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Abstract. The Mental Image Directed Semantic Theory (MIDST) 
has proposed an omnisensory mental image model and its 
description language Lmd intended to facilitate intuitive 
human-system interaction such that happens between non-expert 
people and home robots. The most remarkable feature of Lmd is its 
capability of formalizing both temporal and spatial event concepts 
on the level of human/robotic sensations. This paper presents a 
brief sketch of Lmd and a theoretical consideration on robotic 
imitation of human action driven by human suggestion interpreted 
in Lmd, controlling the robotic attention mechanism efficiently. 
1 

1 INTRODUCTION 
Robotic or artificial imitation is one kind of machine learning on 
human actions and there have been reported a considerable number 
of studies on imitation learning from human actions demonstrated 
without any verbal hint [e.g., 1-3]. In this case, it is extremely 
difficult for a robot to understand which part of human 
demonstration is significant or not because there are too many 
things to attend to as it is. That is, it is an important issue where 
the attention of the observer should be focused on when a 
demonstrator performs an action. Whereas there have been several 
proposals to control attention mechanisms efficiently in such 
top-down ways as guided by the prediction or strategy based on 
sensory data and knowledge of goals or tasks [e.g., 4, 5, 14], they 
are not realistic when a large number of actions must be imitated 
distinctively with various speeds, directions, trajectories, etc.  
The author has been working on integrated multimedia 
understanding for intuitive human-robot interaction, that is, 
interaction between non-expert or ordinary people and home 
robots, where natural language is the leading information medium 
for their intuitive communication [6, 12]. For ordinary people, 
natural language is the most important because it can convey the 
exact intention of the sender to the receiver due to its syntax and 
semantics common to its users, which is not necessarily the case 
for another medium such as gesture or so. Therefore, the author 
believes that it is most desirable to realize robotic imitation aided 
by human verbal suggestion where robotic attention to human 
demonstration is efficiently controllable based on semantic 
understanding of the suggestion. 
For such a purpose, it is essential to develop a systematically 
computable knowledge representation language (KRL) as well as 
representation-free technologies such as neural networks for 
processing unstructured sensory/motory data. This type of 
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language is indispensable to knowledge-based processing such as 
understanding sensory events, planning appropriate actions and 
knowledgeable communication with ordinary people in natural 
language, and therefore it needs to have at least a good capability 
of representing spatiotemporal events that correspond to 
humans’/robots’ sensations and actions in the real world. 
Most of conventional methods have provided robotic systems with 
such quasi-natural language expressions as ‘move(Velocity, 
Distance, Direction)’, ‘find(Object, Shape, Color)’ and so on for 
human instruction or suggestion, uniquely related to computer 
programs to deploy sensors/ motors [e.g., 7, 8]. In association with 
robotic imitation intended here, however, these expression 
schemas are too linguistic or coarse to represent and compute 
sensory/motory events in an integrated way. 
The Mental Image Directed Semantic Theory (MIDST) [9] has 
proposed a model of human attention-guided perception yielding 
omnisensory images that inevitably reflect certain movements of 
the focus of attention of the observer (FAO) scanning certain 
matters in the world. More analytically, these omnisensory images 
are associated with spatiotemporal changes (or constancies) in 
certain attributes of the matters scanned by FAO and modeled as 
temporally parameterized “loci in attribute spaces”, so called, to be 
formulated in a formal language Lmd. This language has already 
been implemented on several types of computerized intelligent 
systems [e.g., 10, 12].  
This paper presents a brief sketch of the formal language Lmd and a 
theoretical consideration on robotic imitation of human 
demonstrated action aided by human suggestion interpreted as 
semantic expression in Lmd. The most remarkable feature of Lmd is 
its capability of formalizing spatiotemporal matter concepts 
grounded in human/robotic sensation while the other similar KRLs 
are designed to describe the logical relations among conceptual 
primitives represented by lexical tokens [e.g., 11]. In Lmd 
expression are hinted what and how should be attended to in 
human action as analogy of human FAO movement and thereby 
the robotic attention can be controlled in a top-down way. 

2 A BRIEF SKETCH OF Lmd 
An attribute space corresponds with a certain measuring 
instrument just like a barometer, thermometer or so and the loci 
represent the movements of its indicator. For example, the moving 
black triangular object shown in Figure 1 is assumed to be 
perceived as the loci in the three attribute spaces, namely, those of 
‘Location’, ‘Color’ and ‘Shape’ in the observer’s brain. 



 
Figure1.  Mental image model 
 
Such a locus is to be articulated by “Atomic Locus” with an 
absolute time-interval [ti, tf] (ti< tf) as depicted in Figure 2 (up) 
and formulated as (1). 
   L(x,y,p,q,a,g,k)                               (1) 
This formula is called ‘Atomic Locus Formula’ whose first two 
arguments are often referred to as ‘Event Causer (EC)’ and 
‘Attribute Carrier (AC)’, respectively. A logical combination of 
atomic locus formulas defined as a well-formed formula (i.e., wff) 
in predicate logic is called simply ‘Locus Formula’. The intuitive 
interpretation of (1) is given as follows, where ‘matter’ refers to 
‘object’ or ‘event’ largely. 

“Matter ‘x’ causes Attribute ‘a’ of Matter ‘y’ to keep (p=q) or 
change (p ≠ q) its values temporally (g=Gt) or spatially (g=Gs) 
over a time-interval, where the values ‘p’ and ‘q’ are relative to 
the standard ‘k’.”  

When g=Gt and g=Gs, the locus indicates monotonic change or 
constancy of the attribute in time domain and that in space domain, 
respectively. The former is called ‘temporal event’ and the latter, 
‘spatial event’. For example, the motion of the ‘bus’ represented 
by S1 is a temporal event and the ranging or extension of the 
‘road’ by S2 is a spatial event whose meanings or concepts are 
formulated as (2) and (3), respectively, where A12 denotes 
‘Physical Location’. These two formulas are different only at 
‘Event Type (i.e., g)’. 

