0295, Japan
Email: tanaka@fit.ac.jp

Abstract: The circuit grammar is a logic grammar developed for knowledge representation
of electronic circuits. Knowledge on circuit structures and their functions are coded into the
grammar rules. Those grammar rules, when converted into definite clauses, form a logic
programme which can parse given circuits and derive electrical behaviour. This paper shows
mechanisms for converting circuit grammar rules into definite clauses.

Keywords: circuit grammar; knowledge representation; electronic circuits; definite clause
grammar; logic grammar; reasoning-based system.

Reference to this paper should be made as follows: Tanaka, T. (2011) ‘Mechanisms for
converting circuit grammars to definite clauses’, Int. J. Reasoning-based Intelligent Systems,
Vol. 3, No. 2, pp.100–107.

Biographical notes: Takushi Tanaka received the BEng, MEng. and Dr.Eng. degrees from
Kyushu University, Fukuoka, Japan, in 1967, 1969 and 1987, respectively. From 1982 to 1983,
he was a Post-Doctoral Fellow with the Department of Computer Science, Yale University where
he was involved with the AI project. From 1976 to 1988, he worked on understanding natural
language as a Senior Researcher at The National Language Research Institute, Tokyo, Japan. He
is currently a Professor with the Department of Computer Science and Engineering at the
Fukuoka Institute of Technology, where he has been since 1988. His research interests include
artificial intelligence, language processing, logic programming, electronic circuits, robot soccer
and small artificial satellite.

1 Introduction

As a step toward automatic circuit understanding, we
developed a new method for analysing circuit structures
described in Tanaka (2009). We view designed circuits as
grammatical sentences, and their elements as words. Electrical
behaviour and functions are meaning of the sentences.
Knowledge on circuit structures and their electrical behaviour
are coded into grammar rules. A set of grammar rules, when
converted into definite clauses, forms a logic program which
executes top-down parsing.

The circuit grammar is a descendant of the logic
grammar called DCSG (Definite Clause Set Grammar)
by Tanaka (1991) which was developed for analysing word-
order free language. The circuit grammar consists of several
extensions to the DCSG which are useful to analysing
electronic circuits by Tanaka (1993).

In this paper, we first introduce the DCSG, then show
the mechanism for converting grammar rules into definite
clauses. Next, we introduce extensions for circuit analyses
and show mechanisms for converting circuit grammars.

2 Logic grammar DCSG

2.1 Word-order free language

Most implementations of computer language Prolog provide
a mechanism for parsing context-free languages called DCG
(Definite Clause Grammar) by Pereira and Warren (1980).
A set of the grammar rules, when converted into definite
clauses, forms a logic program which executes top-down
parsing. While, a logic grammar DCSG by Tanaka (1991)
was developed for word-order free languages similar to the
method of DCG.

A word-order free language, L(G’), is defined by
modifying the definition of a formal grammar. We define a
context-free word-order free grammar G’ to be a quadruple
< VN, VT, P, S > where: VN is a finite set of non-terminal
symbols, VT is a finite set of terminal symbols, P is a finite
set of grammar rules of the form:

1 2, ,..., (1)nA B B B n→ ≥

, (1,...,)N i N TA V B V V i n∈ ∈ ∪ =

 Mechanisms for converting circuit grammars to definite clauses 101

and S(∈ VN) is the starting symbol. The above grammar rule
means that the symbol A is rewritten not with the string
of symbols ‘B1, B2, … , Bn’, but with the set of symbols
{B1, B2, … , Bn}. A sentence in the language L(G’) is a set
of terminal symbols which is derived from S by successive
application of grammar rules. Here the sentence is a
multi-set which admits multiple occurrences of elements
taken from VT. Each non-terminal symbol used to derive a
sentence can be viewed as a name given to a subset of the
multi-set.

2.2 DCSG conversion

The general form of the conversion procedure from a
grammar rule

1 2, ,..., nA B B B→ (1)

to a definite clause is:

() ()
()

()

0 1 0 1

2 1 2

1

, , : , , ,

, , ,
...

, , .

n

n n n

subset A S S subset B S S

subset B S S

subset B S S−

−

 (1)’

Here, all symbols in the grammar rule are assumed to be
non-terminal symbols. If ‘[Bi]’(1 ≤ i ≤ n) is found in the
right hand side of grammar rules, where ‘Bi’ is assumed to
be a terminal symbol, then ‘member(Bi, Si−1, Si)’ is used
instead of ‘subset(Bi, Si−1, Si)’ in the conversion.

