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1 Introduction 

As a step toward automatic circuit understanding, we 
developed a new method for analysing circuit structures 
described in Tanaka (2009). We view designed circuits as 
grammatical sentences, and their elements as words. Electrical 
behaviour and functions are meaning of the sentences. 
Knowledge on circuit structures and their electrical behaviour 
are coded into grammar rules. A set of grammar rules, when 
converted into definite clauses, forms a logic program which 
executes top-down parsing. 

The circuit grammar is a descendant of the logic 
grammar called DCSG (Definite Clause Set Grammar)  
by Tanaka (1991) which was developed for analysing word-
order free language. The circuit grammar consists of several 
extensions to the DCSG which are useful to analysing 
electronic circuits by Tanaka (1993). 

In this paper, we first introduce the DCSG, then show 
the mechanism for converting grammar rules into definite 
clauses. Next, we introduce extensions for circuit analyses 
and show mechanisms for converting circuit grammars. 

2 Logic grammar DCSG 

2.1 Word-order free language 

Most implementations of computer language Prolog provide 
a mechanism for parsing context-free languages called DCG 
(Definite Clause Grammar) by Pereira and Warren (1980). 
A set of the grammar rules, when converted into definite 
clauses, forms a logic program which executes top-down 
parsing. While, a logic grammar DCSG by Tanaka (1991) 
was developed for word-order free languages similar to the 
method of DCG. 

A word-order free language, L(G’), is defined by 
modifying the definition of a formal grammar. We define a 
context-free word-order free grammar G’ to be a quadruple 
< VN, VT, P, S > where: VN is a finite set of non-terminal 
symbols, VT is a finite set of terminal symbols, P is a finite 
set of grammar rules of the form: 

1 2, ,..., ( 1)nA B B B n→ ≥  

, ( 1,..., )N i N TA V B V V i n∈ ∈ ∪ =  
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and S(∈ VN) is the starting symbol. The above grammar rule 
means that the symbol A is rewritten not with the string  
of symbols ‘B1, B2, … , Bn’, but with the set of symbols  
{B1, B2, … , Bn}. A sentence in the language L(G’) is a set 
of terminal symbols which is derived from S by successive 
application of grammar rules. Here the sentence is a  
multi-set which admits multiple occurrences of elements 
taken from VT. Each non-terminal symbol used to derive a 
sentence can be viewed as a name given to a subset of the 
multi-set. 

2.2 DCSG conversion 

The general form of the conversion procedure from a 
grammar rule 

1 2, ,..., nA B B B→  (1) 

to a definite clause is: 

( ) ( )
( )

( )

0 1 0 1

2 1 2

1

, , : , , ,

, , ,
...

, , .

n

n n n

subset A S S subset B S S

subset B S S

subset B S S−

−

 (1)’ 

Here, all symbols in the grammar rule are assumed to be 
non-terminal symbols. If ‘[Bi]’(1 ≤ i ≤ n) is found in the 
right hand side of grammar rules, where ‘Bi’ is assumed to 
be a terminal symbol, then ‘member(Bi, Si−1, Si)’ is used 
instead of ‘subset(Bi, Si−1, Si)’ in the conversion. 

The arguments S0, S1, ... , Sn in (1)’ are multisets of VT, 
represented as lists of elements. The predicate ‘subset’ is 
used to refer to a subset of an object set which is given as 
the second argument, while the first argument is the name of 
its subset. The third argument is a complementary set which 
is the remainder of the second argument less the first; e.g. 
‘subset(A, S0, Sn)’ states that ‘A’ is a subset of S0 and that Sn 
is the remainder. 

The predicate ‘member’ is defined by the definite 
clauses (2) and (3) below. It has three arguments. The first 
is an element of a set. The second is the whole set. The third 
is the complementary set of the first argument. 

