
In: Circuit Analysis
Editor: Virginia E. Wright

ISBN: 978-1-61728-106-8
c© 2009 Nova Science Publishers, Inc.

Chapter 5

ANALYZING CIRCUIT STRUCTURES AS

L ANGUAGE

Takushi Tanaka∗

Department of Computer Science and Engineering
Fukuoka Institute of Technology

3-30-1 Wajiro-Higashi, Higashi-ku, Fukuoka 811-0295, Japan

Abstract

As a step toward automatic circuit understanding, we present a new
method for analyzing circuit structures. We view circuits as sentences,
and their elements as words. The electrical behavior and functions are the
meaning of the sentences. Circuit structures are defined by a logic gram-
mar called DCSG. A set of grammar rules, when converted into Prolog
clauses, forms a logic program which perform top-down parsing. When
an unknown circuit is given, this logic program will analyze the circuit
and derive a parse tree for the circuit.

We first present the basic concepts of the logic programming using
examples of circuits, then introduce the logic grammar DCSG (Defi-
nite Clause Set Grammar) which was developed for word-order free lan-
guages. Circuits are represented as sentences in the language. Circuit
structures are defined as grammar rules for functional blocks composing
bipolar analog ICs. A given circuit is parsed as a grammatical sentence,

∗Email address: tanaka@fit.ac.jp

2 Takushi Tanaka

and its hierarchical structure of functional blocks is derived. An exten-
sion to DCSG uses additional fields to hold semantic terms. Using the
fields, electrical behavior and functions can be defined for the syntactic
structures. After a circuit is parsed, not only its syntactic structure, but
also its electrical behavior and functions can be derived as the meaning of
the circuit structure.

Keywords: electronic circuit, circuit analysis, circuit structure, circuit
grammar, logic grammar, knowledge representation, logic programming,
DCG, DCSG

1. Introduction

When an engineer first looks at a circuit schematic, he tries to partition the
circuit into familiar sub-circuits with known goals. He then tries to trace the
causality of electrical events through those sub-circuits to determine if and how
the overall goal of the circuit is achieved. This is based on the fact that elec-
tronic circuits are designed as goal oriented compositions of basic circuits with
specific functions. Therefore, understanding a circuit means finding the hierar-
chical structure of its functional blocks and rediscovering the designer’s original
intentions.

As a step toward automatic circuit understanding, we present a new method
for analyzing circuit structures. We view circuits as sentences, and their ele-
ments as words. The electrical behavior and functions are the meaning of the
sentences. Circuit structures are defined by a logic grammar called DCSG[5].
A set of grammar rules, when converted into Prolog clauses, forms a logic pro-
gram which perform top-down parsing when executed.

When an unknown circuit is given, this logic program will analyze the cir-
cuit and derive a parse tree for the circuit. This contrasts with earlier circuit
analysis programs based on circuit theory such as SPICE[12], which function
as a circuit simulators to derive voltages and currents from the circuit. Since
the parse tree shows a hierarchical structure of functional blocks composing the
circuit, it can help an engineer to identify which elements contribute to which
sub-functions and how the total function of the circuit is achieved by its sub-
functions for trouble shooting, redesigning, or modifying the circuit. That is, a
circuit parser could advise engineers how to interpret circuit structures.

Analyzing Circuit Structures as Language 3

Probably, most readers of this book are not familiar with logic program-
ming, so we first present the basic concepts of the logic programming using
examples of circuits, then introduce the logic grammar DCSG (Definite Clause
Set Grammar) which was developed for word-order free languages. Circuits are
represented as sentences in the language and circuit structures are defined as
grammar rules. Several examples show advantages of using DCSG.

As an extension to DCSG, new circuit grammar[9] uses additional fields to
hold semantic terms. Using the fields, electrical behavior and functions can be
defined for the syntactic structures. As an example, we will define grammar
rules for functional blocks consisting bipolar analog ICs[13]. After a circuit is
parsed as a grammatical sentence, not only its syntactic structure, but also its
electrical behavior and functions can be derived as the meaning of the circuit
structure.

2. Circuit Representation in Predicate Logic

2.1. Prolog Language

Prolog is a programming language based on predicate logic. It is well suited for
symbolic computations that handle problems concerning objects and their rela-
tions. Programs written in ordinary programming language define procedures
to solve problems, while Prolog programs define problems themselves and re-
lationships between objects. Prolog programs are executed by a mechanism of
theorem proving. Solving problems using the mechanism of theorem proving,
instead of defining the procedure explicitly, is called logic programming.

Using electrical circuits as examples, we introduce the basic concepts of
logic programming. We first show how circuits are represented in terms of
predicate logic. A given circuit is defined by a set of Prolog facts. Circuit
structures are defined by Prolog rules. Finding structures in the given circuit is
realized by Prolog goals. The examples presented here also show the problems
and limitations of this method.

2.2. Facts

All objects in circuits are represented by logical nouns called terms, and all
relationships between those objects are represented by logical predicates. The

4 Takushi Tanaka

terms and the predicates are combined to form atomic formulas, which are log-
ical sentences. The following seven atomic formulas represent the circuitca40
shown in Figure 1.

r1

 21
r2

3

2

r3
4

3
r4

4

2
r5

4

2

t1

t2

Figure 1. Circuit ca40

resistor(r1, 1, 2).
resistor(r2, 2, 3).
resistor(r3, 3, 4).
resistor(r4, 2, 4).
resistor(r5, 2, 4).
terminal(t1, 1).
terminal(t2, 4).

The atomic formula “resistor(r1, 1, 2)” consists of a predicate symbol
“resistor(...)” and three constant terms “r1”,“ 1” and “2”. The atomic formula
states that the resistor namedr1 is connected to node1 and node2. The atomic
formula “terminal(t1, 1)” states that the external terminal namedt1 is con-
nected to node1. These seven logical sentences describe whole circuit topology
of ca40. When we consider the circuit in Figure 1, these sentences are called
“facts”, and placed in the Prolog database, which holds true sentences.

Analyzing Circuit Structures as Language 5

2.3. Goal

Since we are considering the circuitca40 in Figure 1, all the formulas that repre-
sent the circuit are already placed in the Prolog database. The following atomic
formula prefixed by “?−” is called a goal clause, which asks the Prolog sys-
tem whether the resistorr1 is connected to the nodes1 and2. Here, “?−” is a
prompt for goal clause generated by the Prolog system. When the goal clause
is given, the Prolog system looks for the goal in the Prolog database. Since
resistor(r1, 1, 2) is in the database, the goal becomestrue, and the Prolog
system answersyes.

?− resistor(r1, 1, 2).
yes

We can find the nodes to which the resistor “r2” is connected by the follow-
ing goal clause with variablesA andB. These variables are also terms which
construct atomic formulas. Here, the variables are represented by a string be-
ginning with an upper case letter.

?− resistor(r2, A, B).

The variablesA andB in the goal clause are assumed to be bound by existential
quantifiers in predicate logic. Namely, the Prolog system is asked to prove the
sentence

(∃A)(∃B)resistor(r2, A, B)

which states that “there exist nodesA and B connected to the resistorr2”.
The Prolog system looks in the database and findsresistor(r2, 2, 3) as an in-
stance for whichresistor(r2, A, B) becomestrue, and the system outputs the
variable-value bindings as:

A = 2
B = 3
yes

6 Takushi Tanaka

These variable-value bindings are made by a mechanism called unifica-
tion. Unification discovers a substitution of variables for the two formulas
resistor(r2, 2, 3) andresistor(r2, A, B) that makes them equal.