The arguments S0, S1, ... , Sn in (1)’ are multisets of VT,
represented as lists of elements. The predicate ‘subset’ is
used to refer to a subset of an object set which is given as
the second argument, while the first argument is the name of
its subset. The third argument is a complementary set which
is the remainder of the second argument less the first; e.g.
‘subset(A, S0, Sn)’ states that ‘A’ is a subset of S0 and that Sn
is the remainder.

The predicate ‘member’ is defined by the definite
clauses (2) and (3) below. It has three arguments. The first
is an element of a set. The second is the whole set. The third
is the complementary set of the first argument.

(), , .member M M X X⎡ ⎤⎣ ⎦ (2)

() (), , : , , .member M A X A Y member M X Y⎡ ⎤ ⎡ ⎤ −⎣ ⎦ ⎣ ⎦ (3)

When the clause (1)’ is used in parsing, an object sentence
(multiset of terminal symbols) is given to the argument S0.
In order to find the subset A in S0, the first sub-goal finds the
subset B1 in S0 then put the remainder into S1, the next sub-
goal finds B2 in S1 then put the remainder into S2, ... , and
the last sub-goal finds Bn in Sn−1 then put the remainder into
Sn. That is, when a grammar rule is used in parsing, each
non-terminal symbol in the grammar rule makes a new
set from the given set by removing itself as its subset.
While, each terminal symbol used in the grammar rule also
makes a new set from the given set by removing itself as its
member.

DCSG uses the predicates subset and member to convert
grammar rules into definite clauses, but the differences
between DCG and DCSG are minimal. If we replace the
predicate subset with substring and remove the clause (3)
from the definition of member, the conversion will be
equivalent to DCG conversion, although ordinary DCG does
not use the predicate of substring for simplification.

DCSG allows the symbol ‘;’ as abbreviation of two
grammar rules with the same left-hand side. The following
rule (4) which generates B or C1, C2 from A is converted to
the definite clause (4)’ as:

1 2; , .A B C C→ (4)

() ()
()
()

0 2 0 2

1 0 1

2 1 2

, , : , , ;

, , ,

, , .

subset A S S subset B S S

subset C S S

subset C S S

−

 (4)’

3 Mechanisms for DCSG-conversion

The following List 1 shows a basic DCSG-converter written in
Prolog. The line 01 defines the main predicate ‘dcsgConv’
which converts a grammar rule into a definite clause. It
separates the grammar rule into a left-hand side and a right-
hand side, and generates a definite clause from a head part and
a body part. The first subgoal ‘conv(Lhs, Head, S0, S1)’
generates the head part from the left-hand side using
the definition of line 10, and the second subgoal ‘conv(Rhs,
Body, S0, S1)’ generates the body part from the right-hand
side. If the right-hand side consists of more than two grammar
symbols, the predicate ‘conv’ defined by the line 02 and 03
separates these symbols into the first one and others. The line
02 generates a conjunctive subgoals from grammar symbols
connected by ‘,’, while the line 03 generates a disjunctive
subgoals from ‘;’. The line 09 defines the conversion of a
single terminal symbol. The line 10 defines the conversion of a
single non-terminal symbol, which is used both for converting
the left-hand side and the right-hand side.

List 1: Basic DCSG-converter

01 dcsgConv((Lhs --> Rhs),
(Head :- Body)) :-

 conv(Lhs,Head,S0,S1),
 conv(Rhs,Body,S0,S1).
02 conv((CompoA,CompoB),
 (CA,CB),S0,S1) :-
 !,
 conv(CompoA,CA,S0,S),
 conv(CompoB,CB,S,S1).
03 conv((CompoA;CompoB),
 (CA;CB),S0,S1) :-
 !,
 conv(CompoA,CA,S0,S1),
 conv(CompoB,CB,S0,S1).
09 conv([Component],
 member(Component,S0, S1),
 S0,S1) :- !.
10 conv(Component,
 subset(Component,S0, S1),
 S0,S1) :- !.

102 T. Tanaka

4 Context-dependent features

4.1 Condition for absence
When we define grammar rules for actual circuits, several
extensions for context-dependent features are needed. The
circuit ca39 in Figure 1 is represented by the fact (5). Here, the
list ‘[resistor(r1, 1, 2), resistor(r2, 2, 3), ...]’ is a word-order
free sentence. The compound terms such as ‘resistor(r1, 1, 2)’
and ‘terminal(t1, 1)’ are words which represent the resistor r1
connected to the nodes 1 and 2, and the external terminal t1
connected to the node 1, respectively.