( ), , .member M M X X⎡ ⎤⎣ ⎦  (2) 

( ) ( ), , : , , .member M A X A Y member M X Y⎡ ⎤ ⎡ ⎤ −⎣ ⎦ ⎣ ⎦  (3) 

When the clause (1)’ is used in parsing, an object sentence 
(multiset of terminal symbols) is given to the argument S0. 
In order to find the subset A in S0, the first sub-goal finds the 
subset B1 in S0 then put the remainder into S1, the next sub-
goal finds B2 in S1 then put the remainder into S2, ... , and 
the last sub-goal finds Bn in Sn−1 then put the remainder into 
Sn. That is, when a grammar rule is used in parsing, each 
non-terminal symbol in the grammar rule makes a new  
set from the given set by removing itself as its subset. 
While, each terminal symbol used in the grammar rule also 
makes a new set from the given set by removing itself as its 
member. 

DCSG uses the predicates subset and member to convert 
grammar rules into definite clauses, but the differences 
between DCG and DCSG are minimal. If we replace the 
predicate subset with substring and remove the clause (3) 
from the definition of member, the conversion will be 
equivalent to DCG conversion, although ordinary DCG does 
not use the predicate of substring for simplification. 

DCSG allows the symbol ‘;’ as abbreviation of two 
grammar rules with the same left-hand side. The following 
rule (4) which generates B or C1, C2 from A is converted to 
the definite clause (4)’ as: 

1 2; , .A B C C→  (4) 

( ) ( )
( )
( )

0 2 0 2

1 0 1

2 1 2

, , : , , ;

, , ,

, , .

subset A S S subset B S S

subset C S S

subset C S S

−

 (4)’ 

3 Mechanisms for DCSG-conversion 

The following List 1 shows a basic DCSG-converter written in 
Prolog. The line 01 defines the main predicate ‘dcsgConv’ 
which converts a grammar rule into a definite clause. It 
separates the grammar rule into a left-hand side and a right-
hand side, and generates a definite clause from a head part and 
a body part. The first subgoal ‘conv(Lhs, Head, S0, S1)’ 
generates the head part from the left-hand side using  
the definition of line 10, and the second subgoal ‘conv(Rhs, 
Body, S0, S1)’ generates the body part from the right-hand 
side. If the right-hand side consists of more than two grammar 
symbols, the predicate ‘conv’ defined by the line 02 and 03 
separates these symbols into the first one and others. The line 
02 generates a conjunctive subgoals from grammar symbols 
connected by ‘,’, while the line 03 generates a disjunctive 
subgoals from ‘;’. The line 09 defines the conversion of a 
single terminal symbol. The line 10 defines the conversion of a 
single non-terminal symbol, which is used both for converting 
the left-hand side and the right-hand side. 

List 1: Basic DCSG-converter 

01  dcsgConv((Lhs --> Rhs), 
(Head :- Body)) :- 

      conv(Lhs,Head,S0,S1), 
      conv(Rhs,Body,S0,S1). 
02  conv((CompoA,CompoB), 
         (CA,CB),S0,S1) :- 
       !, 
       conv(CompoA,CA,S0,S), 
       conv(CompoB,CB,S,S1). 
03  conv((CompoA;CompoB), 
         (CA;CB),S0,S1) :- 
       !, 
       conv(CompoA,CA,S0,S1), 
       conv(CompoB,CB,S0,S1). 
09  conv([Component], 
         member(Component,S0, S1), 
         S0,S1)  :-  !. 
10  conv(Component, 
         subset(Component,S0, S1), 
         S0,S1)  :-  !. 
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4 Context-dependent features 

4.1 Condition for absence 
When we define grammar rules for actual circuits, several 
extensions for context-dependent features are needed. The 
circuit ca39 in Figure 1 is represented by the fact (5). Here, the 
list ‘[resistor(r1, 1, 2), resistor(r2, 2, 3), ... ]’ is a word-order 
free sentence. The compound terms such as ‘resistor(r1, 1, 2)’ 
and ‘terminal(t1, 1)’ are words which represent the resistor r1 
connected to the nodes 1 and 2, and the external terminal t1 
connected to the node 1, respectively. 

Figure 1 Circuit ca39 

 

39([ ( 1,1,2), ( 2,2,3),
( 3,3, 4), ( 4, 2,4),
( 1,1), ( 2,4)]).

ca resistor r resistor r
resistor r resistor r
terminal t terminal t

 (5) 

First we define a non-terminal symbol ‘res(R, A, B)’ by the 
rule (6) which enables to refer a resistor regardless its node 
order, because the resistor is a non-polar element. The rule 
is converted to the definite clause (6)’. 