(S1) The bus runs from Tokyo to Osaka. 
(∃x,y,k)L(x,y,Tokyo,Osaka,A12,Gt,k)∧bus(y) (2) 

(S2) The road runs from Tokyo to Osaka. 
(∃x,y,k)L(x,y,Tokyo,Osaka,A12,Gs,k)∧road(y) (3) 

The author has hypothesized that the difference between temporal 
and spatial event concepts can be attributed to the relationship 
between the Attribute Carrier (AC) and the Focus of the Attention 
of the Observer (FAO) [9]. To be brief, it is assumed that the FAO 
is fixed on the whole AC in a temporal event but runs about on the 
AC in a spatial event. According to this assumption, as shown in 
Figure 3, the bus and the FAO move together in the case of S1 
while the FAO solely moves along the road in the case of S2. 
Any locus in a certain Attribute Space can be formalized as a 
combination of atomic locus formulas and, so called, 
tempo-logical connectives, among which the most frequently used 
are ‘Simultaneous AND (Π)’ and ‘Consecutive AND (•)’ as appear 
in the conceptual definition (4) of the English verb ‘fetch’ depicted 
in Figure 2 (down). 
  (λx,y)fetch(x,y)↔(λx,y)(∃p1,p2,k)L(x,x,p1,p2,A12,Gt,k)• 
((L(x,x,p2,p1,A12,Gt,k)ΠL(x,y,p2,p1,A12,Gt,k))∧x≠y∧p1≠p2  (4) 

 
 

 
Figure 2.  Atomic Locus (up) and Locus of ‘fetch’ (down) 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. FAO movements and Event types 
 
In order for explicit indication of time duration, ‘Empty Event 
(EE)’ denoted by ‘ε’ is introduced by the definition (5) with the 
attribute ‘Time Point (A34)’. According to this scheme, the 
duration [ta, tb] of an arbitrary locus χ can be expressed as (6). 

ε([t1,t2])↔(∃x,y,g,k) L(x,y,t1,t2,A34,g,k)  (5) 
χ Π ε([ta, tb])    (6) 

All the same way, an object concept is also defined and expressed 
in Lmd as a combination of potential events on its properties and its 
relations with others. For example, the conceptual descriptions of 
‘rain’, ‘wind’ and ‘air’ can be given as (7)-(9), reading ‘Rain is 
water attracted from the sky by the earth, makes an object wetter, 
is pushed an umbrella to by a human,…,’ ‘Wind is air, affects the 
direction of rain,… ,’ and ‘Air has no shape, no taste, no vitality, 
…,’ respectively.  

AC
 
Tokyo     Temporal event      Osaka

Spatial event 
                         FAO



(λx)rain(x)↔(λx)(∃x1,x2,…)L(_,x,x1,x1,A41,Gt,_) 
∏L(Earth,x,Sky,Earth,A12,Gt,_)∏L(x,x2,p,q,A25,Gt,_) 
∏L(x3,x4,x,x,A19,Gt,x3)∧water(x1) 
∧object(x2)∧human(x3)∧umbrella(x4)∧(p<q)… (7) 
(λx)wind(x)↔(λx)(∃x1,x2,…)L(_,x,x1,x1,A41,Gt,_) 
∧air(x1)∧(L(x,x2,p,q,A13,Gt,_)∧rain(x2)…     (8) 

(λx)air(x)↔(λx)(…∧L*(_,x,/,/,A11,Gt,_)∧…∧ 
L*(_,x,/,/,A29,Gt,_)∧…∧L*(_,x,/,/,A39,Gt,_)∧ …) (9) 

Hereafter, for simplicity of Lmd expression, the special symbols ‘*’, 
‘_’and ‘/’ are often employed to represent ‘always’, ‘something (or 
some value)’ and ‘nothing (no value)’ as defined by (10)-(12), 
respectively. 

X* ↔ (∀[p,q])X Π ε([p,q])   (10) 
L(…,_,…) ↔ (∃ω)L(…,ω,…)  (11) 
L(…,/,…) ↔ ~(∃p) L(…,ω,…)  (12) 

Table 1 shows about 50 attributes extracted exclusively from 
English and Japanese words of common use contained in certain 
thesauri [9]. Most of them (i.e., A01-A45) correspond to the 
sensory receptive fields in human brains. For example, those 
marked with ‘*’ in this table can be associated to the sense ‘sight’. 
Correspondingly, six categories of standards shown in Table 2 
have been extracted that are necessary for representing relative 
values of each attribute in Table 1. These tables show that 
ordinary people live their casual lives, attending to tens of 
attributes of the matters in the world to cognize them in 
comparison with several kinds of standards. 
 

Table 1.  List of attributes 
Code Attribute [Property†] (words/phrases concerned)
*A01 PLACE OF EXISTE NCE [N] (happen, perish)
*A02 LENGTH [S] (long, shorten, close, away) 
*A03 HEIGHT [S] (high, lower) 
*A04 WIDTH [S] (widen, narrow) 
*A05 THICKNESS [S] (thick, thin) 
*A06 DEPTH1 [S] (deep, shallow) 
*A07 DEPTH2 [S] (deep, concave) 
*A08 DIAMETER [S] (across, in diameter) 
*A09 AREA [S] (square meters, acre) 
*A10 VOLUME [S] (litter, gallon) 
*A11 SHAPE [N] (round, triangle) 
*A12 PHYSICAL LOCATION [N] (move, stay) 
*A13 DIRECTION [N] (turn, wind, left) 
*A14 ORIENTATION [N] (orientate, command) 
*A15 TRAJECTORY [N] (zigzag, circle) 
*A16 VELOCITY [S] (fast, slow) 
*A17 MILEAGE [S] (far, near) 

A18 STRENGTH OF EFFECT [S] (strong, powerful) 
A19 DIRECTION OF EFFECT [N] (pull, push) 
A20 DENSITY [S] (dense, thin) 
A21 HARDNESS [S] (hard, soft) 
A22 ELASTICITY [S] (elastic, flexible) 
A23 TOUGHNESS [S] (fragile, stiff) 
A24 TACTILE FEELING [S] (rough, smooth) 
A25 HUMIDITY [S] (wet, dry) 
A26 VISCOSITY [S] (oily, watery) 
A27 WEIGHT [S] (heavy, light) 

