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第 1章

数学・物理の最新裏技３選

※ PDF で読む場合はクリックで URL を開けます.

§ 1.1 数式処理で遊ぶ–関数・微分–

現在のネットでは, 関数の可視化や微分など高校・大学レベルの数学が計算できる. まずは遊ぼう.

1. 次の URLをクリック
https://www.wolframalpha.com/input?i=r%28t%29%3D4.9t%5E2&lang=ja

2. 既に r(t)=4.9 t^2が入力されているので, 適宜変更する. sin(x)の微分なども可能
3. 図 1.1p.3 のような結果が出せる

この数式処理システムでは四則演算が出来る電卓を越えて, 数式を処理できる.

図 1.1 数式処理の実行結果 (Wolfram Alpha, 2025 年 12 月). 左から二次関数 r(t) = 4.9t2 のグラフ化, 三角関
数 sin(x)のグラフ化, 二次関数 4.9t2 の微分 9.8tとグラフ化, 三角関数 sin(x)の微分 cos(x)とグラフ化となる. 入
力の解釈には AIのような自然言語処理が行われ, 横軸が tか xかを人間のように判断できる.

https://www.wolframalpha.com/input?i=r%28t%29%3D4.9t%5E2&lang=ja
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§ 1.2 AIに物理を解かせる–自由落下–

この数式処理システムが, AIにも組み込まれている. 利点は, 単なる数学を越えて, 物理的な問題も答える事だ. 例え
ば, 自由落下の「単位の変換」を考える. 時刻 t[s]の時の落下距離 r[m]は関数 r(t)として

r(t) = 4.9× t× t = 4.9t2 (1.1)

と与えられ, これが図 1.1p.3 の左図の二次関数に対応する. グラフでは t = 1で r(1) ≃ 5程度に見えるが, 実際, 1秒
後の落下距離は t = 1sを代入し,

r(1s) = 4.9× 1× 1 = 4.9m (1.2)

となる. それでは１分後はどうか？と AIに聞くと図 1.2p.4 のように正解する. 日本語を含む r(1世紀)なども計算で
きるので, 皆さんも, 次の URLで遊んでみてほしい.

https://chatgpt.com/ja-JP/

図 1.2 AI に解かせた答え (ChatGPT, 2025 年 12 月, GPT-5.1 ベース) . 左から関数 r (t[s]) = 4.9t2[m]の定
義と, 2 秒後の落下距離 r(2s) の計算, 0.1 秒後の落下距離 r(0.1s) の計算, 最後に 1 分後の落下距離 r(1min) の
計算となる. 最初の質問で関数を定義すれば, あとはブラックボックスとして使える. 1 分後の落下距離は実は
t = 1min = 60s と単位の変換が必要なひっかけ問題だが,正解している. 全く同じ二次関数を図 1.1p.3 でもグラ
フ化したが, 物理では横軸は秒 (s), 縦軸はメートル (m)の意味を持ち, 途端にイメージしやすくなる.

https://chatgpt.com/ja-JP/
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§ 1.3 AIから学ぶ
分からない事があると, 教科書を開く前にネットを開く学生も増えた. 例えば微分が分かりたくなったら, ネット検索

する. 最近は, 図 1.3p.5 のように検索結果を AIがまとめてくれるので楽だ. 日々更新されるので皆さんも, 次の URL

で比較してみると良い.

https://www.google.com/search?q=微分とは何か？

図 1.3 ネット検索の結果 (Google, 2025年 12月). ここでは「微分とは何か？」を検索し, AIによる概要を得て
いる. 最近は引用元も確認できて, 概要のチェーンのアイコンをクリックすればよい.

§ 1.4 裏技のまとめと今後の課題
数学・物理を遊んで学ぶネットの使い方 3 選を紹介した. そんな「最新裏技」特有の楽しさと, 旧来の教育 (表 1.1p.5 )

を比べてほしい. そこに楽しさは見いだせるだろうか？傾きは求めたくないし, そもそもグラフや接線は考えたくない
し, 関数に興味もない. それがあなたの本音ではなかろうか？

表 1.1 数学教科書的な微分の説明と, 定義式.