Figure 1 Circuit ca39

39([(1,1,2), (2,2,3),
(3,3, 4), (4, 2,4),
(1,1), (2,4)]).

ca resistor r resistor r
resistor r resistor r
terminal t terminal t

 (5)

First we define a non-terminal symbol ‘res(R, A, B)’ by the
rule (6) which enables to refer a resistor regardless its node
order, because the resistor is a non-polar element. The rule
is converted to the definite clause (6)’.

(, ,) [(, ,)];
[(, ,)].

res R A B resistor R A B
resistor R B A

→
 (6)

((, ,), 0, 1) :
((, ,), 0, 1);
((, ,), 0, 1).

subset res R A B S S
member resistor R A B S S
member resistor R B A S S

−
 (6)’

The following conjunctive goal attempts to find a series
connection of resistors (Figure 2) in the circuit ca39. The
first subgoal ca39(CT0) binds the circuit to the variable
CT0. The second subgoal subset(res(X, A, B), CT0, CT1)
finds the non-terminal symbol res(r1, 1, 2) as a subset of
CT0. The variable CT1 is substituted by the difference set
which does not contain resistor(r1, 1, 2). The third subgoal
subset(res(Y,B,C),CT1,_) finds the non-terminal symbol
res(r2, 2, 3) in the circuit CT1 as:

?- ca39(CT0),
 subset(res(X,A,B),CT0,CT1),
 subset(res(Y,B,C),CT1,_).
X = r1
Y = r2
A = 1
B = 2
C = 3

Figure 2 Resistors connected in series

But, this is not a right answer because the central node B(= 2)
of series connection is also connected to another resistor r4.
The central node of series connection must not be connected
to any other elements. This is realised by introducing the
condition of absence into grammar rules such as:

(,) [(,)];
(, , _).

anyElm X A terminal X A
res X A

→
 (7)

((,), ,) (, ,),
(, ,),

(_,).

rSeries rs X Y A C res X A B
res Y B C
not anyElm B

→
 (8)

The grammar rule (7) defines the non-terminal symbol
‘anyElm(X, A)’ which represents any element X connected to
the node A. The grammar rule (8) defines the non-terminal
symbol ‘rSeries(rs(X, Y), A, C)’ which represents two resistors
X and Y connected in series with a condition that any other
elements must not be connected to the central node B. Here,
‘rs(X, Y)’ is the name given to the series connection of resistors
(Skolem function). These grammar rules (7) and (8) are
converted to the definite clauses (7)’ and (8)’.

((,), 0, 1) :
((,) 0, 1);

((, , _), 0, 1).

subset anyElm X A S S
member terminal X A S S
subset res X A S S

−
 (7)’

(((,), ,), 0, 2) :
((, ,), 0, 1),
((, ,), 1, 2),

((_,), 2, _).

subset rSeries rs X Y A C S S
subset res X A B S S
subset res Y B C S S
not subset anyElm B S

−

 (8)’

The following goal successfully fined the series connection
of resistors in the circuit ca39 as:

?– ca39(CT0),

 subset(rSeries(X,A,C),CT0,_).

X = rs(r2,r3),

A = 2,

C = 4

The conversion with this extension ‘not’ is realised by
adding the following two lines 04 and 05 after the line 03 of
List 1. Here, ‘not’ must be declared as a prefix-operator.

04 conv(not [Component],
 not member(Component, S0,_),
 S0, S0) :- !.
05 conv(not Component,
 not subset(Component, S0,_),
 S0, S0) :- !.

 Mechanisms for converting circuit grammars to definite clauses 103

4.2 Condition for existence

Consider the circuit design process in contrast with sentence
generation. Suppose a circuit goal generates two current
sources as its sub-goals. Each current source needs a regulated
voltage source, so two voltage regulators are generated. When
one of the voltages is derived from the other, an engineer may
combine two voltage regulators into one voltage regulator for
simplicity. That is, he has the ability to use context dependent
circuit generation rules.

In our system, the Vbe-voltage regulator (Figure 3) and
the sink-type current source (Figure 4) are defined by the
grammar rules (9) and (10), respectively.