The following goal clause finds a resistor “X” connected to the nodes 3 and
4 as:

?− resistor(X, 3, 4).
X = r3
yes

Note, however, that if the node order is reversed, the goal fails to find the resistor
connected to nodes 4 and 3:

?− resistor(X, 4, 3).
no

Since resistors are non-polar elements, we want to refer to resistors regardless
of their node order. This can be done by defining a new predicate using rules in
Prolog.

2.4. Rules

A rule is a conditional sentence called a definite clause, which is also placed in
the Prolog database. A rule consists of a left-hand side called the head, the spe-
cial symbol “ : −”, and a right-hand side called the body. The head consists of
an atomic formula which is the result of the conditional sentence. The symbol
“ : −” is the logical connective of implication “←”, although the order of the
condition and result are reversed. The body, which is the conditional part, con-
sists of atomic formulas. Facts can be viewed as a special case of rules which
do not have conditions.

The following rule defines the new predicate “res(R, A, B)” which can re-
fer eitherresistor(R, A, B) or resistor(R, B, A). Here, the symbol “;” works
as a logical connective “or”. This rule can be read ifresistor(R, A, B) or
resistor(R, B, A) is true, res(R, A, B) becomestrue. Procedurally, in order
to show thatres(R, A, B) is true, the Prolog system tries to show that either
resistor(R, A, B) or resistor(R, B, A) is true.

Analyzing Circuit Structures as Language 7

res(R, A, B) : − resistor(R, A, B);
resistor(R, B, A).

The variablesR, A, andB in facts and rules are assumed to be bound by uni-
versal quantifiers in predicate logic. Namely, this rule means the following con-
ditional sentence.

(∀R)(∀A)(∀B)(resistor(R, A, B) ∨ resistor(R, B, A)→ res(R, A, B)).

When the following goal is given, the goal is unified with the head of this
rule, and the body of the rule becomes a new goal.

?− res(X, 4, 3).

The body generates the following disjunction as the new goal.

?− resistor(X, 4, 3); resistor(X, 3, 4).

The first sub-goal of disjunction fails because there is no fact that can
be unified withresistor(X, 4, 3) in the database, but the second sub-goal
resistor(X, 3, 4) succeeds, and outputs:

X = r3
yes

Similar rules can be defined for other non-polar elements such as capacitors
and inductors:

cap(C, A, B) : − capacitor(C, A, B);
capacitor(C, B, A).

ind(L,A, B) : − inductor(L,A, B);
inductor(L,B, A).

The following rule defines the predicate “anyElm(X, A)” which refers to
any elementX connected to nodeA. Here, we assume the external terminal
“ terminal(X, A)” to be a kind of any element. The underscores “” in atomic
formulas are anonymous variables which are not of concern in the rule.

8 Takushi Tanaka

anyElm(X, A) : − terminal(X, A);
res(X, A,);
cap(X, A,);
ind(X, A,).

2.5. Predicates for Circuit Structures

In order to find resistors connected in series (Figure 2) in the circuitca40, we
attempt to satisfy the following conjunctive goal. Here, ”,” between two atomic
formulas works as the logical connective “and”.

?− res(X, A, B), res(Y, B, C).

X

 BA

Y

 C

Figure 2. Resistors connected in series

This conjunctive goal successfully finds resistors connected in series. The
first sub-goalres(X, A, B) finds the resistorr2 and its connecting nodes2 and
3, then the second sub-goalres(Y, B, C) finds the resistorr3 connecting node
3 as follows:

A = 2
B = 3
C = 4
X = r2
Y = r3 ;

The “;” after “Y = r3” is typed by the user and directs the Prolog system to
find another answer. The Prolog system discard the first answer, and tries to
find another answer using the Prolog backtracking mechanism. The conjunctive
goal also outputs unexpected answers such as:

A = 1

Analyzing Circuit Structures as Language 9

B = 2
C = 1
X = r1
Y = r1

In the series circuit shown in Figure 2, neither elementsX andY nor nodes
A andC may be the same. Since the condition “not A = C” topologically
includes the condition “not X = Y ”, we next try proving the following goal:

?− res(X, A, B), res(Y, B, C), not A = C.

The Prolog system ceases to output undesired answers of the above type, but it
still outputs another type of unexpected answers as follows.

A = 1
B = 2
C = 3
X = r1
Y = r2

No element other thanX andY may be connected to the central nodeB of the
series circuit. This can be expressed by first defining an elementZ other than
X andY connected toB as:

otherElm(Z, B, X, Y) : − anyElm(Z, B),
not Z = X,
not Z = Y.

Now, we can define the new predicaterSeries(sr(X, Y), A, C) for
series circuit of resistors by adding the conditions “not A = C” and
“not otherElm(, B, X, Y)” to reject undesired answers.

rSeries(sr(X, Y), A, C) : − res(X, A, B),
res(Y, B, C),
not A = C,
not otherElm(, B, X, Y).

10 Takushi Tanaka

X Y

sr(X,Y)

A B C

Figure 3. Series connection of resistors

The first argument “sr(X, Y)” of the predicaterSeries(...) is the name given
to the series circuit of resistorsX andY (Figure 3). The name is a form of
compound term made of the function symbolsr(...) and variablesX andY .
Namely, the name is given by depending on the value ofX andY . This is a
technique to give a unique name to a new object, and the function is called a
Skolem function.

The predicate for parallel connections is also defined in the same manner:

rParallel(pr(X, Y), A, C) : − res(X, A, B),
res(Y, A,B),
not X = Y.

X

Y
A B

pr(X,Y)

Figure 4. Parallel connection of resistors

2.6. Difficulties in Circuit Representation Using Predicate

First we defined terms and predicates for circuit elements, and then we defined
predicates for abstract elements and circuit structures. If we could define pred-
icates for all concepts in circuits in the same manner, we would have an ax-

Analyzing Circuit Structures as Language 11

iomatic system of circuits which can automatically derive true sentences on cir-
cuits.

However, our circuit representation faces difficulties when we try to define
predicates for relationships between two circuits such as equivalent circuits. In
order to refer to relationships between circuits, we need a mechanism to identify
a set of facts for a specific circuit.

One method is to introduce a new argument for circuit identification into
each circuit predicate as follows:

resistor(ca40, r1, 1, 2).
resistor(ca40, r2, 2, 3).
resistor(ca40, r3, 3, 4).
resistor(ca40, r4, 2, 4).
resistor(ca40, r5, 2, 4).
terminal(ca40, t1, 1).
terminal(ca40, t2, 4).

The first argumentca40 of each predicate indicates that each element belongs
to the circuitca40.

Although we can refer to relationships between two circuits using identifi-
cation, we have another problem, namely rewriting circuits. In circuit analysis,
we often rewrite circuits into equivalent circuits. Rewriting facts in the Pro-
log database can be done using the built-in predicates “assert” and “retract”.
However usingretract is problematical from a logical point of view, because
usingretract means erasing facts which were given as true, and the erased facts
can never be used again. In the following sections, we resolve these problems
by assuming circuits to be a kind of formal language.

2.7. Changing Circuit Representation

We have already introduced two kinds of terms, constants and variables, to rep-
resent objects in circuits. These terms are viewed as nouns to make logical
sentences. Predicate logic has another kind of term, called a compound term,
which consists of a function symbol and other terms. In the previous sections,
the atomic formularesistor(r1, 1, 2) was a logical sentence which states that
“r1” is a resistor connected to node1 and node2. Here, theresistor(...)