数学の単元 説明
微分の説明 関数のグラフ（接線）の傾きを求める方法

微分の定義式 f ′(x) =
df

dx
= lim

h→0

f(x+ h)− f(x)

h

ネットがない時代なら, 例えつまらなくても, 表 1.1p.5 のような教科書しか頼れるものは無かった. 今は違う。ネッ
トに常時接続し, そして AIが数学を正解する。この時代の流れが, 現代の教育界にとって大きな課題であり, 同時に学
習者本人にとっても「教科書や学校教育に対する学習意欲を保ちにくい時代」という点で深刻な課題になる.

この課題に対し, 本書のアプローチは単純だ. 新しい教科書を作ればよい. その試み*1が, 以下になる.

*1 あるいは本学大学生と, 附属高校生と共に産み出した iSTEAM 教材. 元は [7]になる.

https://www.google.com/search?q=%E5%BE%AE%E5%88%86%E3%81%A8%E3%81%AF%E4%BD%95%E3%81%8B%EF%BC%9F
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第 2章

微分を理解する, たった一つの大切なこと

AI 時代だからこそ大切なのは、自分自身が微分を理解する事だ。そのコツは, 逆説的だが, 微分を学ばないことだ.

§ 2.1p.7 では懐かしい「小学校の速さ」が分かったつもりだと知り, § 2.2p.8 では分かりきった四則演算が二変数関数
である新事実を学ぶ. 微分は § 2.3p.10 で説明するが, § 2.4p.12 で昔の学者の微分批判を紹介する. それ乗り越える鍵
が瞬間だと § 2.5p.13 で学ぶ.

こうして完成した微分の初歩が, 制限速度などの常識に必要不可欠になる.

§ 2.1 小学校の速さは, 引き算–差分記号∆–

図 2.1 小学校の速さについて「きはじ」の公式（左）と,海外の DST triangle（右）. この図で,速さの３公式を一度に
覚えられる. ３公式とは 1.（速さ）=（距離）÷（時間）, 2.（距離）=（速さ）×（時間）, 3.（時間）=（距離）÷（速さ）
である. 実は微分を理解するのに大切なのが「速さ」だが, それを分かったつもりになっていると問題になる.

微分を理解するのに大切なのが, 「小学校の速さ」になる. 図 2.1p.7 を見れば懐かしいだろう. ただし以下の点を忘
れている人は, 実は速さを分かったつもりでしかない.

1. 速さの定義は割り算というより, 「単位時間あたりに移動する距離」である（小学校５・６学年で既習）
2. 時間と時刻は違う. 時間の定義は「時刻と時刻の引き算」である（小学校２年で既習）
3. 移動距離も定義は「引き算」である

要するに割り算より前に, 小学校２年で習った引き算が大切だ. 実際, 微分の理解に必要になる.
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§ 2.1.1 距離という言葉のあいまいさ

速さの移動距離も身近な物理量で, 車の走行メーターの総移動距離が代表的だ. カーシェアなどでは既定距離を超え
て走行すると距離料金が発生し, 例えば*1, 1円で 50メートル進める. この移動距離は, 総移動距離ではない. 例えば車
を返却する際, 数キロ走って丁度, 走行メーターが 10万 km になったとする. この総移動距離で料金を計算すると, 数
百万円*2 になる. 要するに, 総移動距離の差（前後の引き算）を考えなければならない.

図 2.2 1円で 50メートル進めるレンタカーで, 走行メーターの 10万キロで請求されれば, 200万円も取られる.

距離料金の計算は, 返却時刻 t における走行距離 r(t) ではなく, その差分 ∆r でなければならない. 何故なら走行
メーターの r(t)は車自体の総走行距離で, 差分∆rは利用者個人の走行距離, つまり乗車開始時刻 tからレンタル時
間 T の間の走行距離∆r = r(t+T )− r(t)だからだ. 同様に差分∆rは, 速さの計算に必要な「距離」で, その理解
が微分に必要になる. イラストは OpenAIの ChatGPT-4.1, DALL-Eを使用し生成されている (2025年 12月).