( , , ) [ ( , , )];
[ ( , , )].

res R A B resistor R A B
resistor R B A

→
 (6) 

( ( , , ), 0, 1) :
( ( , , ), 0, 1);
( ( , , ), 0, 1).

subset res R A B S S
member resistor R A B S S
member resistor R B A S S

−
 (6)’ 

The following conjunctive goal attempts to find a series 
connection of resistors (Figure 2) in the circuit ca39. The 
first subgoal ca39(CT0) binds the circuit to the variable 
CT0. The second subgoal subset(res(X, A, B), CT0, CT1) 
finds the non-terminal symbol res(r1, 1, 2) as a subset of 
CT0. The variable CT1 is substituted by the difference set 
which does not contain resistor(r1, 1, 2). The third subgoal 
subset(res(Y,B,C),CT1,_) finds the non-terminal symbol 
res(r2, 2, 3) in the circuit CT1 as: 

?- ca39(CT0), 
   subset(res(X,A,B),CT0,CT1), 
   subset(res(Y,B,C),CT1,_). 
X = r1 
Y = r2 
A = 1 
B = 2 
C = 3 

Figure 2 Resistors connected in series 

 

But, this is not a right answer because the central node B(= 2) 
of series connection is also connected to another resistor r4. 
The central node of series connection must not be connected  
to any other elements. This is realised by introducing the 
condition of absence into grammar rules such as: 

( , ) [ ( , )];
( , , _).

anyElm X A terminal X A
res X A

→
 (7) 

( ( , ), , ) ( , , ),
( , , ),

(_, ).

rSeries rs X Y A C res X A B
res Y B C
not anyElm B

→
 (8) 

The grammar rule (7) defines the non-terminal symbol 
‘anyElm(X, A)’ which represents any element X connected to 
the node A. The grammar rule (8) defines the non-terminal 
symbol ‘rSeries(rs(X, Y), A, C)’ which represents two resistors 
X and Y connected in series with a condition that any other 
elements must not be connected to the central node B. Here, 
‘rs(X, Y)’ is the name given to the series connection of resistors 
(Skolem function). These grammar rules (7) and (8) are 
converted to the definite clauses (7)’ and (8)’. 

( ( , ), 0, 1) :
( ( , ) 0, 1);

( ( , , _), 0, 1).

subset anyElm X A S S
member terminal X A S S
subset res X A S S

−
 (7)’ 

( ( ( , ), , ), 0, 2) :
( ( , , ), 0, 1),
( ( , , ), 1, 2),

( (_, ), 2, _).

subset rSeries rs X Y A C S S
subset res X A B S S
subset res Y B C S S
not subset anyElm B S

−

 (8)’ 

The following goal successfully fined the series connection 
of resistors in the circuit ca39 as: 

?–  ca39(CT0), 

    subset(rSeries(X,A,C),CT0,_). 

X = rs(r2,r3), 

A = 2, 

C = 4 

The conversion with this extension ‘not’ is realised by 
adding the following two lines 04 and 05 after the line 03 of 
List 1. Here, ‘not’ must be declared as a prefix-operator. 

04  conv(not [Component], 
         not member(Component, S0,_), 
         S0, S0)  :-  !. 
05  conv(not Component, 
         not subset(Component, S0,_), 
         S0, S0)  :-  !. 
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4.2 Condition for existence 

Consider the circuit design process in contrast with sentence 
generation. Suppose a circuit goal generates two current 
sources as its sub-goals. Each current source needs a regulated 
voltage source, so two voltage regulators are generated. When 
one of the voltages is derived from the other, an engineer may 
combine two voltage regulators into one voltage regulator for 
simplicity. That is, he has the ability to use context dependent 
circuit generation rules. 

In our system, the Vbe-voltage regulator (Figure 3) and 
the sink-type current source (Figure 4) are defined by the 
grammar rules (9) and (10), respectively. 