((,), , ,)
(, ,),

[(, , ,]

vbeReg vreg Q R In Com Out
res R In Out
npnTr Q Out Com Out

→
 (9)

((,), ,)
(, _, ,),

[(, , ,)].

cSource sink VR Q In Com
vbeReg VR Com B
npnTr Q B Com In

→
 (10)

Figure 5 shows a part of an analogue IC circuit. Two
transistors q3 and q5 form two current sources (sink-type)
sharing one Vbe-voltage regulator vreg(q4, r1). When a goal
needs to identify two current sources in parsing, the voltage
regulator is used to identify one current source, and no
voltage regulator remains to identify another current source.
So the goal fails.

Figure 3 Vbe-voltage regulator

Figure 4 Current source (sink-type)

Figure 5 Two current sources sharing one voltage regulator

In order to solve this problem, we introduce a new
mechanism which tests an existence of a symbol but does
not reduce to upper non-terminal symbols as:

((,), ,)
(,_, ,),

[(, , ,)].

cSource sink VR Q In Com
test vbeReg VR Com B
npnTr Q B Com In

→
 (11)

The grammar rule (11) is converted to (11)’.

(((,), ,), 0, 1) :
((, _, ,), 0 _),

((, , ,), 0, 1).

subset cSource sink VR Q In Com S S
subset vbeReg VR Com B S
member npnTr Q B Com In S S

−
 (11)’

Though the current source has two definitions (10) and (11), an
appropriate rule is selected in parsing by non-deterministic
mechanism of logic programming.

This extension is realised by adding the following two
lines 06 and 07 into List 1. The ‘test’ must be declared as a
prefix-operator.

06 conv(test [Component],
 member(Component,S0,_),
 S0, S0) :- !.
07 conv(test Component,
 subset(Component,S0,_),
 S0, S0) :- !.

5 Extension for equivalent circuits

In circuit analyses, we often rewrite object circuits into
equivalent circuits such as DC equivalent circuits and small
signal equivalent circuits. This can be done by combining
a parsing process which removes some elements and a
generating process which adds some elements. Usually
parsing programmes also work generating by exchanging
input and output in logic programming, so we can consider
an operator invert which exchanges input and output of the
predicate subset. The following grammar rule defines a
rewriting process A which first identifies the non-terminal B
in the object circuit S0 and removes B to make S1, then adds
C to the circuit S1 to make S2.

, .A B invert C→ (12)

(, 0, 1) : (, 0, 1),
(, 2, 1).

subset A S S subset B S S
subset C S S

−
 (12)’

But this method is not so good. As we use Prolog lists to
represent word-order free sentences, the same sentence has
many different expressions of lists consisting permutation of
wards which cause useless backtracking.

Instead of the method, we introduce a simple mechanism
for adding elements as (13).

, [].A B add C→ (13)

(, 0, 2) : (, 0, 1),

2 1 .

subset A S S subset B S S

S C S

−

= ⎡ ⎤⎣ ⎦
 (13)’

104 T. Tanaka

This simple method becomes useful, because equivalent
circuits of devices usually consist of a small number of
elements. As this extension enables to rewrite circuits
during parsing, the predicate subset(A, S0, S2) no longer
means ‘A is a subset of S0’. This extension is realised by
adding the following line 08 to the List 1 with the
declaration of prefix operator ‘add’.

The whole DCSG-converter is shown in Appendix A. In
the appendix, the predicate ‘read_grammar_assert(G)’ reads
the file G of grammar rules. Each rule is converted into a
definite clause, and asserted.

08 conv(add [Component],

 S1 = [Component|S0],S0, S1) :- !.

6 Extensions for circuit functions

6.1 Circuit structures and functions

We assume that circuit functions are the meaning of the
syntactic structure of the circuit. The circuit functions we
consider are the electrical behaviours that are useful to
circuit designers or users. These electrical behaviours are
defined on the voltages and currents occurring in the circuit.
In particular, electrical dependencies such as causality and
conditions are useful to understand how circuits work.

In order to separate these semantic information from
syntactic structures, the new circuit grammar has additional
fields for the semantic information. In the paper of Tanaka
(2010), dependencies on voltages and currents are coded
using the semantic fields, then these electrical dependencies
are derived through parsing circuit structures.

The electrical dependencies are represented by a set of
compound terms which can also be viewed as a word-order
free sentence. If we define grammar rules for the language
describing circuit functions, we can analyse the derived
dependencies using the grammar rules.