移動距離が, 総移動距離の「差」である事を明示するために, 物理では差分記号∆を用いる. 測定開始時刻 tから, 測
定時間 T を経て, 測定終了時刻 t+ T までの間の物理量 r(t)の差分は

∆r = r(t+ T )− r(t) (2.1)

となる. そんな当たり前の事が微分の理解には必要なのだが, それを困難にする問題がある. その問題は日本語で, r(t)

も∆rも両方「距離」と呼ぶ. 日本語のあいまいさに惑わされずに, r(t)という総走行距離と, ∆rというある時間 T に
おける走行距離を数学記号から把握してほしい.

ちなみに時刻と時間は, 小学校２年の段階で日本語でも区別され, tは時刻で, ∆tは時間だ. 数式で定義すると, 開始
時刻 tから終了時刻 t+ T までの差分

∆t =（終了時刻 t+ T）−（開始時刻 t）= t+ T − t = T (2.2)

が時間である. 「次の授業は, ２時」と「次の授業は, ２時間」を間違える人はいないし, 前者「２時」が時刻 tで, 後
者「２時間」が時間∆tになることも分かる. その２時間が, 授業終了時刻から授業開始時刻を引き算したものだと説明
することさえ出来るだろう. この理解度の高さと比較すると, 距離の理解は低すぎる. しっかり, r と ∆r を分別すると,

実は微分が理解しやすくなる.

§ 2.2 小学校の速さは, 二変数関数
（速さ）=（距離）÷（時間）を求める際に重要なのは距離も時間も差分 ∆だった事だ. 測定開始時刻 tから測定時間
T の間の差分が大切だった. 大切に思えない場合は式 (2.1)p.8 を復習しよう. 実際, 速さ v は時刻 tと時間 T の両方に

*1 2025年. タイムズカーシェアでは, 走行距離が 20kmを超えると 1kmあたり 20円の距離料金が必要になる.
*2 正確に計算してみよう. 10万 km÷(50m/円)= 10万 km÷( 50

1000
km/円)= 10万 km×( 1000

50
円/km)= 10万 km×(20円/km)=200万円

になってしまう. ところで, 最初の「10万 km÷(50m/円)」という割り算を理解するには「１円払えば 50メートル進んでくれるとき, Lメー
トル進ませるには, いくら払うか？」という文章問題を考えればよく, 計算は L÷ 50となる. これが苦手な人は, 小学校高学年で習う「単位
あたりの量」を分かっていない事が多い.
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依存するので v(t, T )と書くと, 距離 ∆r = r(t+ T )− r(t)を時間 ∆t = T で割って,

v(t, T ) =
∆r

∆t
=

r(t+ T )− r(t)

T
(2.3)

となる. これが小学校の速さである.

図 2.3 　
フリーフォール

自由落下　を体験する遊園地の遊具のイラスト. 最初, 落下開始時刻（初期時刻 t0 = 0）における速さゼロ
(初速 v0 = 0）とすると, 重力加速度 g = 9.8m/s2 による落下距離 r は式 (1.1)p.4 の二次関数 r(t) = 4.9t2 で与
えられる. 図 1.1p.3 でグラフ化し, 図 1.2p.4 で計算もした. よって時刻 t = 1s における落下距離 r(1s) = 4.9m

は誰でも算出できるが, その時の速さ v(1s)は分からない. 一方, 式 (2.3)p.9 の小学校の速さ v(t, T )は, 測定時間
T を追加指定しなければ算出できない. イラストは OpenAIの ChatGPT-4.1, DALL-Eを使用し生成されている
(2025年 12月).