A28 TEMPERATURE [S] (hot, cold) 
A29 TASTE [N] (sour, sweet, bitter) 
A30 ODOUR [N] (pungent, sweet) 
A31 SOUND [N] (noisy, silent, loud) 

*A32 COLOR [N] (red, white) 
A33 INTERNAL SENSATION [N] (tired, hungry) 
A34 TIME POINT [S] (o’clock, elapse) 
A35 DURATION [S] (hour, minute, long, short) 
A36 NUMBER [S] (ten, quantity, number) 
A37 ORDER [S] (first, last) 
A38 FREQUENCY [S] (sometimes, frequent) 
A39 VITALITY [S] (alive, dead, vivid) 
A40 SEX [S] (male, female) 
A41 QUALITY [N] (make, destroy) 
A42 NAME [V] (name, token) 
A43 CONCEPTUAL CATEGORY [V] (mammal) 
*A44 TOPOLOGY [V] (in, out, touch) 
*A45 ANGULARITY [S] (sharp, dull, rectangle) 
B01 WORTH [N] (improve, praise, deny, alright)
B02 LOCATION OF INFORMATION [N] (tell, hear) 
B03 EMOTION [N] (like, hate) 
B04 BELIEF VALUE [S] (believe, trust) 

 ………………………….. 
†S: scalar value, N: non-scalar value.  *Attributes 

 concerning the sense of sight. 
 
Table 2.  List of standards 
Categories Remarks 

Rigid 
Standard 

Objective standards such as denoted by 
measuring units (meter, gram, etc.). 

Species 
Standard 

The attribute value ordinary for a species. 
A short train is ordinarily longer than a 
long pencil. 

Proportional
Standard 

‘Oblong’ means that the width is greater 
than the height at a physical object. 

Individual
Standard 

Much money for one person can be too little 
for another. 

Purposive 
Standard 

One room large enough for a person’s 
sleeping must be too small for his jogging. 

Declarative
Standard 

The origin of an order such as ‘next’ must 
be declared explicitly just as ‘next to him’. 

3 INTELLIGENT SYSTEM IMAGES-M 

3.1 System configuration 
The intelligent system IMAGES-M [e.g., 10, 12] is assumed to be 
the main intelligence of the robot intended here. As shown in 
Figure 4, IMAGES-M is one kind of expert system equipped with 
five kinds of user interfaces for multimedia communication, that is, 
Sensory Data Processing Unit (SDPU), Speech Processing Unit 
(SPU), Picture Processing Unit (PPU), Text Processing Unit 
(TPU), and Action Data Processing Unit (ADPU) besides 
Inference Engine (IE) and Knowledge Base (KB). Each processing 
unit in collaboration with IE performs mutual conversion between 
each type of information medium and locus formulas. 



IMAGES-M is a language-centered intelligent system in order to 
facilitate intuitive interaction between humans and robots. For 
comprehensible communication with humans, robots must 
understand natural language semantically and pragmatically. Here, 
as shown in Figure 5, semantic understanding means associating 
symbols to conceptual images of matters (i.e., objects or events), 
and pragmatic understanding means anchoring symbols to real 
matters by unifying conceptual images with perceptual images. 

 
 

Figure 4. Configuration of IMAGES-M 
 

 
Figure 5.  Semantic and pragmatic understanding  

3.2 Semantic understanding 
As shown in Figure 6, natural language expression (i.e, surface 
structure) and Lmd expression (i.e., conceptual structure) are 
mutually translatable through surface dependency structure by 
utilizing syntactic rules and word meaning descriptions [9].  
A word meaning description Mw is defined by (13) as a pair of 
‘Concept Part (Cp)’ and ‘Unification Part (Up)’. 

Mw↔ [Cp:Up]   (13) 
The Cp of a word W is a locus formula about properties and 
relations of the matters involved such as shapes, colors, functions, 
potentialities, etc while its Up is a set of operations for unifying the 
Cps of W’s syntactic governors or dependents. For example, the 
meaning of the English verb ‘carry’ can be given by (14). 

[(∃x,y,p1,p2) L(x,x,p1,p2,A12,Gt,_)Π  
L(x,y,p1,p2,A12,Gt,_)∧x≠y∧p1≠p2:ARG(Dep.1,x); 
ARG(Dep.2,y);]                               (14) 

Mary carries the book.        Surface Structure 
 
 

carries 
 
Dep1           Dep2 
 
Mary            book    Surface Dependency 
                          Structure 
 

the 
                                      Conceptual 
                                       Structure 
(∃y,p1,p2)L(Mary,Mary,p1,p2,A12,Gt,_)Π 
L(Mary,y,p1,p2,A12,Gt,_)∧Mary≠y∧p1≠p2∧book(y)     
 
Figure 6. Mutual conversion between natural language and Lmd 
 
 (Input)  

With the long red stick Tom precedes Jim. 
(Output) 

Tom with the long red stick goes before Jim goes. 
Jim goes after Tom goes with the long red stick. 
Jim follows Tom with the long red stick. 
Tom carries the long red stick before Jim goes. 
………………… 

Figure 7. Paraphrasing as semantic understanding by IMAGES-M 
 
The Up above consists of two operations to unify the first 
dependent (Dep.1) and the second dependent (Dep.2) of the 
current word with the variables x and y, respectively. Here, Dep.1 
and Dep.2 are the ‘subject’ and the ‘object’ of ‘carry’, respectively. 
Therefore, the surface structure ‘Mary carries a book’ is translated 
into the conceptual structure (15) via the surface dependency 
structure shown in Figure 6. 

(∃y,p1,p2)L(Mary,Mary,p1,p2,A12,Gt,_)Π 
L(Mary,y,p1,p2,A12,Gt,_)∧Mary≠y∧p1≠p2∧book(y)    (15) 

For another example, the meaning description of the English 
preposition ‘through’ is also given by (16). 