12 Takushi Tanaka

worked as a predicate symbol. As predicates and functions are the same in
style, we will changeresistor(...) from a predicate symbol to a function sym-
bol. As a result,resistor(r1, 1, 2) becomes a compound term instead of an
atomic formula. Unlike mathematics, in logic, functions are not computed. The
compound term works as a noun phrase, while the atomic formula works as a
simple sentence. An atomic formula states a relationship between objects while
a compound term represents a new object using other objects. Therefore, the
compound termresistor(r1, 1, 2) can be read “resistorr1 connected to node1
and2” as though it were a noun phrase.

Prolog supports a special data structure called “list”. A list is a sequence
of any number of terms surrounded by “[” and “]”. We can use a list as a new
circuit representation for the circuitca40 as follows:

[resistor(r1, 1, 2), resistor(r2, 2, 3), resistor(r3, 3, 4),
resistor(r4, 2, 4),, resistor(r5, 2, 4), terminal(t1, 1),
terminal(t2, 4)].

Here, the list is used to represent the set of all the elements that make up the
circuit ca40. In the next section, we develop a mechanism called DCSG to treat
these lists as a word-order free sentence.

2.8. Lists

Since we will use lists to represent circuits, we discuss lists further here. A
list can be viewed as a compound term made by iteratively applying the spe-
cial function “.”. For example, the list[a, b, c] consists of the function
“ .(a, .(b, .(c, [])))”. Here, a list without elements is called the empty list and
is simply written as “[]”. Using the empty list, the special function “.(c, [])”
makes the list “[c]”. The function “.(b, [c])” makes the list “[b, c]”. And the
function “.(a, [b, c]) makes the list “[a, b, c]”.

The first element of a list is called the head of the list. The remaining part
is another list and is called the tail. That is, a list consists of “.(Head, Tail)”.
The special symbol “|” also separates a list into a head and a tail and composes
a list as shown in the following goal clauses:

?− [a] = [Head | Tail].

Analyzing Circuit Structures as Language 13

Head = a
Tail = [].

?− [a, b, c] = [Head | Tail].
Head = a
Tail = [b, c]

?− X = [a, b | [c, d]].
X = [a, b, c, d]

?− X = [a | [b | [c | []]]].
X = [a, b, c]

3. Logic Grammar DCSG

3.1. Word-Order Free Language

Most Prolog systems provide a mechanism for parsing context-free languages
called DCG(Definite Clause Grammar)[3]. A set of the grammar rules, when
converted into Prolog clauses, forms a logic program which executes top-
down parsing. Here, we develop a logic grammar DCSG(Definite Clause Set
Grammar)[5] for word-order free language similar to the method of DCG.

First, we will introduce the concept of word-order free language. A word-
order free languageL(G’) is defined by modifying the definition of a formal
grammar. We define a context-free word-order free grammarG’ to be a quadru-
ple < VN , VT , P, S > where:VN is a finite set of non-terminal symbols,VT is
a finite set of terminal symbols,P is a finite set of grammar rules of the form:

A −→ B1, B2, ..., Bn. (n ≥ 1)
A ∈ VN , Bi ∈ VN ∪ VT (i = 1, ..., n)

andS(∈ VN) is the starting symbol. The above grammar rule means that the
symbolA is rewritten not with the string of symbols“B1, B2, ..., Bn”, but with
the set of symbols{B1, B2, ..., Bn}. A sentence in the languageL(G’) is a set of
terminal symbols which is derived fromS by successive application of grammar
rules. Here the sentence is a multi-set which admits multiple occurrences of

14 Takushi Tanaka

elements taken fromVT . Each non-terminal symbol used to derive a sentence
can be viewed as a name given to a subset of the multi-set.

3.2. DCSG Conversion

When a set of grammar rules is given to a Prolog system, the DCG mechanism
is used to convert the grammar rules into Prolog clauses. We now develop a con-
version for word-order free languages that is analogous to DCG conversion[11].
The general form of the conversion procedure from a grammar rule

A −→ B1, B2, ..., Bn. (1)

to a Prolog clause is:

subset(A,S0, Sn) : – subset(B1, S0, S1),
subset(B2, S1, S2),
...
subset(Bn, Sn−1, Sn). (1)’

Here, all symbols in the grammar rule are assumed to be non-terminal symbols.
If “[Bi]”(1 ≤ i ≤ n) is found in the right hand side of grammar rules, where
“Bi” is assumed to be a terminal symbol, then“member(Bi, Si−1, Si)” is used
instead of“subset(Bi, Si−1, Si)” in the conversion.

The argumentsS0, S1, ..., Sn in (1)′ are multisets ofVT , represented as lists
of elements. The predicate “subset” is used to refer to a subset of an object set
which is given as the second argument, while the first argument is the name of
its subset. The third argument is a complementary set which is the remainder of
the second argument less the first; e.g.“subset(A,S0, Sn)” states that “A” is a
subset ofS0 and thatSn is the remainder.

The predicate “member” is defined by the Prolog clauses (2) and (3) below.
It has three arguments. The first is an element of a set. The second is the whole
set. The third is the complementary set of the first argument.

member(M, [M |X], X). (2)
member(M, [A|X], [A|Y]) : – member(M, X, Y). (3)

Analyzing Circuit Structures as Language 15

When the clause (1)’ is used in parsing, an object sentence (multiset of
terminal symbols) is given to the argumentS0. In order to find the subsetA
in S0, the first sub-goal finds the subsetB1 in S0 then put the remainder into
S1, the next sub-goal findsB2 in S1 then put the remainder intoS2, ..., and the
last sub-goal findsBn in Sn−1 then put the remainder intoSn. That is, when a
grammar rule is used in parsing, each non-terminal symbol in the grammar rule
makes a new set from the given set by removing itself as its subset. While, each
terminal symbol used in the grammar rule also makes a new set from the given
set by removing itself as its member.

DCSG uses the predicatessubset andmember to convert grammar rules
into Prolog clauses, but the differences between DCG and DCSG are minimal.
If we replace the predicatesubset with substring and remove the clause (3)
from the definition ofmember, the conversion will be equivalent to DCG con-
version, although ordinary DCG does not use the predicate ofsubstring for
simplification.

3.3. Backward Chaining and Top Down Parsing

Usually, a Prolog program consists of two kinds of definite clauses, called facts
{F1, F2, ..., Fn} and rules{R1, R2, ..., Rm} both viewed as axioms. The ex-
ecution of a Prolog program can be viewed as a process of deriving a theo-
rem by backward chaining from the axioms. The top-down parsing of a word-
order free sentence somewhat resembles the process of backward chaining. The
object sentence is given as a set of terminal symbols{W1,W2, ..., Wn}. The
starting symbol “S” is decomposed into terminal symbols using grammar rules
{G1, G2, ..., Gm} until they coincide with the given sentence. That is, the set
of facts corresponds to the sentence, and the set of backward chaining rules cor-
responds to the set of grammar rules. Deriving theorems in backward chaining
corresponds to identifying non-terminal symbols in the top-down method.

There is an important difference between backward chaining and top-down
parsing. Backward chaining allows multiple use of the same fact to derive a the-
orem, while in a context-free language, each terminal symbol in a sentence con-
tributes only once to the reduction of non-terminal symbols. This characteristic
is very useful for avoiding a common looping problem in backward chaining, a
problem which is caused by multiple use of the same fact.

16 Takushi Tanaka

3.4. The Looping Problem

When problems to be solved are formalized and expressed in Prolog, we often
encounter a certain kind of looping problem. We will clarify a cause of this
looping problem using voltage derivation as an example.

Assume that the voltages in a circuit are those given in Figure 5. We might
consider representing this voltage data by the following facts:

voltage(1, 2, 12).
voltage(3, 2, 10).
voltage(3, 4, 7).