( ( , ), , , )
( , , ),

[ ( , , , ]

vbeReg vreg Q R In Com Out
res R In Out
npnTr Q Out Com Out

→
 (9) 

( ( , ), , )
( , _, , ),

[ ( , , , )].

cSource sink VR Q In Com
vbeReg VR Com B
npnTr Q B Com In

→
 (10) 

Figure 5 shows a part of an analogue IC circuit. Two 
transistors q3 and q5 form two current sources (sink-type) 
sharing one Vbe-voltage regulator vreg(q4, r1). When a goal 
needs to identify two current sources in parsing, the voltage 
regulator is used to identify one current source, and no 
voltage regulator remains to identify another current source. 
So the goal fails. 

Figure 3 Vbe-voltage regulator 

 

Figure 4 Current source (sink-type) 

 

Figure 5 Two current sources sharing one voltage regulator 

 

In order to solve this problem, we introduce a new 
mechanism which tests an existence of a symbol but does 
not reduce to upper non-terminal symbols as: 

( ( , ), , )
( ,_, , ),

[ ( , , , )].

cSource sink VR Q In Com
test vbeReg VR Com B
npnTr Q B Com In

→
 (11) 

The grammar rule (11) is converted to (11)’. 

( ( ( , ), , ), 0, 1) :
( ( , _, , ), 0 _),

( ( , , , ), 0, 1).

subset cSource sink VR Q In Com S S
subset vbeReg VR Com B S
member npnTr Q B Com In S S

−
 (11)’ 

Though the current source has two definitions (10) and (11), an 
appropriate rule is selected in parsing by non-deterministic 
mechanism of logic programming. 

This extension is realised by adding the following two 
lines 06 and 07 into List 1. The ‘test’ must be declared as a 
prefix-operator. 

06  conv(test [Component], 
         member(Component,S0,_), 
         S0, S0)  :-  !. 
07  conv(test Component, 
         subset(Component,S0,_), 
         S0, S0)  :-  !. 

5 Extension for equivalent circuits 

In circuit analyses, we often rewrite object circuits into 
equivalent circuits such as DC equivalent circuits and small 
signal equivalent circuits. This can be done by combining  
a parsing process which removes some elements and a 
generating process which adds some elements. Usually 
parsing programmes also work generating by exchanging 
input and output in logic programming, so we can consider 
an operator invert which exchanges input and output of the 
predicate subset. The following grammar rule defines a 
rewriting process A which first identifies the non-terminal B 
in the object circuit S0 and removes B to make S1, then adds 
C to the circuit S1 to make S2. 

, .A B invert C→  (12) 

( , 0, 1) : ( , 0, 1),
( , 2, 1).

subset A S S subset B S S
subset C S S

−
 (12)’ 

But this method is not so good. As we use Prolog lists to 
represent word-order free sentences, the same sentence has 
many different expressions of lists consisting permutation of 
wards which cause useless backtracking. 

Instead of the method, we introduce a simple mechanism 
for adding elements as (13). 

, [ ].A B add C→  (13) 

( , 0, 2) : ( , 0, 1),

2 1 .

subset A S S subset B S S

S C S

−

= ⎡ ⎤⎣ ⎦
 (13)’ 
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This simple method becomes useful, because equivalent 
circuits of devices usually consist of a small number of 
elements. As this extension enables to rewrite circuits 
during parsing, the predicate subset(A, S0, S2) no longer 
means ‘A is a subset of S0’. This extension is realised by 
adding the following line 08 to the List 1 with the 
declaration of prefix operator ‘add’. 

The whole DCSG-converter is shown in Appendix A. In 
the appendix, the predicate ‘read_grammar_assert(G)’ reads 
the file G of grammar rules. Each rule is converted into a 
definite clause, and asserted. 

08 conv(add  [Component], 

       S1 = [Component|S0],S0, S1) :- !.

6 Extensions for circuit functions 

6.1 Circuit structures and functions 

We assume that circuit functions are the meaning of the 
syntactic structure of the circuit. The circuit functions we 
consider are the electrical behaviours that are useful to 
circuit designers or users. These electrical behaviours are 
defined on the voltages and currents occurring in the circuit. 
In particular, electrical dependencies such as causality and 
conditions are useful to understand how circuits work. 

In order to separate these semantic information from 
syntactic structures, the new circuit grammar has additional 
fields for the semantic information. In the paper of Tanaka 
(2010), dependencies on voltages and currents are coded 
using the semantic fields, then these electrical dependencies 
are derived through parsing circuit structures. 