[(∃x,y,p1,z,p3,g,p4)(L(x,y,p1,z,A12,g,_)• 
L(x,y,z,p3,A12,g,_))Π L(x,y,p4,p4,A13,g,_)∧p1≠z∧z≠p3 
:ARG(Dep.1,z); IF(Gov=Verb)→PAT(Gov,(1,1)); 
 IF(Gov=Noun)→ARG(Gov,y);]                  (16) 

The Up above is for unifying the Cps of the very word, its governor 
(Gov, a verb or a noun) and its dependent (Dep.1, a noun). The 
second argument (1,1) of the command PAT indicates the 
underlined part of (13) and in general (i,j) refers to the partial 
formula covering from the ith to the jth atomic formula of the 
current Cp. This part is the pattern common to both the Cps to be 
unified. This is called ‘Unification Handle (Uh)’ and when missing, 
the Cps are to be combined simply with ‘∧’. 
Therefore the sentences S3, S4 and S5 are interpreted as (17)-(19), 
respectively. The underlined parts of these formulas are the results 
of PAT operations. The expression (20) is the Cp of the adjective 
‘long’ implying ‘there is some value greater than some standard of 
‘Length (A02)’ which is often simplified as (20’). 



(S3) The train runs through the tunnel. 
(∃x,y,p1,z,p3,p4)(L(x,y,p1,z,A12,Gt,_)• 
L(x,y,z,p3,A12,Gt,_))Π L(x,y,p4,p4,A13,Gt,_)  
∧p1≠z ∧z≠p3∧train(y) ∧tunnel(z)                 (17) 

(S4) The path runs through the forest. 
(∃x,y,p1,z,p3,p4)(L(x,y,p1,z,A12,Gs,_)• 
L(x,y,z,p3,A12,Gs,_))Π L(x,y,p4,p4,A13,Gs,_) 
∧p1≠z ∧z≠p3 ∧path(y) ∧forest(z)                 (18) 

(S5) The path through the forest is long. 
(∃x,y,p1,z,p3,x1,q,p4,k1) 

  (L(x,y,p1,z,A12,Gs,_)•L(x,y,z,p3,A12,Gs,_))  
Π L(x,y,p4,p4,A13,Gs,_) ∧L(x1,y,q,q,A02,Gt,k1)  
∧p1≠z∧z≠p3∧q>k1∧path(y)∧forest(z)             (19) 
(∃x1,y1,q,k1)L(x1,y1,q,q,A02,Gt,k1)∧q>k1               (20) 
(∃x1,y1,k1)L(x1,y1,Long,Long,A02,Gt,k1)          (20’) 

The process above is completely reversible except that multiple 
natural expressions as paraphrases can be generated by TPU in 
IMAGES-M as shown in Figure 7 because such event patterns as 
shown in Figure 2 are sharable among multiple word concepts. 
This is one of the most remarkable features of MIDST and is also 
possible between different languages as understanding-based 
translation [10, 12]. 

3.3 Pragmatic understanding 

An event expressed in Lmd is compared to a movie film recorded 
through a floating camera because it is necessarily grounded in 
FAO’s movement over the event. For example, it is not the ‘path’ 
but the ‘FAO’ that ‘sinks’ in S6 or ‘rises’ in S7. Therefore, such 
expressions refer to the same scene pragmatically in spite of their 
appearances, whose semantic descriptions are given as (21) and 
(22), respectively, where ‘A13’, ‘↑’ and ‘↓’ refer to the attribute 
‘Direction’, and its values ‘upward’ and ‘downward’, respectively. 
This fact is generalized as ‘Postulate of Reversibility of a Spatial 
Event (PRS)’ belonging to people’s intuitive knowledge about 
geography, and the conceptual descriptions (21) and (22) are called 
equivalent in the PRS. 
(S6) The path sinks to the brook. 

(∃x,y,p,z)L(x,y,p,z,A12,Gs,_)ΠL(x,y,↓,↓,A13,Gs,_) 
∧path(y) ∧brook(z) ∧p≠z   (21) 

(S7) The path rises from the brook. 
(∃x,y,p,z)L(x,y,z,p,A12,Gs,_)ΠL(x,y,↑,↑,A13,Gs,k2) 
∧path(y) ∧brook(z) ∧p≠z   (22) 

For another example of spatial event, Figure 8 (up) concerns 
human perception of the formation of multiple distinct objects, 
where FAO runs along an imaginary object so called ‘Imaginary 
Space Region (ISR)’. This spatial event can be verbalized as S8 
using the preposition ‘between’ and formulated as (22), 
corresponding also to such concepts as ‘row’, ‘line-up’, etc. Any 
type of topological relation between two objects is also to be 
formulated by employing an ISR. For example, S9 is translated 
into (23) or (23’), where ‘In’, and ‘Cont’ are the values ‘inside’ 
and ‘contains’ of the attribute ‘Topology (A44)’ represented by 
3x3 matrices at the Sandard of ‘9-intersection model (IM)’ [13], 
where ‘In’ and ‘Cont’ are the transposes each other. 
(S8) □ is between ∆ and ○.  

(∃y,p)(L(_,y,∆,□,A12,Gs,_)•L(_,y,□,○,A12,Gs,_))Π 
    L(_,y,p,p,A13,Gs,_) ∧ISR(y)   (22)  

(S9) □ is in the room.  
(∃x,y)L(_,x,y,□,A12,Gs,_)ΠL(_,x,In,In,A44,Gt,IM) 
∧ISR(x)∧room(y)     (23) 
(∃x,y)L(_,x,□,y,A12,Gs,_)ΠL(_,x,Cont,Cont,A44,Gt,IM) 
∧ISR(x)∧room(y)     (23’) 

For more complicated examples, consider S10 and S11. The 
underlined parts are deemed to refer to some events neglected in 
time and in space, respectively. These events correspond with 
skipping of FAOs and are called ‘Temporal Empty Event’ and 
‘Spatial Empty Event’, denoted by ‘εt ’ and ‘εs ’ as Empty Events 
with g=Gt and g=Gs at (5), respectively. Their concepts are 
described as (24) and (25), where ‘A15’ and ‘A17’ represent the 
attribute ‘Trajectory’ and ‘Mileage’, respectively. From the 
viewpoint of pragmatic understanding, the formula (25) can refer 
to such a spatial event depicted as the still picture in Figure 8 
(down) while (24), a temporal event to be recorded as a movie.  
(S10) The bus runs 10km straight east from A to B, and after a 
while, at C it meets the street with the sidewalk. 