6.2 Semantic term in left-hand side

The semantic information such as electrical states and
voltage-current dependencies associated with circuits are
placed in curly brackets as:

1 2 1 2,{ , ,..., } , ,... .m nA F F F B B B→ (14)

This grammar rule can be read as stating that the symbol A
with meaning {F1, F2, … , Fm} consists of the syntactic
structure B1, B2, … , Bn. This rule is converted into a
definite clause as follows:

()0 0 1 2

1 0 1 0 1

2 1 2 1 2

1 1

, , , , , ,..., :

(, , , ,),
(, , , ,),
,
(, , , ,).

n m n

n n n n n

ss A S S E F F F E

ss B S S E E
ss B S S E E

ss B S S E E− −

⎡ ⎤ −⎣ ⎦

…
 (14)’

Since the conversion differs from that used in DCSG, we
use the predicate ‘ss’ instead of ‘subset’.

When the rule (14)’ is used in parsing, the goal ss(A, S0,
Sn, E0, E) is executed, where the variable S0 is substituted by
an object set (object circuit) and the variable E0 is replaced
by an empty set. The subsets ‘B1, B2, ... , Bn’ are
successively identified in the object set S0. After all of these
subsets are identified, the remainder of these subsets (the
complementary set) is put into Sn. While, the semantic
information of B1 is added with E0 and put into E1, the
semantic information of B2 is added with E1 and put into E2,
… , and the semantic information of Bn is added with En−1
and put into En. Finally, the semantic information {F1,F2, ...
,Fm}, which is the meaning associated with symbol A, is
added and all of the semantic information is put into E.

As each variable of S0, S1, ... , Sn is substituted by
unknown part of the object circuit, they decrease according
to identifying B1, B2, ... , Bn. While, each variable of E0, E1,
..., En is substituted by known semantic informations
through parsing. So they increase. Namely, circuit structures
change to semantic informations through parsing.

6.3 Semantic term in right-hand side

Semantic terms on the right-hand side define the semantic
conditions such as electrical states of transistor which enables
the circuit function. For example, the following rule (15) is
converted into the definite clause (15)’ as follows.

1 2,{ }, .A B C B→ (15)

0 2 0 2

1 0 1 0 1

1

2 1 2 1 2

(, , , ,) :
(, , , ,),

(, , _),
(, , , ,).

ss A S S E E
ss B S S E E
member C E
ss B S S E E

−

 (15)’

When the clause (15)’ is used in parsing, the semantic
condition C is tested to see if the semantic information E1
satisfies this condition after identifying the symbol B1. If
it succeeds, the parsing process goes on to identify the
symbol B2.

Appendix B shows the whole program list of the
converter for new circuit grammar with semantic terms.

6.4 Examples on circuit grammar

The following grammar rule (16) defines the non-terminal
symbol ‘currentMirrorSource(cmo(D, Q), Ref, Vp, So)’ for
the source type current-mirror circuit shown in Figure 6.
The circuit generates the same current with a reference
current. The compound term cmo(D, Q) is the name given to
the circuit which consists of a diode-connected transistor D
and a PNP-transistor Q. The term i(cmo(D,Q), Ref)
represents the reference currents from the circuit cmo(D, Q)
to the node Ref. The term i(cmo(D,Q), So) represents the
generated current from the circuit cmo(D, Q) to the node So.
The semantic term ‘cause(i(cmo(D, Q), Ref), i(cmo(D, Q),

 Mechanisms for converting circuit grammars to definite clauses 105

So), cmo(D, Q))’ in the left-hand side of the grammar rule
shows a causality of these two currents supported by the
circuit cmo(D, Q).

((,), , ,),
{ (((,),),

((,),), (,)),
(((,),),
(,), (,)),

(((,),), (,))}
(, ,),

{ (,)},

currentMirrorSource cmo D Q Ref Vp So
cause i cmo D Q Ref

i cmo D Q So cmo D Q
cause i cmo D Q Ref

i D Ref cmo D Q
equiv i cmo D Q So i Q So

dtr D Vp Ref
state D conductive
pnpT

→

(, , ,),
{ (,)}.

r Q Ref Vp So
state Q active

 (16)

Figure 6 Current mirror (source type)

The semantic term state(D, conductive) in the right-hand
side of the grammar rule shows an electrical condition that
the diode-connected transistor D must be in the conductive
state. The semantic term state(Q, active) shows another
electrical condition that the transistor Q must be in the
active state. These electrical conditions enable the current-
mirror function.