具体的に, 時刻 t[s], 落下距離 r[m], （小学校の）速さ v[m/s]を自由落下の図 2.3p.9 で考えよう. 時刻 tにおける落
下距離 r(t)は,

式 (1.1)p.4 · · · r(t) = 4.9× t× t = 4.9t2

と既に与えられているので, この速さ v(t, T ) を計算しよう. 中学数学の展開公式 (a + b)2 = (a + b) × (a + b) =

a × (a + b) + b × (a + b) = a × a + a × b + b × a + b × b = a2 + 2ab + b2 を用いて, v(t, T ) = 4.9×(t+T )2−4.9t2

T =
4.9×(t2+2tT+T 2)−4.9t2

T = 4.9t2+9.8tT+4.9T 2−4.9t2

T = 9.8tT+4.9T 2

T = 9.8t+ 4.9T と, 測定開始時刻 tと測定時間 T の両方
に依存することが分かる. ただし測定時間 T ̸= 0を仮定し割り算して簡易化した. まとめると,

v(t, T ) = 9.8t+ 4.9T, (T ̸= 0) (2.4)

で, 時刻 tと時間 T の両方が指定されて初めて算出可能な物理量が, 小学校の速さであると分かる.

その上で, 図 2.3p.9 を見ると, 時刻 t = 1sの落下距離 r(1s) = 4.9mは式 (1.2)p.4 なので簡単だが, その速さ v(1s)

は悩むはずだ. 何故なら, 小学校の速さ v(t, T )は時刻 tだけではなく測定時間 T にも依存するからだ. このような関数
v(t, T )を, 二変数関数と呼ぶので, 次に学ぼう.

§ 2.2.1 四則演算も二変数関数

関数 r(t)について, rは関数名, tは入力変数（引数）と呼び, 入力変数の個数が１つなので r(t)を一変数関数と呼ぶ.

一方, 速さ v(t, T )のように入力変数の個数が２つなら二変数関数と呼ぶ.

実は, 四則演算も二変数関数だが, その事実に気付かされるのは数式処理ソフトを使った時だ ( 図 2.4p.10 ). 通常, 四
則演算は二変数関数として表記せず, 演算記号（+,-,×,÷など）を二つの数 x, y の間に表記し, 例えば割り算を x÷ y

と表現する（中間記法と呼ぶ）. この記法のせいで, 四則演算が二変数関数である事実に気づきにくい.

二変数関数の出力値は, ２つの入力変数 x, y の両方の値に依存して変化するのが特徴だ. 引き算 x− yも割り算 x÷ y

も, そして速さの式 (2.4)p.9 でも同じである. そして二変数関数が, 微分の理解に必要になる.
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Maxima , Mathematica , Python で実行

図 2.4 割り算の二変数関数 divideを定義 (def)し, 計算させている (図は python). 割り算は演算順序を間違え
ると答えが変わるが, ルールでは x/y/z = (x/y)/z = x

yz
なので, 先に divide(x,y)を計算すると一致する. 逆に,

x/(y/z)なら divide(x,divide(y,z))となる. Mathematica では Divideという関数が予め用意されているの
で, 定義する必要がない. 四則演算が二変数関数である事実は, 実は数学では把握しにくく, むしろ数式処理ソフト
を使うことでより明確になる.

§ 2.3 微分で求まる速さは, 一変数関数
微分の理解に大切な小学校の速さは, 差分 ∆で表される二変数関数 v(t, T )だった. その上で, 読者に問いたい.

今, 本書を読んでいるあなたの, 今現在の速さは, いくつだろうか？

静止して本書を読む人は, 速さゼロだ. 車内の人は, その車の速度計と同じと答えるかもしれない. もしかすると地球
の自転・公転など考える人もいるかもしれない. このように様々に「今現在の速さ」は答えられるが, 重要なのは答え
自体ではない. 真に重要なのは, 答えを考えた時の思考自体であり, 以下の質問になる.

その測定時間は, いくつ？
答えは最後に教えることにし, ここでは謎を味わおう.

人生を振り返ると, 「速さ」ほど身に染み付いた物理量はない. 義務教育で訓練し, 速度計も身近で, 実際, 我々の頭
の中には「今現在の速さ」の概念が存在し, 数学表記するならある時刻 tにおける速さ v(t)となる事も分かるだろう.

これは, ある時刻 tにおける落下距離 r(t)と同じぐらい確実な常識に思える. 常識だからこそ衝撃的なのは, 一変数関
数 v(t)の計算方法を, 実は義務教育では習っていない事だ. 小学校の速さはあくまで二変数関数 v(t, T )なので, 速さの
測定時間 T が必要になる.