(∃x,y,z,p,q)(L(_,x,A,B,A12,Gt,_)Π 
 L(_,x,0,10km,A17,Gt,_)ΠL(_,x,Point,Line,A15,Gt,_)Π 
  L(_,x,East,East,A13,Gt,_))•εt•(L(_,x,p,C,A12,Gt,_) 
 ΠL(_,y,q,C,A12,Gs,_)ΠL(_,z,y,y,A12,Gs,_)) 
 ∧bus(x)∧street(y)∧sidewalk(z)∧p≠q                   (24) 
(S11) The road runs 10km straight east from A to B, and after a 
while, at C it meets the street with the sidewalk. 

(∃x,y,z,p,q)(L(_,x,A,B,A12,Gs,_)Π 
L(_,x,0,10km,A17,Gs,_)ΠL(_,x,Point,Line,A15,Gs,_)Π 
L(_,x,East,East,A13,Gs,_))•εs •(L(_,x,p,C,A12,Gs,_) 
ΠL(_,y,q,C,A12,Gs,_)ΠL(_,z,y,y,A12,Gs,_)) 
∧road(x)∧street(y)∧sidewalk(z)∧p≠q                 (25) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  Complicated spatial events: ‘row’ (up) and ‘example 
of road map’ (down) 
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(a) A map generated from a locus formula by IMAGES-M 

 
H: How does the national road run? 
S: It extends between Pref. A and Pref. C via Pref. B. 
H: Where does the bus go from the rail way station A? 
S: It reaches the town D. 
H: What is between the buildings A and B? 
S: The railway D. 
H: Where do the street A and the road B meet? 
S:  At the crossing C. 
H: Where do the street A and the road B separate? 
S:  At the crossing C. 

(b) Q-A on the map (a) by human (H) and IMAGES-M (S) 
Figure 9. Cross-media operations as pragmatic understanding 
 
Figures 9 (b) shows an example of question-answering on the real 
map (a) between a human and IMAGES-M [6, 10, 12], where the 
map is a pictorial interpretation of a locus formula by PPU. The 
system understood the query texts pragmatically by anchoring 
them to the map as a model of the real world, utilizing effectively 
several kinds of intuitive postulates such as PRS, as a matter of 
course, where distinction between temporal and spatial events is 
crucially important. 

4 IMITATION GUIDED BY SUGGESTION 

4.1 Definition 
As shown in Figures 10 and 11, robotic imitation intended 
here is defined as a human-robot interaction where a human 
presents a robot a pair of demonstration and suggestion that 
is the expression of his/her intention and it behaviouralizes 
its conception, namely, the result of semantic and pragmatic 
understanding of the suggestion.  
The processes shown in Figures 10 and 11 can be formalized as 
follows, where the pair of Pi and Defi is called ‘Conception’ for the 
i-th imitation and denoted by Ci. 
  Inti ⇒ Ti , Di  

Ti , KL⇒ Si  
Di , KD ⇒ Peri  
Si , Peri, KD ⇒ Pi , Defi (= Ci) 

  Pi , Defi, KD⇒ Ii 
, where  
  Inti : The i-th intention by the human, 
  Ti : The i-th suggestion by the human, 
  Si : Result of semantic understanding of the i-th suggestion, 

KL : Linguistic knowledge in the robot, 
Di : The i-th demonstration by the human, 
KD : Domain-specific knowledge in the robot at the i-th session, 
Peri : Perception of the i-th demonstration, 
Pi : Result of pragmatic understanding of the i-th suggestion, 
Defi : Default specification for the i-th imitation, 
Ii : The i-th imitation by the robot, 
⇒ : Conversion process (e.g., inference, translation). 

 

 
 

Figure 10.  Imitation as human-robot interaction 
 

 
Figure 11. Imitation guided by suggestion 



4.2 Theoretical simulation 
As shown in Figure 10, it is assumed that there is a feedback loop 
between a human and a robot in order for the human to improve 
his/her previous suggestion or demonstration and for the robot to 
correct its previous imitation. For example, consider the scenario 
presented below and depicted in Figure12. 
Scenario : 
Robby is an intelligent humanoid robot and Tom is his user. 
Robby is called by Tom and enters Tom’s room. This is Robby’s 
first visit there. Robby sees Tom leftward and the brown pillar 
forward (, but doesn’t see the green box or the yellow table). After 
a while, Tom tells Robby “Imitate me to my demonstration and 
suggestion.”…… 
Here is described a theoretical simulation of the robotic imitation 
driven by the top-down control of the attention mechanism, which 
is almost that of problem finding/solving in the filed of AI [6, 12]. 
 

 
Figure 12. Tom’s demonstrations and Robby’s imitations  

 
The sequence of the events assumed to happen is as follows. 
[Robby’s Perception of the initial situation, Sit0] 
  Sit0↔ L(_,O21,Brown,Brown,A32,Gt,_)Π 

L(_,O22,Robby,Tom,A12,Gs,_)Π 
L(_,O22,Lw21,Lw21,A13,Gs,Robby)Π 
L(_,O23,Robby,O21,A12,Gs,_)Π 
L(_,O23,Fw21,Fw21,A13,Gs,Robby) 
∧pillar(O21)∧ISR(O22)∧ISR(O23) 

Robby’s perception of the situation (i.e., the underlined part of the 
scenario) is still rough due to its economical working mode that is 
to be specified by each Standard (or precision). The attributes A32 
and A13 are ‘Color’ and ‘Direction’, respectively. The values Fw21 
and Lw21 stand for ‘forward’ and  ‘leftward’ viewed from Robby 
as designated at the Standard, respectively. 
[Tom’s Intention_1, Int1]  