If an object circuit has the syntactic structures represented
by dtr(D,Vp,Ref) and pnpTr(Q, Ref, Vp, So), and the semantic
information of the object circuit satisfies these electrical
conditions, the current-mirror circuit cmo(D, Q) is identified
in the object circuit, and electrical dependencies such as
‘cause(...)’ are derived.

7 Conclusions

The DCSG-converter was originally developed using
Yacc/Lex in the paper of Tanaka and Bartenstein (1999).
The DCSG-converter in Yacc/Lex analyses grammar rules
as a context-free language using bottom-up method, while
the converter in Prolog analyses DCSG rules using pattern
matching called unification. The converter in Prolog has a
simple structure compared with the one in Yacc/Lex. In the
DCSG conversion, terminals and non-terminals are directly
converted to components of Prolog clauses without change.

Therefore, inside structures of terminal and non-terminal
symbols are not important for the conversion, while the
converter in Yacc/Lex must analyse their structures to
identify terminals and non-terminals. The converter in
Prolog does not need to define a lexical analyser.

The DCSG-converter is useful not only for circuit
analysis, but also for avoiding a common looping problem
in Prolog programs. Usually, a Prolog program consists of
two kinds of definite clauses, called facts and rules both
viewed as axioms. The execution of a Prolog program can
be viewed as a process of deriving a theorem by backward
chaining from the axioms. The top-down parsing of a word-
order free sentence somewhat resembles the process of
backward chaining. That is, the set of facts corresponds to
the set of words, and the set of backward chaining rules
corresponds to the set of grammar rules. Deriving theorems
in backward chaining corresponds to identifying non-
terminal symbols in the top-down method.

There is an important difference between backward
chaining and top-down parsing. Backward chaining allows
multiple use of the same fact to derive a theorem, while in a
context-free language, each terminal symbol in a sentence
contributes only once to the reduction of non-terminal
symbols. When we change problems from backward
chaining to top-down parsing by simply replacing facts with
words and rules with grammar rules, this characteristic is
very useful for avoiding a common looping problem in
backward chaining, a problem which is caused by multiple
use of the same fact by Tanaka (1991, 2007).

The new circuit grammar has fields for semantic
information. The circuit grammars not only define syntactic
structures of circuits but also define relationships to circuit
functions as meaning of the structures. Therefore, if a circuit
is given, not only its structure but also its functions are
derived through parsing.

Circuit functions are basically defined on behaviour of
voltages and currents of the circuits. So we try to define
grammar rules to formalise knowledge on voltages and
currents dependencies in an earlier paper (Tanaka 2010). The
derived electrical dependencies through parsing will be useful
for understanding electrical behaviour and troubleshooting of
the circuit. The derived dependencies are represented by a set
of compound terms which can also be viewed as a word-order
free language. We can easily define a non-terminal symbol in
the language which represents transitivity of the electrical
dependencies.

The electrical dependencies, however, only describe the
shallow behaviour of circuits. We are currently developing
grammar rules which define circuit behaviours and functions
more precisely using this converter.

Acknowledgements

Prolog programs in Appendix were originally developed using
C-Prolog and MINERVA. We are also using GNU-Prolog and
SWI-Prolog.

106 T. Tanaka

References
Pereira, F.C.N. and Warren, D.H.D. (1980) ‘Definite clause

grammars for language analysis’, Artificial Intelligence, Vol. 13,
pp.231–278.

Tanaka, T. (1991) ‘Definite clause set grammars: a formalism for
problem solving’, Journal of Logic Programming, Vol. 10,
pp.1–17.

Tanaka, T. (1993) ‘Parsing circuit topology in a logic grammar’,
IEEE Transactions on Knowledge and Data Engineering,
Vol. 5, pp.225–239.

Tanaka, T. (2007) ‘A logic grammar for circuit analysis – problems of
recursive definition’, LNAI, Vol. 4693, pp.852–860.

Tanaka, T. (2009) ‘Circuit grammar: knowledge representation for
structure and function of electronic circuits’, International Journal
of Reasoning-based Intelligent Systems, Vol. 1, pp.56–67.

Tanaka, T. (2010) ‘Deriving electrical dependencies from circuit
topologies using logic grammar’, International Journal of
Reasoning-based Intelligent Systems, Vol. 3, pp.28–33.