§ 2.3.1 微分法とは何か？

習っていない理由は明確で, 測定時間 T に依存しない一変数関数 v(t)の計算方法が「微分法」で, それを明確に学ぶ
のが大学だからだ. ただし本書では, 4.9t2 の微分は 9.8tであると, 図 1.1p.3 で既に求めている. それが v(t)の答えだ.

そこで本書の既知の情報をまとめると, 落下距離 r と速さ v は

式 (1.1)p.4 · · · r(t) = 4.9× t× t = 4.9t2

小学校の速さの式 (2.4)p.9 · · · v(t, T ) = 9.8t+ 4.9T, (T ̸= 0)

図 1.1p.3 の微分で求めた速さ · · · v(t) = 9.8t (2.5)

./FitPhys/Calc/divide.wxm
./FitPhys/Calc/divide.m
./FitPhys/Calc/divide.ipynb
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となる. 結果論だが, 9.8t + 4.9T → 9.8tとするのが, v(t)の計算に見えるだろう. そう思えた人は正解で, 事実, 微分
の初歩では, T = 0を代入して, 最終的な答えを出す.

微分法の初歩的計算は, まとめると以下の２ステップからなる.

1. 簡約化：測定時間 T ̸= 0を仮定し v(t, T ) = ∆r
∆t の割り算をして, 式を簡単にする

2. 代入： 0
0 問題が無ければ, 測定時間 T = 0を代入する

大切なのは, 測定時間 T なのが分かる. 安易に T = 0を代入すると移動距離は∆r = r(t+T )−r(t) = r(t+0)−r(t) =

r(t) − r(t) = 0 となり, さらに速さは v(t, 0) = ∆r
∆t = 0

0 となる. この 0
0 が問題で, 数学では不定と呼ぶ. そもそも

T = 0を代入するのは, 「測定時間がゼロ (∆t = T = 0)」を意味する. それは「測定開始時刻 tと測定終了時刻 t+ T

が同時刻」である事を意味するため, どんな差分もゼロになる. だから差分 ÷差分で定義した速さ v(t, T )には 0
0 問題

が必ず発生するのである. 逆に 0
0 問題を避けるため, 微分法では先に T ̸= 0を仮定して簡約化するのである.

§ 2.3.2 微分の計算方法–簡約化・代入の演算順序–

測定時間 T についての「先に簡約化, 後で代入」を実際に数式処理ツールで実行するスキルを習得しよう. ただし, 代
入とは違い, 簡約化は数学記号がない. そこで本書では, この簡約化を v(t, T )|T ̸=0 と表記する. これは T ̸= 0を仮定
し, 割り算の結果を出す命令であり, それを含む数式処理ツールのスキルをまとめると表 2.1p.11 となる.

表 2.1 代入, 簡約化, 微分の三つの演算を数学, Mathematica, Maxima, python(simpy)についてまとめたもの

演算 表式 ツール
代入 v|T=0 数学

(T に 0を代入 v/.T->0 Mathematica

置換する) substitute(0,T,v) Maxima

v.subs(T,0) python

簡約化 v(t, T )|T ̸=0 本書の “数学”

（T ̸= 0を仮定 FullSimplify[v[t,T]] Mathematica

して簡単化) ratsimp(v(t,T)) Maxima

simplify(v(t,T)) python

微分 r′(t) 数学
(関数 r(t)を r’[t] Mathematica

微分する) diff(r(t),t) Maxima

diff(r(t),t) python

表 2.1p.11 は眺めるだけで構わない. 数式処理ツール毎に「方言」を持つが, むしろ数式や表記に惑わされず, ３つの
演算（代入・簡約化・微分）がある事に集中しよう. 特に簡約化は, 手計算では訓練されすぎて無意識に行ってしまうた
め, 数学表記 v(t, T )|T ̸=0 をしっかり意識してほしい. また代入については, r(1s) = r(t)|t=1s のような「関数の代入」
も意識しよう. 例えば二変数関数 v(t, T )に T = 0を代入するなら v(t, 0)となる.