Int1↔L(Robby,Robby, O11 ,O13,A12,Gt,_)Π 
L(Robby,O11,Robby,Robby,A12,Gt,_)Π 
(L(_,O14,Tom,O11,A12,Gs,_)•L(_,O14,O11,Robby,A12,Gs,_))Π 
L(_,O14,D11,D11,A13,Gs,_)ΠL(Robby,Robby,V11,V11,A16,Gt,_)ΠL
(_,O15,Robby,O12,A12,Gs,_)ΠL(Robby,O15,Dis,Dis,A44,Gt,_) 
∧box(O11)∧pillar(O12)∧table(O13)∧ISR(O14)∧ISR(O15) 

This formula implies that Tom wants Robby to carry the box 
between them to the table at a certain ‘Velocity(A16)’, V11  
without touching the pillar on the way, where ‘O11’ and ‘O13’ as the 

values of A12 represent their locations at each time point, and ‘D11’ 
is the direction to the box and Robby viewed from Tom.  
Tom is conscious that every attribute value to specify Robby’s 
action is essentially vague but he believes that it should be 
imitated within certain tolerance associated with each Standard. 
The values Dis and Meet stand for ‘disjoint’ and ‘meet (or touch)’ 
in Topology(A44), respectively. 
 
<SESSION_1> 
[Tom’s Suggestion_1, T1 and Demonstration_1, D1] 

Int1⇒T1, D1 
T1 ↔ “Go to the table with the box between us like this.” 
D1 ↔ Figure 12 

Tom decides to verbalize only the underlined part of Intention_1, 
Int1 saliently with the belief that the rest can be included in his 
demonstration. Tom converts (or translates) Int1 into T1 and D1. 
[Robby’s Semantic_Understanding_1, S1] 

T1, KL⇒S1 
S1↔(∃ x1,x2,x,y,z,p)L(x2,x2,y,x,A12,Gt,_)Π 

    L(x2,y, x2,x2,A12,Gt,_)Π (L(_,z,x2,y,A12,Gs,_)• 
    L(_,z,y,x1,A12,Gs,_))ΠL(_,z,p,p,A13,Gs,_) 
    ∧x2≠x∧x2≠y∧box(y)∧table(x)∧ISR(z) 
    ∧person_1(x1)∧person_2(x2) 
Robby interprets T1 into S1. The variable ‘x’ or ‘y’ is not yet 
anchored to the ‘real table’ or the ‘real box’ in the real 
environment because Robby has not perceived them yet. The 
predicates ‘person_1’ and ‘person_2’ refer to the first person (I) 
and the second person (You) and are to be pragmatically 
understood as ‘Tom’ and ‘Robby’, respectively. 
[Robby’s Pragmatic_Understanding_1, P1 and Default_1, Def1] 

D1⇒Per1 
S1, Per1, KD ⇒P1, Def1 
P1↔L(Robby,Robby,O24,O25,A12,Gt,_)Π 
  L(Robby,O24,Robby,Robby,A12,Gt,_)Π 
  (L(_,O26,Robby,O25,A12,Gs,_)•L(_,O26,O25,Tom,A12,Gs,_))Π 
  L(_,O26,Lw21,Lw21,A13,Gs,_)∧box(O24)∧table(O25)∧ISR(O26) 

Def1 ↔ L(Robby,Robby,1m/sec,1m/sec,A16,Gt,_)∧… 
The ‘Location (A12)’ is attended to according to S1. Per1 makes 
Robby aware that the words ‘box’ and ‘table’ should be anchored 
to the ‘green object O24’ and the ‘yellow object O25’ behind the 
pillar in the real environment, respectively. Robby conceives that 
he should approach to the table at his certain Standard. Def1 is 
inferred from Per1 and KD as the default specification for the 
attributes not explicit in T1. 

[Robby’s Imitation_1, I1] 
P1, Def1, KD ⇒ I1  
I1↔Figure12 

Robby imitates D1 according to P1, Def1 and KD. 
----- Resetting the situation to the initial situation Sit0----- 
<SESSION_2> 
[Tom’s Suggestion_2, T2 and Demonstration_2, D2] 

I1⇒ PI1 
Int1, ~PI1⇒Int2 
Int2⇒T2, D2 
T2 ↔“Don’t touch the pillar.” 
D2 ↔ Figure 12 

Tom perceives I1 as PI1. He denies PI1 and creates Int2 
followed by T2 and D2. 



[Robby’s Semantic_Understanding_2, S2]  
T2, KL ⇒S2 
S2↔ (∃x)L(_,y,Robby,O21,A12,Gs,_) 

Π~L(Robby,x,Dis,Meet,A44,Gt,_)∧ISR(x)∧pillar(O21) 
  Robby gets aware that his imitation has been denied at the 
change of attribute ‘Topology (A44)’ from ‘Disjoint’ to ‘Meet’. 

[Robby’s Pragmatic_Understanding_2, P2 and Default_2, Def2]   
D2⇒Per2 
S2, Per2, KD ⇒P2, Def2 
P2↔P1∧L(_,O27,Robby,O21,A12,Gs,_)Π 

L(Robby,O27,Dis,Dis,A44,Gt,_)∧pillar(O21) ∧ISR(O27) 
Def2 ↔ L(Robby,Robby, 1m/sec, 1m/sec,A16,Gt,_)∧… 

According to S2, the ‘Location (A12)’ of Robby and the pillar 
and their ‘Topology (A44)’ are especially attended to, and the 
underlined part is conceived in addition to P1. No special 
attention is paid to the other attributes unmentioned yet.  

[Robby’s Imitation_2, I2] 
P2, Def2, KD ⇒ I2  
I2 ↔ Figure 12 

-----Resetting the situation to the initial situation Sit0----- 
 
<SESSION_3> 
 [Tom’s Suggestion_3, T3 and Demonstration_3, D3]  

I2⇒ PI2 
Int2, ~PI2⇒Int3 (↔Null) 
Int3⇒T3, D3 
T3 ↔“Alright.” 
D3 ↔ Null 

   Tom fails to deny PI2 and comes to have no other intention 
(Int3 ↔Null). That is, Tom is satisfied by I2 and only tells Robby 
“Alright.” 