1

 2

3

 4

12v
10v

 7v

Figure 5. Voltages on a circuit

“voltage(1, 2, 12)” states that the voltage between node 1 and node 2 is 12
volts. In order to derive the voltage data independently of the node order, we
could consider defining“volt” by the following rules:

volt(A,B, V) : − voltage(A,B, V).
volt(B,A,−V) : − voltage(A,B, V).

Furthermore, we will define the predicate “v” that derives voltages between two
arbitrary nodesA andC as

v(A,C, V) : − volt(A,C, V).
v(A,C, V + W) : − volt(A,B, V), v(B,C, W).

It turns out, however, that these definitions will not work as intended. In order
to derive the voltage between 1 and 4, we will attempt to execute the following
goal clause:

Analyzing Circuit Structures as Language 17

?− v(1, 4, X).

As the voltage between 1 and 4 is not given, the goal is decomposed into
sub-goals by the second definition of “v(...)”. The first sub-goal succeeds by
“volt(1, 2, 12)” binding nodeB with 2. The second sub-goal “v(2, 4,W)” is
also decomposed into sub-goals by the second definition of “v(...)” again. The
first sub-goal succeeds as “volt(2, 1,−12)” using the same voltage data, and the
second sub-goal becomes the same as the initial goal. Thus, the system loops.

One method to avoid this problem is to erase voltage data as they are used,
so that the same datum is not used twice. This can be done by replacing the
definition of “volt(...)” with

volt(A,B, V) : − voltage(A,B, V).
retract(voltage(A,B, V)).

volt(B,A,−V) : − voltage(A,B, V).
retract(voltage(A,B, V)).

But the erased data cannot be recovered in backtracking.
Another common method keeps track of the data used, so that the same

datum is not used twice. In this method, the definition of “v(...)” is replaced
with the following clauses, and we acquire the voltage between nodes 1 and 4
by the goal clause “?− v(1, 4, X, [])”. The fourth argument of the goal is a list
of nodes which have already been used to calculate the voltages and must not
be used twice. This method has the disadvantage of requiring the overhead of
explicitly keeping track of the data used:

v(A,C, V,) : − volt(A,C, V).
v(A,C, V + W,T) : − volt(A,B, V),

not member(B, T,),
v(B,C, W, [A|T]).

In the next section, we show how to avoid this problem by viewing problem
solving as a generalized parsing problem.

3.5. Solution of the Looping Problem

To solve the above looping problem, we introduce a change of representation
which involves viewing the voltage derivation problem not as a backward search

18 Takushi Tanaka

problem, but as a parsing problem. The node-voltage data are not represented
by a set of facts. Each expression “voltage(A,B, V)” forms a compound term.
The voltages in Figure 5 are represented by a set of those terms using a list:

vData([voltage(1, 2, 12), voltage(3, 2, 10), voltage(3, 4, 7)]).

Accordingly, we represent the voltage derivation not as clauses for backward
chaining but as grammar rules for parsing. The following grammar rules corre-
spond to the clauses of “volt(...)”:

volt(A,B, V) −→ [voltage(A,B, V)].
volt(B,A,−V) −→ [voltage(A,B, V)].

“voltage(A,B, V)” surrounded by “[” and “]” is a terminal symbol, while
“volt(A,B, V)” is a nonterminal symbol. Here, we have introduced univer-
sally quantified variables(A,B, andV) into the grammar rules. These vari-
ables are instantiated when they are applied to object sentences. According to
the DCSG conversion procedure, the grammar rules are converted into the fol-
lowing clauses:

subset(volt(A,B, V), S0, S1) : − member(voltage(A,B, V), S0, S1).
subset(volt(B,A,−V), S0, S1) : − member(voltage(A,B, V), S0, S1).

In order to derive the voltage between two arbitrary nodes, we define the
following grammar rules corresponding to the clauses of “v(...)”:

v(A,C, V) −→ volt(A,C, V).
v(A,C, V + W) −→ volt(A,B, V), v(B,C, W).

These grammar rules are converted into the following clauses:

subset(v(A,C, V), S0, S1) : − subset(volt(A,C, V), S0, S1).
subset(v(A,C, V + W), S0, S2) : − subset(volt(A,B, V), S0, S1),

subset(v(B,C, W), S1, S2).

Deriving the voltageX between nodes 1 and 4 is accomplished by identifying
the nonterminal symbol “v(1, 4, X)” in the word-order free sentence of voltage
data as follows:

Analyzing Circuit Structures as Language 19

?− vData(V D), subset(v(1, 4, X), V D,).

X = 12 + (−10 + 7)

Terminal symbols associated with the nonterminal symbol “v(1, 4, X)” are re-
moved sequentially from the object sentence. Therefore, the looping problem
due to using the same data repeatedly does not occur. This method is similar
to removing data using the predicate “retract(...)” described in the previous
section. But the removed data can be recovered by backtracking.

We have overcome a common looping problem in backward chaining by
simply rewriting backward chaining rules as grammar rules and by viewing a set
of facts as a word-order free sentence. The looping problem caused by multiple
use of the same fact is avoided by using DCSG to view circuit analysis as a
generalized parsing problem.

4. Finding Structures in Circuits

4.1. Circuits Represented as Sentences

Since we have a mechanism for parsing word-order free languages, we will
treat a circuit represented as a list as a word-order free sentence. The circuit
ca49 in Figure 6 is represented by the fact (4) shown below. The predicate
ca49([...]) states that the word-order free sentence “[...]” represents circuitca49.
The compound termbattery(b1, 1, 2) represents the batteryb1 connected its
positive terminal to the node1 and its negative terminal to the node2.

ca49([resistor(r1, 1, 3), resistor(r2, 2, 3), resistor(r3, 1, 4),
resistor(r4, 2, 4), resistor(r5, 3, 4), battery(b1, 1, 2)]). (4)

4.2. Grammar Rules without Recursion

Since a resistor is a non-polar element, we need a way to refer to a resistor
regardless of its node order. The non-terminal symbolres(R, A, B) can refer
eitherresistor(R, A, B) or resistor(R, B, A). Here, DCSG allows the sym-
bol “;” as abbreviation of two grammar rules with the same left hand side. The

20 Takushi Tanaka

b1
2

1
r1

3

1

r2
2

3

r5
r3

4

1

r4
2

4

Figure 6. Circuit ca49

non-terminal symbolbatt(...) enables us to refer the same battery with different
names. If a battery is referred to with reverse node-order, the name of battery
is prefixed by a minus symbol. The non-terminal symbolanyElm(X, A) can
refer to any elementX connected to the nodeA.

res(R, A, B) −→ [resistor(R, A, B)];
[resistor(R, B, A)].

batt(E, A,B) −→ [battery(E, A,B)].
batt(−E, B, A) −→ [battery(E, A,B)].

anyElm(X, A) −→ [terminal(X, A)];
res(X, A,);
batt(X, A,).

4.3. All Elements Connected to a Node

In circuit analysis, Kirchhoff’s current law (KCL) requires that the sum of all
branch currents into a node be zero. In order to apply KCL at a specific node,
we must find all elements connected to the node. The non-terminal symbol
allElm(X, A) successfully finds these elements connected to the nodeA. Here,
X is replaced by a list of the all elements. If the same rules were written in back-
ward chaining by replacing the symbol “−→” with “ :- ”, a looping problem due
to using the same data repeatedly would occur.

allElm([], A) −→ not anyElm(, A).

Analyzing Circuit Structures as Language 21

allElm([X|Y], A) −→ anyElm(X, A),
allElm(Y, A).

The following goal finds all elements connected to node 1 in the circuitca49 as:

?− ca49(CT), subset(allElm(X, 1), CT,).