早速, スキルの表 2.1p.11 を試そう. 本書では試した結果をお見せするが, 注目すべきは演算順序で,

• 先に T = 0を代入すると, どうなるか？
• 先に簡約化し, その後で代入する自作微分は, 微分と等しくなるか？

の２点を 図 2.5p.12 で眺めよう. すると, 先に代入するとエラーや不定が出て, 「先に簡約化し, 後で代入」なら微分と
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等しくなるのが分かる.

Maxima , Mathematica , Python で実行

図 2.5 数学と数式処理ツールの結果の比較 (表記は表 2.1p.11 を参照). 結果として, 先に代入した v(t, 0) は,

エラー (error) や不定 (indeterminate), NaN（Not a Number エラー）が出力される. 一方で先に簡約化し, そ
の後で代入した自作微分の vd(t) = v(t, T )|T ̸=0

∣∣∣
T=0

と, 正しい微分 r′(t) は等しくなる. 自由落下の落下距離
r(t) = 4.9t2 に対し, 正しい速さ v(t) = 9.8tを全てにおいて求められているのが確認できる. ただし, Maximaの
49t
5
やMathematicaの 0.+ 9.8tも, ここでは「方言」とみなし, 本質的には正解と思って良い.

§ 2.4 微分を批判する
「先に簡約化, 後で代入」で正しく微分できた. だとしても, 「測定時間 T がいくつか？」という真理を問うなら, 簡
単に納得してはいけない. 有限時間 (T ̸= 0), ゼロ時間 (T = 0)という２つの異なる測定時間を同時に考えたからだ.

実際, 歴史的には微分の計算方法を批判した学者がいた. それがバークレー [6]である.

§ 2.4.1 バークレーの物理霊

有限時間 (T ̸= 0)とゼロ時間 (T = 0)という２つに　
departed

分 離　する　
quantities

物理量　は実在しないとして, 1734年に出版された著
書 [2]の中でバークレーは,

ghosts of departed quantities

だと皮肉を込めて言っている. 日本語で言うなら, 物理量ならぬ「　
ぶつりりょう

物理霊　」といった所だろう (図 2.6p.13 ).

実際, 数式処理ツールが 図 2.5p.12 で明らかにしたのは, 演算順序の重要性だった. まじないや儀式のように, 定めら
れた順序を守らない場合には, 0

0 という　
れい

０　同士の　
しょう

商　が出現し, その結果としてまるで　
れいしょう

霊障　のようにエラーがでるわけ
だ. 現実にも 0

0 を数学で不定と呼ぶが, まさに幽霊のように定まらない. 図 2.6p.13 の物理霊は, さながら身も凍るホ
ラー映画である（いやダジャレが寒いだけかもしれないが）. *3

*3 手計算する人のために注意点をまとめると, 簡約化の演算では例えば

T

T

∣∣∣∣
T ̸=0

= 1,
T 2

T

∣∣∣∣
T ̸=0

= T (2.6)

をしっかり認識し, 演算順序を守る必要がある. 逆に先に代入してしまうと T
T
|T=0 = 0

0
や T2

T
|T=0 = 0

0
となり, 不定の 0

0
が出現する.

./FitPhys/Calc/diff.wxm
./FitPhys/Calc/diff.m
./FitPhys/Calc/diff.ipynb
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図 2.6 　
ぶつりりょう

物理霊　 (ghosts of departed quantities)のイラスト. 微分の初歩的演算は「先に簡約化 (T ̸= 0), 後で代入
(T = 0)」だが, 測定時間 T を異なる２つの物理量として扱っているとの批判が, バークレーの著書 [2]にある. こ
の批判を土台に, 今後本書では, ２つの演算を再学習し (§ 2.3p.10 ), 新演算として定義する (§ 2.5p.13 ). 時間 ∆t

は, 小学校２年で習った式 (2.2)p.8 が定義だが, その上に, 瞬間 dtは見出される.

微分, なかりせば

微分を許さないとすると, どうなるだろうか？

1. 時刻 tの一変数関数の速さ v(t)は存在しない
2. 初期時刻 t0 = 0における初速 v0 = v(t0)も存在しない. にも関わらず, 自由落下の図 2.3p.9 などで使っている.