[Robby’s Semantic_Understanding_3, S3] 
T3, KL ⇒S3 
S3 ↔ (∃x,y,k)L(x,y,1,1,B01,Gt,k)∧person(x) 

   Tom gets aware that something ‘y’ has evaluated by some 
person ‘x’ as perfect ‘1’ at ‘Worth (B01)’ with a certain 
Standard ‘k’. 

[Robby’s Pragmatic_Understanding_3, P3 and Default_3, Def3] 
S3, Per3, KD ⇒P3, Def3 
P3↔L(Tom,I2,1,1,B01,Gt,Tom)∧person(Tom) 
Def3 ↔L(Robby, I3,/,/,A01,Gt,_) 
Finally, Robby pragmatically conceives that Tom is satisfied 
by I2 at Tom’s Standard and believes that the next imitation, I3 
is not needed to take ‘Place of Existence (A01)’. 

[Robby’s Imitation_3, I3] 
    P3, Def3 , KD ⇒ I3  

I3 ↔ Null 
Finally, no more imitation is performed. 

-----End of all the sessions----- 

5 TOP-DOWN CONTROL BASED ON Lmd 

5.1 Attention mechanism 
As mentioned above, the semantic understanding of human verbal 
suggestion makes a robot abstractly (i.e., conceptually) aware 
which matters and attributes involved in human demonstration 
should be attended to, and its pragmatic understanding provides 

the robot with concrete idea of real matters with real attribute 
values significant for imitation. More exactly, semantic 
understanding in Lmd of human suggestion enables the robot to 
control its attention mechanism in such a top-down way that 
focuses the robot’s attention on the significant attributes of the 
significant matters involved in human demonstration. Successively, 
in order for pragmatic understanding in Lmd of human suggestion, 
the robot is to select the appropriate sensors corresponding with 
the suggested attributes and make them run on the suggested 
matters so as to pattern after the movements of human FAO 
implied by the locus formulas yielded in semantic understanding. 
That is to say in short, Lmd expression suggests a robot what and 
how should be attended to in human demonstration and its 
environment. 
For example, consider such a suggestion as S12 presented to a 
robot by a human. In this case, unless the robot is aware of the 
existence of a certain box between the stool and the desk, such 
semantic understanding of the underlined part as (26) and such a 
semantic definition of the word ‘box’ as (27) are very helpful for it. 
The attributes A12 (Location), A13 (Direction), A32 (Color), A11 
(Shape) and the spatial event on A12 in these Lmd expressions 
indicate that the robot has only to activate its vision system in 
order to search for the box from the stool to the desk during the 
pragmatic understanding. That is, the robot can attempt to 
understand pragmatically the words of objects and events in 
an integrated top-down way. 
(S12) Avoid the green box between the stool and the desk. 
(∃x1,x2,x3,x4,p)(L(_,x4,x1,x2,A12,Gs,_)•L((_,x4,x2,x3,A12,Gs,_))Π 
L(_,x4,p,p,A13,Gs,_)ΠL(_,x2,Green,Green,A32,Gt,_) 
∧stool(x1)∧box(x2)∧desk(x3)∧ISR(x4)  (26) 
(λx)box(x)↔(λx)L(_,x,Hexahedron,Hexahedron,A11,Gt,_) 
∧container(x)    (27) 
 

 
(1) Data at t1      (2) Data at t2      (3) Data at t3   

Figure 13. Graphical interpretations of real motion data 
 
Tom moved the right arm. 
Tom raised the right arm. 
Tom bent the right arm. 

…………… 
 (a) Text for motion data from t1 to t2. 
  …………… 
Tom lowered the right arm. 
Tom stretched the right arm and simultaneously lowered the 
right arm. 
  …………… 

(b) Text for motion data from t2 to t3. 
Figure 14. Texts generated from real motion data 



 
This top-down control of attention mechanism enables 
IMAGES-M can take in real human motion data through the 
motion capturing system in SDPU. For example, Figure 13 shows 
graphical interpretations of the real motion data taken in at the 
time point t1, t2 and t3. These real data were translated via Lmd into 
such texts as shown in Figure 14 by TPU. In this case, 
IMAGES-M’s attention was guided by the suggestion S13 below.  
(S13) Move your right arm like this. 

5.2 Utilization of domain-specific knowledge 
The linguistic knowledge KL is employed exclusively for semantic 
understanding, consisting of syntactic and semantic rules and 
dictionaries. On the other hand, the domain-specific knowledge KD 
is employed for pragmatic understanding and behaviouralization, 
containing all kinds of knowledge pieces acquired so far 
concerning the robot, the human and their environment. For 
example, the human body can be described in a computable form 
using locus formulas. That is, the structure of the human body is 
one kind of spatial event where the body parts such as head, trunk, 
and limbs extend spatially and connect with each other. The 
expressions (28) and (29) are examples of these descriptions in Lmd, 
reading that an arm extends from a hand to a shoulder and that a 
wrist connects a hand and a forearm, respectively. 
(λx)arm(x)↔(λx)(∃y1,y2)L(_,x,y1,y2,A12,Gs,_) 
∧shoulder(y1)∧hand(y2)   (28) 
(λx)wrist(x)↔(λx)(∃y1,y2,y3,y4)(L(_,y1,y2,x,A12,Gs,_)• 
L(_,y1,x,y3,A12,Gs,_))∧body-part(y1)∧forearm(y2) 
∧hand(y3)     (29) 
These descriptions are necessary for the robot to understand 
human action and text well enough to obtain an appropriate 
conception, eliminating such an anomalous one as is represented 
by S14 in a top-down way. 
(S14) The left arm moved away from the left shoulder and  

the left hand. 
Each of such human’s/robot’s motions (Mk) as ‘walk’ and ‘bow’ is 
given as an ordered set of its standardized characteristic snapshots 
(Sk) called ‘Standard Motion’ and defined by (30). In turn, a family 
(FX) of Sks is called ‘Family of Standard Motions’ and defined by 
(31), where the suffix ‘X’ refers to ‘human (X=H)’ or ‘robot 
(X=R)’. The families FH and FR are contained in KD and their 
members are employed for the default motions, namely, motions 
not specified in human suggestion or demonstration, during 
pragmatic understanding. 
  Sk={MkS, …, MkE}    (30) 

FX={S1, S2, …, MN}    (31) 
For example, the Lmd expression of human walking in default is 
given by (32), reading that a human moves by his/her legs making 
his/her shape change monotonically from WalkS to WalkE.  