The electrical dependencies are represented by a set of 
compound terms which can also be viewed as a word-order 
free sentence. If we define grammar rules for the language 
describing circuit functions, we can analyse the derived 
dependencies using the grammar rules. 

6.2 Semantic term in left-hand side 

The semantic information such as electrical states and 
voltage-current dependencies associated with circuits are 
placed in curly brackets as: 

1 2 1 2,{ , ,..., } , ,... .m nA F F F B B B→  (14) 

This grammar rule can be read as stating that the symbol A 
with meaning {F1, F2, … , Fm} consists of the syntactic 
structure B1, B2, … , Bn. This rule is converted into a 
definite clause as follows: 

( )0 0 1 2

1 0 1 0 1

2 1 2 1 2

1 1

, , , , , ,..., :

( , , , , ),
( , , , , ),
,
( , , , , ).

n m n

n n n n n

ss A S S E F F F E

ss B S S E E
ss B S S E E

ss B S S E E− −

⎡ ⎤ −⎣ ⎦

…
 (14)’ 

Since the conversion differs from that used in DCSG, we 
use the predicate ‘ss’ instead of ‘subset’. 

When the rule (14)’ is used in parsing, the goal ss(A, S0, 
Sn, E0, E) is executed, where the variable S0 is substituted by 
an object set (object circuit) and the variable E0 is replaced 
by an empty set. The subsets ‘B1, B2, ... , Bn’ are 
successively identified in the object set S0. After all of these 
subsets are identified, the remainder of these subsets (the 
complementary set) is put into Sn. While, the semantic 
information of B1 is added with E0 and put into E1, the 
semantic information of B2 is added with E1 and put into E2, 
… , and the semantic information of Bn is added with En−1 
and put into En. Finally, the semantic information {F1,F2, ... 
,Fm}, which is the meaning associated with symbol A, is 
added and all of the semantic information is put into E. 

As each variable of S0, S1, ... , Sn is substituted by 
unknown part of the object circuit, they decrease according 
to identifying B1, B2, ... , Bn. While, each variable of E0, E1, 
..., En is substituted by known semantic informations 
through parsing. So they increase. Namely, circuit structures 
change to semantic informations through parsing. 

6.3 Semantic term in right-hand side 

Semantic terms on the right-hand side define the semantic 
conditions such as electrical states of transistor which enables 
the circuit function. For example, the following rule (15) is 
converted into the definite clause (15)’ as follows. 

1 2,{ }, .A B C B→  (15) 

0 2 0 2

1 0 1 0 1

1

2 1 2 1 2

( , , , , ) :
( , , , , ),

( , , _),
( , , , , ).

ss A S S E E
ss B S S E E
member C E
ss B S S E E

−

 (15)’ 

When the clause (15)’ is used in parsing, the semantic 
condition C is tested to see if the semantic information E1 
satisfies this condition after identifying the symbol B1. If  
it succeeds, the parsing process goes on to identify the 
symbol B2. 

Appendix B shows the whole program list of the 
converter for new circuit grammar with semantic terms. 

6.4 Examples on circuit grammar 

The following grammar rule (16) defines the non-terminal 
symbol ‘currentMirrorSource(cmo(D, Q), Ref, Vp, So)’ for 
the source type current-mirror circuit shown in Figure 6. 
The circuit generates the same current with a reference 
current. The compound term cmo(D, Q) is the name given to 
the circuit which consists of a diode-connected transistor D 
and a PNP-transistor Q. The term i(cmo(D,Q), Ref) 
represents the reference currents from the circuit cmo(D, Q) 
to the node Ref. The term i(cmo(D,Q), So) represents the 
generated current from the circuit cmo(D, Q) to the node So. 
The semantic term ‘cause(i(cmo(D, Q), Ref), i(cmo(D, Q),  
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So), cmo(D, Q))’ in the left-hand side of the grammar rule 
shows a causality of these two currents supported by the 
circuit cmo(D, Q). 