3. そもそも我々が思う「今現在の速さ」も存在しない

もしも「今現在の速さ」が無ければ, 交通規則の制限速度 vmax も無意味になり, 速度違反の罰金も無くなる, なんてこ
とは無いだろうが（笑）, ともかく我々の日常概念や常識を揺るがすことには変わりない.

結論から言えば, もちろん, 微分は許される. 演算順序を正しく守れば, 微分と一致した. 実際, AIも知っていて, 正
解さえする. そんな現代に学ぶべきなのは, バークレーの物理霊を自分自身が許容できるか, つまりあなたが物理霊を分
かってあげられるか？という点に尽きる.

そんな瞬間が訪れるよう, 本書は続く.

§ 2.5 瞬間を分かる
物理的には, 有限時間 (T ̸= 0)でもゼロ時間 (T = 0)でもない, 新しい第３の時間の概念が, 微分法により誕生した

と言うべきだろう. それを等号 =でも, 非等号 ̸=でもなく, 矢印→を用いて,

T → 0 (測定時間 T をゼロ時間 0に近づけ, 瞬間 dtにする) (2.7)

と表す. バークレーの物理霊を, 得体のしれない存在と怖れるのではなく, まずは「瞬間 dt」（あるいは無限小時間）と
名付けて解明しようとしている訳だ. 図 2.6p.13 の虫眼鏡の中を, 確認してほしい.

§ 2.5.1 瞬間を用いた表記法の気持ち

新概念の「瞬間 dt」を用いると, 微分を dr
dt と書く気持ちも分かる. 要するに, 差分の ∆r

∆t と対応させているだけだ.

式 (2.3)p.9 · · · v(t, T ) =
∆r

∆t
=

r(t+ T )− r(t)

T

v(t) =
dr

dt
= r′(t) (2.8)
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上式を見比べて測定時間 ∆tと瞬間 dtの対応を確認したら, 微分の学修に大切な事をおさらいしよう. 大切なのは, 新
しい式 (2.8)p.13 ではなく, 既知の式 (2.3)p.9 だ. それは「小学校の速さ」だが, きはじの公式の図 2.1p.7 では断じて
ありえない. 丸暗記は大変なので, せめて v(t, T ) = ∆r

∆t = r(t+T )−r(t)
T とメモして, 速さ v[m/s], 距離 r[m], 時刻 t[s],

そして測定時間 T [s]の関係を把握して, 本書を読み進めてほしい.

しっかり式 (2.3)p.9 を理解したら, 次に数式が演算方法を指定している点に注目しよう：

• r(t+T )−r(t)
T の意味: 関数 r(t), 関数への代入 r(t+ T ), 引き算 r(t+ T )− r(t), 割り算 r(t+T )−r(t)

T をする
• r′(t)の意味: 関数 r(t)を微分する（導関数 r′(t)を得るとも言う）

後者の r′(t)は, 最も簡単な場合には「先に簡約化, 後で代入」なので, 読者は出来る. 大学レベルに難しい場合には「ス
キル表 2.1p.11 で微分する」だけで, 誰でも出来る. まさに, 一を聞いて十を知るだが, だからこそ「始めの一歩」を深
堀しよう.

§ 2.5.2 「先に簡約化, 後で代入」の再解釈

測定時間についての「先に簡約化, 後で代入」という具体的な演算を, 瞬間の概念を用いて再解釈しよう. 測定時間
∆t = T を瞬間 dt にすると, 測定開始時刻 t から一瞬遅れて測定終了時間が到来する. この意味で瞬間 dt はゼロ時
間ではないため, T ̸= 0 が成立し, 「簡約化」と同じく 0

0 問題は出現しない. 逆に言えばゼロ時間 (T = 0) とは, 開
始時刻と終了時刻を同時刻として扱うことに他ならない. 今こそ時間 ∆tの定義式 (2.2)p.8 を復習し, ∆t = 0ならば
（開始時刻）=（終了時刻）となる事を自分で証明してほしい. このようにゼロ時間を完全に理解する事で初めて, それ
と異なる「瞬間 dt」が見えてくるのである.