Tanaka, T. and Bartenstein, O. (1999) ‘DCSG-converters in
Yacc/Lex and Prolog’, Proceedings of the 12th International
Conference on Applications of Prolog, pp.44–49.

Appendix A Converter for DCSG
:- op(900, fx, not).

:- op(900, fx, test).

:- op(900, fx, add).

dcsgConv((Lhs -—> Rhs),

(Head :- Body)) :-

 conv(Lhs,Head,S0,S1),

 conv(Rhs,Body,S0,S1).

conv((CompoA,CompoB),

 (CA,CB),S0,S1) :-

 !,

 conv(CompoA,CA,S0,S),

 conv(CompoB,CB,S,S1).

conv((CompoA;CompoB),

 (CA;CB),S0,S1) :-

 !,

 conv(CompoA,CA,S0,S1),

 conv(CompoB,CB,S0,S1).

conv(not [Component],

 not member(Component,S0,_),

 S0,S0) :- !.

conv(not Component,

 not subset(Component,S0,_),

 S0,S0) :- !.

conv(test [Component],

 member(Component,S0,_),

 S0,S0) :- !.

conv(test Component,

 subset(Component,S0,_),

 S0,S0) :- !.

conv(add [Component],

 S1=[Component|S0],

 S0,S1) :- !.

conv([Component],

 member(Component,S0,S1),

 S0,S1) :- !.

conv(Component,

 subset(Component,S0, S1),

 S0,S1) :- !.

read_grammar_assert(G) :-

 see(G),read_assert.

read_assert :-

 read(X),

 (not X=end_of_file,

 dcsgConv(X,Y),

 assertz(Y),

 read_assert ; true).

Appendix B Converter for circuit grammar
:- op(900, fx, not).

:- op(900, fx, test).

:- op(900, fx, add).

:- op(950, fx, quote).

cgConv((Lhs --> Rhs),

 (Head :- Body)) :-

 lconv(Lhs,Head,C0,C1,E0,E1),

 rconv(Rhs,Body,C0,C1,E0,E1).

lconv((Compo,{Es}),

 ss(Compo,C0,C1,E0,E2),

 C0,C1,E0,E1) :-

 !,

 makelist(Es, E1, E2).

lconv(Compo,

 ss(Compo,C0,C1,E0,E1),

 C0,C1,E0,E1) :- !.

makelist((E,Es), E1, [E|E2]) :-

 !,

 makelist(Es,E1,E2).

makelist(E,E1,[E|E1]).

rconv((CompoA, CompoB),

 (CA,CB),

C0,C1,E0,E1) :-
 !,

 rconv(CompoA,CA,C0,C,E0,E),

 rconv(CompoB,CB,C,C1,E,E1).

rconv((CompoA;CompoB),

 (CA;CB),

 Mechanisms for converting circuit grammars to definite clauses 107

C0,C1,E0,E1) :-

 !,

 rconv(CompoA,CA,C0,C1,E0,E1),

 rconv(CompoB,CB,C0,C1,E0,E1).

rconv(not [Compo],

 (not member(Compo,C0,_),

 C1=C0,E1=E0),

 C0,C1,E0,E1) :- !.

rconv(not Compo,

 (not ss(Compo,C0,_,E0,_),

 C1=C0,E1=E0),

 C0,C1,E0,E1) :- !.

rconv(test [Compo],

 (member(Compo,C0,_),

 C1=C0,E1=E0),

 C0,C1,E0,E1) :- !.

rconv(test Compo,

 (ss(Compo,C0,_,E0,_),

 C1=C0,E1=E0),

 C0,C1,E0,E1) :- !.

rconv(quote Compo,

 (Compo, C1=C0, E1=E0),

 C0,C1,E0,E1) :- !.

rconv(add [Compo],

 (C1=[Compo|C0], E1=E0),

 C0,C1,E0,E1) :- !.

rconv({Compo},

 (member(Compo,E0,_),

 C1=C0, E1=E0),

 C0,C1,E0,E1) :- !.

rconv([Compo],

 (member(Compo,C0,C1),E1=E0),

 C0,C1,E0,E1) :- !.

rconv(Compo,

 ss(Compo,C0,C1,E0,E1),

 C0,C1,E0,E1) :- !.

read_grammar_assert(G) :-

 see(G),read_assert.

read_assert :-

 read(X),

 (not X=end_of_file,

 cgConv(X,Y),

 assertz(Y),

 read_assert ; true).