( ( , ), , , ),
{ ( ( ( , ), ),

( ( , ), ), ( , )),
( ( ( , ), ),
( , ), ( , )),

( ( ( , ), ), ( , ))}
( , , ),

{ ( , )},

currentMirrorSource cmo D Q Ref Vp So
cause i cmo D Q Ref

i cmo D Q So cmo D Q
cause i cmo D Q Ref

i D Ref cmo D Q
equiv i cmo D Q So i Q So

dtr D Vp Ref
state D conductive
pnpT

→

( , , , ),
{ ( , )}.

r Q Ref Vp So
state Q active

 (16) 

Figure 6 Current mirror (source type) 

 

The semantic term state(D, conductive) in the right-hand 
side of the grammar rule shows an electrical condition that 
the diode-connected transistor D must be in the conductive 
state. The semantic term state(Q, active) shows another 
electrical condition that the transistor Q must be in the 
active state. These electrical conditions enable the current-
mirror function. 

If an object circuit has the syntactic structures represented 
by dtr(D,Vp,Ref) and pnpTr(Q, Ref, Vp, So), and the semantic 
information of the object circuit satisfies these electrical 
conditions, the current-mirror circuit cmo(D, Q) is identified 
in the object circuit, and electrical dependencies such as 
‘cause(...)’ are derived. 

7 Conclusions 

The DCSG-converter was originally developed using 
Yacc/Lex in the paper of Tanaka and Bartenstein (1999). 
The DCSG-converter in Yacc/Lex analyses grammar rules 
as a context-free language using bottom-up method, while 
the converter in Prolog analyses DCSG rules using pattern 
matching called unification. The converter in Prolog has a 
simple structure compared with the one in Yacc/Lex. In the 
DCSG conversion, terminals and non-terminals are directly 
converted to components of Prolog clauses without change.  
 
 

Therefore, inside structures of terminal and non-terminal 
symbols are not important for the conversion, while the 
converter in Yacc/Lex must analyse their structures to 
identify terminals and non-terminals. The converter in 
Prolog does not need to define a lexical analyser. 

The DCSG-converter is useful not only for circuit 
analysis, but also for avoiding a common looping problem 
in Prolog programs. Usually, a Prolog program consists of 
two kinds of definite clauses, called facts and rules both 
viewed as axioms. The execution of a Prolog program can 
be viewed as a process of deriving a theorem by backward 
chaining from the axioms. The top-down parsing of a word-
order free sentence somewhat resembles the process of 
backward chaining. That is, the set of facts corresponds to 
the set of words, and the set of backward chaining rules 
corresponds to the set of grammar rules. Deriving theorems 
in backward chaining corresponds to identifying non-
terminal symbols in the top-down method. 

There is an important difference between backward 
chaining and top-down parsing. Backward chaining allows 
multiple use of the same fact to derive a theorem, while in a 
context-free language, each terminal symbol in a sentence 
contributes only once to the reduction of non-terminal 
symbols. When we change problems from backward 
chaining to top-down parsing by simply replacing facts with 
words and rules with grammar rules, this characteristic is 
very useful for avoiding a common looping problem in 
backward chaining, a problem which is caused by multiple 
use of the same fact by Tanaka (1991, 2007). 

The new circuit grammar has fields for semantic 
information. The circuit grammars not only define syntactic 
structures of circuits but also define relationships to circuit 
functions as meaning of the structures. Therefore, if a circuit 
is given, not only its structure but also its functions are 
derived through parsing. 

Circuit functions are basically defined on behaviour of 
voltages and currents of the circuits. So we try to define 
grammar rules to formalise knowledge on voltages and 
currents dependencies in an earlier paper (Tanaka 2010). The 
derived electrical dependencies through parsing will be useful 
for understanding electrical behaviour and troubleshooting of 
the circuit. The derived dependencies are represented by a set 
of compound terms which can also be viewed as a word-order 
free language. We can easily define a non-terminal symbol in 
the language which represents transitivity of the electrical 
dependencies. 

The electrical dependencies, however, only describe the 
shallow behaviour of circuits. We are currently developing 
grammar rules which define circuit behaviours and functions 
more precisely using this converter. 
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Appendix A Converter for DCSG 
:-  op(900, fx, not). 

:-  op(900, fx, test). 