X = [r1, r3, b1]

4.4. Paths and loops

According to Kirchhoff’s voltage law (KVL), the sum of branch voltages along
to a loop must be zero. In order to find loops in a circuit, we first define the
non-terminal symbolpath(X, A, B) which finds routes between two nodesA
andB.

path([X], A, B) −→ anyElm(X, A, B).
path([X, B|Y], A, C) −→ anyElm(X, A, B),

path(Y, B, C).

The variableX in path(X, A, B) is substituted for by elements and nodes from
the starting nodeA to the ending nodeB. The following goal attempts to find
all routes from the starting node 1 to the ending node 2 in the circuitca49.

?− ca49(CT), subset(path(X, 1, 2), CT,).

X = [b1];
X = [r1, 3, r2];
X = [r1, 3, r5, 4, r4];
X = [r1, 3, r5, 4, r3, 1, b1]

The first answer[b1] shows the path from the node 1 via elementb1 to the node
2. The second answer shows the path from the node 1 viar1, node 3, andr2
to the node 2. The first three answers show paths from the node 1 to the node
2, but the fourth answer is not desired. It goes back to the starting node 1 and
then goes to the ending node 2 viab1. Since parsing sentence does not use the

22 Takushi Tanaka

same word twice, no element in the circuit appeared twice in the answer. The
problem is that our definition does not inhibit the use of the same node twice.

Since we want to get correct answers which do not include loops in the
paths, we modify the grammar rules as follows:

path([X], A, B,) −→ anyElm(X, A, B).
path([X, B|Y], A, C, T) −→ anyElm(X, A, B),

quote not member(B, T,),
path(Y, B, C, [A|T]).

The “quote” in the grammar rule is a command to the DCSG converter.
It directs the converter to insert the following strings as is. Namely,
“not member(B, T,),” is inserted as a Prolog clause in the DCSG conver-
sion. The last argument ofpath is substituted for by a list of nodes which are
already in the path and not to be used twice as a relay node in the process of
finding path.

The following goal successfully finds all paths from the node 1 to the node
2 in the circuitca49. The last argument ofpath is substituted for by “[2]” which
shows the ending node 2 must not be used as a relay node.

?− ca49(CT), subset(path(X, 1, 2, [2]), CT,).

X = [b1];
X = [r1, 3, r2];
X = [r1, 3, r5, 4, r4];
X = [r3, 4, r4];
X = [r3, 4, r5, 3, r2];
No

If the ending node is equal to the starting node, the goal enumerates all loops
through the node as follows:

?− ca49(CT), subset(path(X, 1, 1, []), CT,).

X = [r1, 3, r5, 4, r3];
X = [r1, 3, r5, 4, r4, 2,−b1];

Analyzing Circuit Structures as Language 23

X = [r1, 3, r2, 2,−b1];
X = [r1, 3, r2, 2, r4, 4, r3];
X = [r3, 4, r4, 2,−b1];
...

4.5. Series-Parallel Circuit

Recursively defined circuits do not appeared in actual IC-designs[13], but circuit
theory has the concepts of such circuits. The following grammar rules define the
circuit which consists only of series and parallel connections of resistors.

spCircuit(R, A, B) −→ res(R, A, B).
spCircuit(sr(X, Y), A, C) −→ spCircuit(X, A, B),

spCircuit(Y, B, C),
not anyElm(, B,).

spCircuit(pr(X, Y), A, B) −→ spCircuit(X, A, B),
spCircuit(Y, A,B).

The first rule defines a single resistorR as a series-parallel circuit
spCircuit(R, A, B). The second rule defines a series connection of series-
parallel circuits as a series-parallel circuitspCircuit(sr(X, Y), A, C). Here,
sr(X, Y) is the name given to the connection. The grammar rule has a
condition “not anyElm(, B,)” that the central nodeB of the series
connection must not be connected to other elements. The third rule de-
fines a parallel connection of series-parallel circuits as a series-parallel circuit
spCircuit(pr(X, Y), A, B). “pr(X, Y)” is the name given to the connection.
Unlike the definitions of series and parallel connections in Section 2.5, the con-
ditions such as ”not X = Y ” are not needed because no elements are used
twice in parsing.

In order to identify a series-parallel circuit connected to nodes 1 and 4 in
Figure 1, we attempt the following goal:

?− ca40(CT), subset(spCircuit(X, 1, 4), CT,).

But the second goal loops. The top-down mechanism of DCSG decomposes the
starting symbol into terminal symbols iteratively until it generates a set of termi-
nal symbols which coincides with the object data set. Since the series-parallel

24 Takushi Tanaka

connection is defined by left recursive rules, the system infinitely decomposes
the starting symbol with the same symbol when the generated elements do not
coincide.

In top-down parsing, we must avoid grammar rules with left recursion. In
ordinary context-free grammars, this can be done by introducing additional non-
terminal symbols to change rules into Greibach normal form[1]. Each grammar
rule in the normal form first generates a terminal symbol then generate non-
terminal symbols. This means that each terminal symbol is a component of
some non-terminal symbols with other non-terminal symbols. So, we have to
define the non-terminal symbol “series-parallel circuit” with the terminal sym-
bol “resistor” and other circuits. This can be realized by introducing a concept
of three-terminals circuit as a non-terminal symbol. This method is discussed in
the paper[8]. Another method to solve this problem is to use bottom up parsing.
The bottom-up method is discussed in the paper[5].

5. Circuit Grammar for Functional Blocks

This section extends DCSG to create a new circuit grammar for functional
blocks of electronic circuits[9]. This circuit grammar has fields for semantic
terms, and defines not only syntactic structures but also the relationships be-
tween those structures and their meaning. Here we assume circuit functions as
meaning of circuit structres.

5.1. Semantic Field in Left-Hand Side

Semantic terms are placed in curly brackets in grammar rules as follows.

A, {F1, F2, ..., Fm} −→ B1, B2, ..., Bn. (5)

This grammar rule can be read as stating that the symbolA with meaning
{F1, F2, ..., Fm} consists of the syntactic structureB1, B2, ..., Bn. This rule
is converted into a Prolog clause as follows.

ss(A,S0, Sn, E0, [F1, F2, ..., Fm|En]) : −
ss(B1, S0, S1, E0, E1),
ss(B2, S1, S2, E1, E2),

Analyzing Circuit Structures as Language 25

. . . ,
ss(Bn, Sn−1, Sn, En−1, En). (5)’

Since the conversion differs from that used in DCSG, we use the predi-
cate “ss” instead of “subset”. When the rule is used in parsing, the goal
ss(A,S0, Sn, E0, E) is executed, where the variableS0 is replaced by an ob-
ject set (object circuit) and the variableE0 is replaced by an empty set. The
subsets (sub-circuits) “B1, B2, ..., Bn” are successively identified in the object
setS0. After all of these subsets are identified, the remainder of these subsets
(the complementary set) is put intoSn. While, the semantic information ofB1

is added withE0 and put intoE1, the semantic information ofB2 is added with
E1 and put intoE2,..., and the semantic information ofBn is added withEn−1

and put intoEn. Finally, the semantic information{F1, F2, ..., Fm}, which is
the meaning associated with symbolA, is added and all of the semantic infor-
mation is put intoE.

Terminal symbols are surrounded by square brackets in grammar rules. The
symbol “[Bi]” is converted tomember(Bi, Si, Si+1) which identifies the ele-
mentBi in the object setSi, and put the remainder intoSi+1. The terminal
symbol “[Bi]” does not change the current semantic informationEi, but the
technique in Section 6.3 enables us to add semantic informations to terminal
symbols.