(∃x,y,p1,p2,q1,q2) L(_,y,x,x,A01,Gt,_)Π 
L(y,x,q1,q2,A12,Gt,_)Π L(x,x,WalkS,WalkE,A11,Gt,FH) 
∧q1≠q2∧human(x)∧legs(y)   (32)  

For another example, the Lmd expression (33) is for the robotic 
motion of head shaking in default, reading that a robot affects its 
head in the Orientation (A14), making its shape change 
monotonically from Shake_headS to Shake_headE. The shape 
values are given in a computable form general enough to 
reconstruct any human/robot motion in 3D graphics or so. Figure 
15 shows an example of its interpretation in 3D graphics by PPU 

in IMAGES-M, which is also an example of cross-media 
translation from the text ‘The robot shakes its head’ into the 
animation. 

(∃x,y,p1,p2)L(_,y,x,x,A01,Gt,_)ΠL(x,y,p1,p2,A14,Gt,_)Π 
L(x,x,Shake_headS,Shake_headE,A11,Gt,FR) 
∧robot(x)∧head(y)    (33)  

 

 
Figure 15. 3D animation of ‘The robot shakes its head.’ 

5.3 Behaviouralization 
The process for behaviouralization is to translate a conception (i.e., 
Ci) into an imitation (i.e., Ii) as a appropriate sequence of control 
codes for certain sensors or actuators in the robot to be decoded 
into a real behaviour by SDPU or ADPU in IMAGES-M. For this 
purpose, there are needed two kinds of core procedures so called 
‘Locus formula paraphrasing’ and ‘Behaviour chain alignment’ as 
detailed below. 

5.3.1 Locus formula paraphrasing 
The attributes listed in Table 1 are essentially for human sensors or 
actuators and therefore the locus formula as Ci should be translated 
into its equivalent concerning the attributes specific to the robot’s. 
For example, an atomic locus of the robot’s ‘Shape (A11)’ 
specified by the human should be paraphrased into a set of atomic 
loci of the ‘Angularity (A45)’ of each joint in the robot. For another 
example, ‘Velocity (A16)’ for the human into a set of change rates 
in ‘Angularity (A45)’ over ‘Duration (A35)’ (i.e., A45/A35) of the 
robot’s joints involved. These knowledge pieces are called 
‘Attribute Paraphrasing Rules (APRs)’ [10] and contained in KD. 

5.3.2 Behaviour chain alignment 
Ideally, the atomic loci in the conception Ci (original or 
paraphrased) should be realized as the imitation Ii in a perfect 
correspondence with an appropriate chain of sensor or actuator 
deployments. Actually, however, such a chain as a direct 
translation of Ci must often be aligned to be feasible for the robot 
due to the situational, structural or functional differences between 
the human and the robot. For example of situational difference, in 
the simulation above, the robot must interpolate the travel from its 
initial location to the green box and the action to pick up the box. 
On the other hand, for example of structural or functional 
difference, consider the case of imitation by a non-humanoid robot. 
Figure 16 shows the action by a dog-shaped robot (SONY) to the 
suggestion ‘Walk and wave your left hand.’ The robot 
pragmatically understood the suggestion as ‘I walk and wave my 
left foreleg’ based on the knowledge piece that only forelegs can 
be waved’ and behaviouralized its conception as ‘I walk BEFORE 
sitting down BEFORE waving my left foreleg’ but not as ‘I walk, 



SIMULTANEOUSLY waving my left foreleg’, in order not to fall 
down. 
The procedure here [6, 12] is based on the conventional AI, where 
a problem is defined as the difference or gap between a ‘Current 
State’ and a ‘Goal State’ and a task as its cancellation. Here, the 
term ‘Event’ is preferred to the term ‘State’ and ‘State’ is defined 
as static ‘Event’ which corresponds to a level locus. On this line, 
the robot needs to interpolate some transit event XT between the 
two events, ‘Current Event (XC)’ and ‘Goal Event (XG)’ as (34). 

XC•XT•XG     (34) 
According to this formalization, a problem XP can be defined as 
XT•XG and a task can be defined as its realization and any problem 
is to be detected by the unit of atomic locus. For example, 
employing such a postulate as (35) implying ‘Continuity in 
attribute values’, the event X in (36) is to be inferred as (37). 

L(x,y,p1,p2,a,g,k)•L(z,y,p3,p4,a,g,k).⊃.p3=p2 (35) 
L(x,y,q1,q2,a,g,k)•X•L(z,y,q3,q4,a,g,k)  (36) 
L(z’,y,q2,q3,a,g,k)    (37) 

 

 
Figure 16. Robot’s action to ‘Walk and wave your left hand’ 

6 DISCUSSION AND CONCLUSION 
The key contribution of this paper is the proposal of a novel idea 
of robotic imitation driven by semantic representation of human 
suggestion, where are hinted in the formal language Lmd what and 
how should be attended to in human action as analogy of human 
FAO movement and thereby the robotic attention can be controlled 
in a top-down way. Without such a control, a robot is to 
simultaneously attend to tens of attributes of every matter involved 
in human action as shown in Table 1. This is not realistic, 
considering the difficulties in autonomous robotic vision 
understanding today. The author has a good perspective for the 
proposed theory of robotic imitation based on his previous work 
utilizing Lmd for robot manipulation by text [6, 12]. This is one 
kind of cross-media operation via intermediate Lmd representation 
[e.g., 6, 10, 12]. At my best knowledge, there is no other theory or 
system that can perform cross-media operations in such a seamless 
way as ours. This is due to the descriptive power of Lmd enabling 
systematic organization and computation of spatiotemporal 
knowledge including sensation and action. Our future work will 
include establishment of learning facilities for automatic 
acquisition of word concepts from sensory data and multimodal 
interaction between humans and robots under real environments in 
order to realize the robotic imitation proposed here. 
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