:-  op(900, fx, add). 

dcsgConv((Lhs -—> Rhs),    

(Head :- Body)) :- 

        conv(Lhs,Head,S0,S1), 

        conv(Rhs,Body,S0,S1). 

conv((CompoA,CompoB), 

     (CA,CB),S0,S1) :- 

            !, 

            conv(CompoA,CA,S0,S),  

            conv(CompoB,CB,S,S1). 

conv((CompoA;CompoB), 

     (CA;CB),S0,S1) :-  

        !, 

        conv(CompoA,CA,S0,S1), 

        conv(CompoB,CB,S0,S1). 

conv(not [Component], 

     not member(Component,S0,_), 

     S0,S0) :- !.  

conv(not Component, 

     not subset(Component,S0,_), 

     S0,S0) :- !. 

conv(test [Component], 

     member(Component,S0,_), 

     S0,S0) :- !. 

conv(test Component, 

     subset(Component,S0,_), 

     S0,S0) :- !. 

conv(add [Component], 

     S1=[Component|S0], 

     S0,S1) :- !.  

conv([Component], 

     member(Component,S0,S1), 

     S0,S1) :- !.  

conv(Component, 

     subset(Component,S0, S1), 

     S0,S1) :- !. 

read_grammar_assert(G) :-  

     see(G),read_assert. 

read_assert :-  

     read(X), 

   (not X=end_of_file,  

    dcsgConv(X,Y), 

    assertz(Y), 

    read_assert ; true). 

Appendix B Converter for circuit grammar 
:- op(900, fx, not). 

:- op(900, fx, test). 

:- op(900, fx, add). 

:- op(950, fx, quote). 

cgConv((Lhs --> Rhs), 

       (Head :- Body)) :- 

    lconv(Lhs,Head,C0,C1,E0,E1),  

    rconv(Rhs,Body,C0,C1,E0,E1).  

lconv((Compo,{Es}), 

      ss(Compo,C0,C1,E0,E2),  

      C0,C1,E0,E1) :- 

    !, 

    makelist(Es, E1, E2). 

lconv(Compo, 

    ss(Compo,C0,C1,E0,E1), 

    C0,C1,E0,E1) :- !.  

makelist((E,Es), E1, [E|E2]) :- 

    !, 

    makelist(Es,E1,E2). 

makelist(E,E1,[E|E1]). 

rconv((CompoA, CompoB), 

      (CA,CB), 

C0,C1,E0,E1) :- 
    !, 

    rconv(CompoA,CA,C0,C,E0,E), 

    rconv(CompoB,CB,C,C1,E,E1). 

rconv((CompoA;CompoB),  

      (CA;CB),  
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C0,C1,E0,E1) :- 

    !, 

    rconv(CompoA,CA,C0,C1,E0,E1), 

    rconv(CompoB,CB,C0,C1,E0,E1). 

rconv(not [Compo], 

     (not member(Compo,C0,_), 

       C1=C0,E1=E0), 

     C0,C1,E0,E1) :- !. 

rconv(not Compo, 

      (not ss(Compo,C0,_,E0,_), 

        C1=C0,E1=E0), 

     C0,C1,E0,E1) :- !. 

rconv(test [Compo], 

      (member(Compo,C0,_), 

        C1=C0,E1=E0), 

      C0,C1,E0,E1) :- !.  

rconv(test Compo, 

      (ss(Compo,C0,_,E0,_), 

        C1=C0,E1=E0), 

      C0,C1,E0,E1) :- !.  

rconv(quote Compo, 

      (Compo, C1=C0, E1=E0), 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      C0,C1,E0,E1) :- !. 

rconv(add [Compo], 

      (C1=[Compo|C0], E1=E0), 

      C0,C1,E0,E1) :- !.  

rconv({Compo}, 

      (member(Compo,E0,_), 

        C1=C0, E1=E0), 

      C0,C1,E0,E1) :- !.  

rconv([Compo], 

      (member(Compo,C0,C1),E1=E0), 

      C0,C1,E0,E1) :- !.  

rconv(Compo, 

      ss(Compo,C0,C1,E0,E1), 

      C0,C1,E0,E1) :- !. 

read_grammar_assert(G) :- 

    see(G),read_assert. 

read_assert :- 

    read(X), 

   (not X=end_of_file, 

    cgConv(X,Y),  

    assertz(Y),  

    read_assert ; true). 