5.2. Semantic Terms in the Right-Hand Side

Semantic terms in the right-hand side define the semantic conditions for the
grammar rule. For example, the following rule (6) is converted into the Prolog
clause (6)’ as follows.

A −→ B1, {C1, C2}, B2. (6)

ss(A,S0, Sn, E0, En) : − ss(B1, S0, S1, E0, E1),
member(C1, E1,),
member(C2, E1,),
ss(B2, S1, S2, E1, E2). (6)’

When the clause (6)’ is used in parsing, the conditionsC1 andC2 are tested
to see if the semantic informationE1 meets these conditions after identifying

26 Takushi Tanaka

the symbolB1. If it succeeds, the parsing process goes on to identify the symbol
B2.

6. Grammar Rules for Functional Blocks

6.1. Electrical Dependencies

When a designed circuit does not work, the engineer tries to localize the fault.
He first checks the power supply to confirm that the correct voltage is being
applied, since the power supply voltage is a prerequisite for correct behavior
throughout the whole circuit. Next, he traces causal chains of voltage and cur-
rent relationships in the circuit. The location of the fault is often determined by
finding a place where causal chains fail to connect as intended.

Since inputs and outputs are clearly separated in logic circuits, problems in
deriving causal chains do not occur at the logic level. In contrast, it is much
harder to derive the causal chains from the circuit topology at the transistor
level without knowledge of how circuits are organized. A current through a
resistor causes a voltage across that resistor, while, inversely, a voltage applied
to a resistor causes a current through the resistor. Although it is difficult to
determine which is the cause and which is the effect from the standpoint of the
physics of electrical devices, engineers use this kind of causal reasoning to form
causal chains that explain how a given circuit works.

The new circuit grammar has fields for semantic terms. Using these se-
mantic terms, we can define relationships between circuit structures and their
functions. The circuit functions we consider are the electrical behaviors that are
useful to circuit designers or users. These electrical behaviors are defined on
the voltages and currents occurring in the circuit. In particular, electrical depen-
dencies such as causality and conditions are useful to understand how circuits
work. We show how voltage and current dependencies are coded in the new cir-
cuit grammar, and how these dependencies are derived through parsing circuit
structures.

6.2. Object Circuit

We now develop grammar rules using the functional blocks appearing in the
circuit cd15, which is a type of operational amplifier called a transconductance

Analyzing Circuit Structures as Language 27

amplifier (Figure 7). The amplifier receives a voltage input and produces a
current output. The circuitcd15 is represented as the following word-order free
sentence. Here, the compound termnpnTr(q1, 3, 5, 6) is a terminal symbol
which represents the NPN-transistor namedq1 with the base connected to node
3, the emitter to node 5, and the collector to node 6 respectively.

 q1 6

53

q2 7

 5

q3 5

 1

 q4 q5

18

q6 9

1

q7

6

q8 q9 q10

87

t1

t2

 4t3

10

t4

2

t5

9

t6

1

Figure 7. Circuitcd15

cd15([npnTr(q1, 3, 5, 6), npnTr(q2, 4, 5, 7), npnTr(q3, 10, 1, 5),
npnTr(q4, 10, 1, 10), npnTr(q5, 8, 1, 8), npnTr(q6, 8, 1, 9),
pnpTr(q7, 6, 2, 6), pnpTr(q8, 6, 2, 9), pnpTr(q9, 7, 2, 7),
pnpTr(q10, 7, 2, 8)]).

(7)

6.3. Rules for Devices

The grammar rule (8) defines an NPN-transistorQ in active state. Although
”npnTr(Q,B, E,C)” is a terminal symbol, it is also defined as a non-terminal
with semantic information. The compound termgt(v(C, E), vst) represents

28 Takushi Tanaka

the fact that the collector-emitter voltagev(C,E) is greater than the collector
saturation voltagevst. The compound termequ(v(B,E), vbe) represents the
fact that the base-emitter voltagev(B,E) is equal to the forward voltage of
PN-junctionvbe. The compound termcause(v(B,E), i(B,Q), Q) represents
the fact that the base-emeitter voltagev(B,E) causes the base currenti(B,Q)
by the operation of the NPN-transistorQ. Here,i(B,Q) represents the branch
current from nodeB to transistorQ.

Grammar rules for the saturated state and the cutoff state are also defined.
When a terminal symbol[npnTr(Q,B, E,C)] is found in parsing a circuit, one
of these rules is selected, and its semantic terms are derived as a meaning of the
symbol non-deterministically. Similar rules are also defined for PNP-transistors.

npnTr(Q,B, E,C),
{ state(Q, active),

gt(v(C,E), vst),
equ(v(B,E), vbe),
gt(i(B,Q), 0),
gt(i(C,Q), 0),
cause(v(B,E), i(B,Q), Q),
cause(v(B,E), i(Q,E), Q),
cause(i(B,Q), v(B,E), Q),
cause(i(Q,E), v(B,E), Q),
cause(i(B,Q), i(C, Q), Q)} −→ [npnTr(Q,B, E,C)]. (8)

6.4. Rules for Functional Blocks

A transistor in which the base and the collector are connected together works as
a diode (Figure 8). The following grammar rule (9) defines the diode-connected
transistor “dtr(dtr(Q), A, C)” in the conductive state as a non-terminal sym-
bol. The syntactic part of the right-hand side defines either an NPN-transistor
Q or a PNP-transistorQ whose base and collector are connected to the same
node. The semantic termstate(Q, active) in the right-hand side is an electrical
condition which requires that the transistorQ must be in theactive state. Here,
dtr(Q) is a name given to the diode (Skolem function).

The semantic terms in the left-hand side represent the electrical behavior
in the conductive state. E.g. “gt(i(A, dtr(Q)), 0)” represents the current flows

Analyzing Circuit Structures as Language 29

from A to dtr(Q). Here, “i(A, dtr(Q))” is the branch current from the node
A to the functional blockdtr(Q). Since we assume that branch current flows
not only from a node to an element but also from a node to a functional block,
the same current can have different expressions, for examplei(A, dtr(Q)) and
i(A,Q). The semantic termequiv(i(A, dtr(Q)), i(A,Q)) is added to form the
equivalence relations for these currents. The grammar rule for diode-connected
transistor in reverse bias is also defined in the same manner.

dtr(dtr(Q), A, C),
{ state(dtr(Q), conductive),

gt(i(A, dtr(Q)), 0),
cause(v(A,C), i(A, dtr(Q)), dtr(Q)),
cause(v(A,C), i(dtr(Q), C), dtr(Q)),
cause(i(A, dtr(Q)), v(A,C), dtr(Q)),
cause(i(dtr(Q), C), v(A,C), dtr(Q)),
equiv(i(A, dtr(Q)), i(A,Q)),
equiv(i(dtr(Q), C), i(Q,C))} −→ (npnTr(Q,A, C,A);

pnpTr(Q,C, A,C)),
{state(Q, active)}. (9)

Q

 A

dtr(Q) A

C
(A)

Q

 C

dtr(Q) C

A
(B)

Figure 8. Diode-connected transistor

Figure 9 shows two current mirror circuits. Both circuits generate the same
current as their reference current. The grammar rule (10) is defined for the
source-type current mirror shown in Figure 9(A). The semantic terms in the
right-hand side are the electrical conditions that operate the circuit. The seman-
tic term in the left-hand side “cause(i(cmo(D, Q), Ref), i(cmo(D, Q), So),
cmo(D, Q))” is related to the main function of this current mirror. That

30 Takushi Tanaka

is, the external current fromcmo(D, Q) to Ref causes another exter-
nal current fromcmo(D, Q) to So by the circuit cmo(D, Q). The next
“cause(i(cmo(D, Q), Ref), i(D, Ref), cmo(D, Q))” represents the external
currenti(cmo(D, Q), Ref) causes the internal currenti(D, Ref) of the func-
tional block. This causal relationship connecting external and internal aspects
of functional block enables us to explain the main function of the functional
block togather with equivalence relations between currents.

A similar rule is also defined for the sink-type current mirror shown in Fig-
ure 9(B).

 Q

D
 Vp

cmo(D,Q)

So

Vp

Ref

(A)

 Q

D

cmi(D,Q)

Si

Vm

Ref

(B)

Figure 9. Current mirror

currentMirrorSource(cmo(D, Q), Ref, V p, So),
{ cause(i(cmo(D, Q), Ref), i(cmo(D, Q), So), cmo(D, Q)),

cause(i(cmo(D, Q), Ref), i(D, Ref), cmo(D, Q)),
equiv(i(cmo(D, Q), So), i(Q,So))} −→

dtr(D, V p, Ref),
{state(D, conductive)},
pnpTr(Q,Ref, V p, So),
{state(Q, active)}. (10)

Figure 10 shows the emitter-coupled pair which generates two collector cur-
rents from the voltage across two basesB1 andB2. The difference between the
two collector currents is proportional to the voltage. While, the total of two col-
lector currents is controlled by the reference current from the nodeRf into the

Analyzing Circuit Structures as Language 31

current mirrorCMi. Here, the grammar rule (11) formalizes only dependencies
between those voltages and currents.

eCoupledPair(ECP, B1, B2, Rf, C1, C2, V m),
{ cause(v(B1, B2), i(C1, Q1), ECP),

cause(v(B2, B1), i(C2, Q2), ECP),
cause(i(E, CMi), i(Q1, E), ECP),
cause(i(E, CMi), i(Q2, E), ECP),
equiv(i(Rf, ECP), i(Rf, CMi)),
equiv(i(B1, ECP), i(B1, Q1)),
equiv(i(B2, ECP), i(B2, Q2)),
equiv(i(C1, ECP), i(C1, Q1)),
equiv(i(C2, ECP), i(C2, Q2))} −→

npnTr(Q1, B1, E,C1),
{state(Q1, active)},
npnTr(Q2, B2, E,C2),
{state(Q2, active)},
currentMirrorSink(CMi, Rf, V m, E),
quote ECP = ecp(Q1, Q2, CMi).

(11)

 Q1 Q2

ecp(Q1,Q2,CMi)

CMi

Vm

Rf

B1 B2

C1 C2

E

Figure 10. Emitter coupled pair

32 Takushi Tanaka

tca(ECP,CMo1,CMo2,CMi)

CMi

CMo1 CMo2

Vm

Ot

Vp

Rf

In1

In2 ECP

C1 C2
A

Figure 11. Transconductance amplifier

Figure 11 shows the structure of transconductance amplifire. Two collector
currents generated by the emitter coupled pair are duplicated by two source-type
current mirrors respectively. One of the currents forms the source current of the
amplifier. Another current is duplicated by a sink-type current mirror, and forms
the sink-current of the amplifier. The following grammar rule (12) is defined for
the transconductance amplifier.

transConductanceAmp(TCA, In1, In2, Rf, Ot, V p, V m),
{ cause(v(In1, In2), i(TCA, Ot), TCA),

cause(i(CMo1, Ot), i(TCA, Ot), TCA),
cause(i(Ot, CMi), i(Ot, TCA), TCA),
equiv(i(Rf, TCA), i(Rf, ECP)),
cause(i(C1, ECP), i(CMo1, C1), TCA),
cause(i(C2, ECP), i(CMo2, C2), TCA),
cause(i(CMo2, A), i(A,CMi), TCA)} −→

eCoupledPair(ECP, In1, In2, Rf, C1, C2, V m),
currentMirrorSource(CMo1, C1, V p, Ot),
currentMirrorSource(CMo2, C2, V p, A),
currentMirrorSink(CMi, A, V m,Ot),
quote TCA = tca(ECP, CMo1, CMo2, CMi). (12)

Analyzing Circuit Structures as Language 33

7. Parsing Circuits

All of the grammar rules defined in the previous section are converted into Pro-
log clauses according to the circuit grammar conversion method described in
Section 5. The clauses form a logic program that performs top-down parsing.
The following goal (13) parses the circuitcd15 and derives the circuit structure
and its electrical behaviour. The first subgoalcd15(CT) substitutes the circuit
cd15 into the variableCT . The circuit is given to the second argument of the
predicatess(...). The first argumentX is a functional block identified in the
circuit and the third argument is the remainder of the circuit. Since the third
argument is empty, the goal asks whether the whole circuit can be identified as
the single non-terminal symbolX. The fourth argument[] means no seman-
tic information is given at the start of parsing. Each time a functional block is
identified, semantic information about the functional block is added. After the
whole circuit is parsed, the value ofY has much semantic information about the
circuit.

?− cd15(CT), ss(X, CT, [], [], Y). (13)

X = transCondAmp(tca(ecp(q1, q2, cmi(drt(q4), q3)),
cmo(dtr(q7), q8),
cmo(dtr(q9), q10),
cmi(dtr(q5), q6)),

3, 4, 10, 2, 9, 1)

Y = [cause(v(3, 4), i(tca(...), 9), tca(...)),
cause(i(cmo(dtr(q7), q8), 9),

i(tca(...), 9), tca(...),
cause(i(9, cmi(dtr(q5), q6)),

i(9, tca(...), tca(...)),
equiv(i(10, tca(...)), i(10, ecp(...))),
cause(i(6, ecp(...)),

i(cmo(dtr(q7), q8), 6), tca(...)),
cause(i(7, ecp(...),

i(cmo(dtr(q9), q10), 7), tca(...)),
cause(i(cmo(dtr(q9), q10), 8),

34 Takushi Tanaka

i(8, cmi(dtr(q5), q6)), tca(...),
cause(i(8, cmi(dtr(q5), q6)),

i(9, cmi(dtr(q5), q6)), cmi(...)),
cause(i(8, cmi(dtr(q5), q6)),

i(8, dtr(q5)), cmi(...)),
equiv(i(9, cmi(dtr(q5), q6)), i(9, q6)),
state(q6, active),
gt(v(9, 1), vst),
equ(v(8, 1), vbe),
gt(i(8, q6), 0),
gt(i(9, q6), 0),
gt(i(q6, 1), 0),
cause(v(8, 1), i(8, q6), q6),
cause(i(8, q6), i(q6, 1), q6),
cause(i(q6, 1), i(9, q6), q6),
state(dtr(q5), conductive),
gt(i(8, dtr(q5)), 0),
cause(i(8, dtr(q5)), i(dtr(q5), 1), dtr),
cause(i(dtr(q5), 1), v(8, 1), dtr),
equiv(i(8, dtr(q5)), i(8, q5)),
equiv(i(dtr(q5), 1), i(q5, 1)),
state(q5, active),
gt(v(8, 1), vst),
equ(v(8, 1), vbe),
gt(i(8, q5), 0),
gt(i(q5, 1), 0),
cause(v(8, 1), i(8, q5), q5),
cause(i(8, q5), i(q5, 1), q5),
cause(i(q5, 1), i(8, q5), q5),
... 108 lines omitted ...)] (14)

The value ofX shows that the circuitcd15 is identified to be the oper-
ational amplifier “transCondAmp(tca(...), 3, 4, 10, 2, 9, 1)”. The first argu-
ment tca(...) is a name given to the identified circuit, and the rest are the
connecting nodes in the circuit. The name keeps track of identified functional
blocks and is viewed as a parse tree which shows the syntactic structure of the

Analyzing Circuit Structures as Language 35

circuit (Figure 12). Each node represents a functional block identified in the
circuit cd15.

q4

dtr
q3

q1 q2

q7

q8
cmi

ecp

q5q9

dtr
q10

dtr

cmo cmo

dtr
q6

cmi

tca

Figure 12. Parse tree forcd15

The semantic information substituted intoY consists of electrical condi-
tions, causal relationships, and equivalence relations. The electrical condi-
tions show the conditions under which all the functional blocks will work cor-
rectly as components of the given circuit. For example, the five lines from
state(q6, active) represent electrical conditions which keep the transistorq6
active. These electrical conditions onq6 togather with a conductive state of
dir(q5) enablecmi(dtr(q5), q6) to work as a current mirror circuit as shown in
Figure 13.

The causal relationships consist of dependencies on voltages and currents.
The first one “cause(v(3, 4), i(tca(...), 9), tca(...))” is added after identifying
the whole circuit. It is related to the main function of transconductance am-
plifier. Here, the structure of the transconductance amplifier is abbreviated
as tca(...). This main causal relationship is also supported by internal causal
chains of the transconductance amplifier as shown in Figure 14. The causal
relationships such as betweeni(cmo, 7) and i(cmo, 8) in the figure are also
explained by internal causal chains of the source-type current mirror circuit.
Equivalence relations (Section 6.3), which connect internal and external expres-
sions of a functional block, enable us to explain details of the main causal rela-

36 Takushi Tanaka

dtr(q5)
state(dtr(q5),conductive)
i(8,dtr(q5)) > 0

q6

q5 state(q5,active)
v(8,1) > vst
v(8,1) = vbe
i(8,q5) > 0
i(q5,1) > 0

state(q6,active)
v(9,1) > vst
v(8,1) = vbe
i(8,q6) > 0
i(9,q6) > 0
i(q6,1) > 0

cmi(dtr(q5),q6)

Figure 13. Electrical conditions forcmi(dtr(q5), q6)

tionship of the functional block.

8. Conclusions

We have viewed electronic circuits as a kind of formal language, and devel-
oped methods for parsing electronic circuits as sentences in that language. Cir-
cuit structures are defined by a logic grammar called DCSG. A set of grammar
rules, when converted into Prolog clauses, forms a logic program which perform
top-down parsing. When an unknown circuit is given, this logic program will
analyze the circuit and derive a parse tree for the circuit. Since the parse tree
shows a hierarchical structure of functional blocks composing the circuit, it can
help engineers to identify which elements contribute to which sub-functions and
how the total function of the circuit is achieved by its sub-functions for trouble
shooting, redesigning, or modifying the circuit.

The performance of our system depends on the defined grammar rules. As
more grammar rules are defined, more circuits can be parsed. Unlike ordinary
circuit analysis based on circuit theory, our system cannot analyze circuits which
consist of arbitrary connected circuit elements. As is true for natural language,
we cannot understand structures not included in the grammar. That is, all cir-
cuits which can be parsed are grammatical sentences defined by the given circuit
grammars. If an object circuit has unknown structures, our system will not be

Analyzing Circuit Structures as Language 37

i(10,tca) i(10,cmi)

i(5,cmi)
v(3,4)

ecp

v(3,5) v(4,5)

q1 q2

i(3,q1) i(q1,5) i(4,q2) i(q2,5)

q1 q2

i(6,q1) i(7,q2)

tca tca

i(cmo,6) i(cmo,7)

cmo cmo

i(cmo,9) i(cmo,8)

tca tca

i(8,cmi)i(9,cmi)i(tca,9)

Figure 14. Causal chains oncd15

able to parse the whole circuit, but it can, however, separate the object circuit
into known parts and the remainder.

When we consider the circuit design process in contrast with sentence gen-
eration, engineers often use context dependent grammar rules. For example,
suppose a circuit design rule (goal) generates two current sources as its compo-
nents (sub-goals). Each current source needs a voltage source, so two voltage
sources are generated. When one of the voltages is derived from the other,
an engineer may combine two voltage sources into a single voltage source for
simplicity. That is, engineers have the ability to use context dependent circuit
generation rules. We, however, have so far only considered context-free rules in
this chapter. Grammar rules for context dependent circuits are discussed in our
paper[6].

The newly developed circuit grammar includes fields for semantic terms [9].
Using these semantic terms, we defined electrical conditions to handle circuit

38 Takushi Tanaka

functions and causal relationships between voltage and current. In particular, we
showed how to derive electrical dependencies as the meanings of circuit struc-
tures by parsing circuits. The derived semantic terms which represent electrical
conditions and causal relationships can also be viewed as forming a word-order
free sentence which describes the circuit’s behavior. Here, the terms such as
“cause(...)” and “equiv(...)” are terminal symbols. We can easily define non-
terminal symbols which implement transitivity on causality and equivalence re-
lations on branch currents. Although these electrical dependencies only describe
the surface behavior of electronic circuits, they will be useful for understanding
how circuits work and for localizing faults in trouble shooting. We are currently
developing a language for describing circuit behaviors and functions more pre-
cisely.

References

[1] S.A. Greibach, “A New Normal Form Theorem for Context-Free Phrase
Structure Grammars”,JACM, 1965, vol. 12, pp. 42–52.

[2] J. De Kleer,Causal and Teleological Reasoning in Circuit Recognition,
TR-529, Artificial Intelligence Lab., M.I.T., MA, 1979.

[3] F.C.N. Pereira; D.H.D. Warren, “Definite Clause Grammars for Language
Analysis”,Artificial Intell., 1980, Vol. 13, pp. 231–278.

[4] T. Tanaka, “Parsing Circuit Topology in a Deductive System”,Proc.
IJCAI-85, Los Angeles, CA, 1985, pp. 407–410.

[5] T. Tanaka, “Definite Clause Set Grammars: A Formalism for Problem
Solving”, J. Logic Programming, 1991, Vol.10, pp. 1–17.

[6] T. Tanaka, “Parsing Electronic Circuits in a Logic Grammar”,IEEE Trans.
Knowledge and Data Eng., 1993, Vol.5, No.2, pp.225–239.

[7] T. Tanaka; O. Bartenstein, “DCSG-Converters in Yacc/Lex and Prolog”,
Proc. 12th International Conference on Applications of Prolog, Tokyo,
Japan, 1999, pp.44–49.

Analyzing Circuit Structures as Language 39

[8] T. Tanaka, “A Logic Grammar for Circuit Analysis - Problems of Recur-
sive Definition”,LNAI, Springer, 2007, Vol. 4693, pp.852–860.

[9] T. Tanaka, “Circuit Grammar: knowledge representation for structure and
function of electronic circuits”,Int. Journal of Reasoning-based Intelligent
System, Inderscience, 2009, Vol.1 pp.56-67.

[10] T. Tanaka, “Deriving Electrical Dependencies from Circuit Topologies Us-
ing Logic Grammar”,LNAI, Springer, 2009, Vol. 5712, pp.325-332.

[11] T. Tanaka, “A Mechanism for Converting Circuit Grammars to Definite
Clauses”,LNAI, Springer, 2010, Vol. 6278, pp.190-199.

[12] P. W. Tuinenga,SPICE - A Guide to Circuit Simulation & Analysis Using
PSpice, Prentice Hall, Englewood Cliffs, NJ, 1988.

[13] 101 Analog IC Designs, Interdesign Inc., Sunnyvale, CA, 1976.