しかしゼロ時間とは違うとはいえ, 瞬間 dtは無限小だ. だから物理量として取り出す事ができずに, まさに幽霊のよ
うに, 無限小がゼロとなり消えてしまう. それが数式 T → 0の気持ち*4 になる. 例えば,速さ v(t, T ) = 9.8t+ 4.9T な
ら, T → 0を考える事で,

9.8t+ 4.9T → 9.8t+ 4.9× 0 = 9.8t (2.9)

と計算される. →の右辺は「無限小がゼロとなり消えた後」を意味し, 結果 9.8t+4.9× 0を得ている. この結果だけ見
ると, 代入 9.8t+ 4.9T |T=0 = 9.8t+ 4.9× 0と同じ演算が行われている. 同一演算だが, 数学演算が意図する意味が異
なり, T → 0の数学演算には瞬間の概念が潜んでいる.

測定時間を瞬間にすれば, このように「簡約化と代入」が両立しうるのである.

§ 2.5.3 極限記号の導入

むしろ「先に簡約化, 後で代入」のように２つの連続した別の演算と見なすことで, 逆に瞬間の概念は捉えにくくな
る. よって数学では, 単一の演算記号 limT→0 を用いて, より一般に「極限（リミット）をとる」と表現する. この極限
記号を用いて一変数関数の速さ v(t)は,

v(t) = lim
T→0

v(t, T ) (2.10)

と定義される. この極限記号の意義を, 数学・物理の２つの方向から説明しよう.

*4 より正確に分かりたい場合は [10, §II-6] を参照. 高校数学では実際, 微分を表す dr
dt
などの形式的表記を除けば, 数式の中に瞬間 dt が姿を

表す事はない. 例えば, v(t, T ) = 9.8t+ 4.9T の測定時間 ∆t = T を瞬間 dtにすれば, 9.8t+ 4.9 dtのようになりそうなものだが, 高校数
学レベルでは登場しないし, 考えることも許されない. これが考えられるようになるのは, 大学レベルになる（微分形式 [4]など）.
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数学的意義：極限をとると, 一変数関数になる

極限をとった lim
T→0

v(t, T )では, 二変数関数 v(t, T )の変数だった測定時間 T が瞬間 dtになる事で, T 依存性がなく
なり, 一変数関数 v(t)になる. 単に一変数関数にするだけなら,「代入」の v(t, T )|T=0 でも良いが、残念ながら 0

0 問題
でエラーを出してしまう. それを回避して自然な一変数関数 v(t)を定義したのが「極限」 lim

T→0
v(t, T )と言える.

まとめると, まず最初にあるのが二変数関数 v(t, T )で, 一変数関数を作る演算には代入と極限があり, それぞれ{
v(t, T )T=0 = v(t, 0) = 0

0 , （不定）
limT→0 v(t, T ) = v(t) , 式 (2.10)p.14

(2.11)

となる. 上手く一変数関数を作れるのが極限だ. 極限については本書のレベルを越えて, 高校数学, 大学数学で深堀して
いく. それはバークレーの物理霊の正体を暴く旅路なので, ぜひ参加してほしい.

物理的意義：小学校の速さの極限が, 日常の速さ

速さには２種類存在し, v(t, T )と v(t)に分けられた. 後者を日常の速さと呼んでまとめると, 表 2.2p.15 になるので
復習してほしい.

表 2.2 ２種類の速さ v(t, T )と v(t)の復習.

式 距離 r(t)

小学校の速さ v(t, T ) 日常の速さ v(t)

数学 二変数関数 v(t, T ): § 2.2p.8 一変数関数 v(t)

物理 平均の速さ v 瞬間の速さ v

測定開始時刻 t 現在時刻 t

測定時間 ∆t = T : 式 (2.2)p.8 瞬間 (無限小時間) dt: 式 (2.7)p.13

定義 v(t, T ) = ∆r
∆t = r(t+T )−r(t)

T : 式 (2.3)p.9 v(t) = dr
dt = r′(t): 式 (2.8)p.13

演算 代入・引き算・割り算 微分（その初歩は「１簡約化,

　　　２代入」§ 2.3p.10 ）
落下 r(t) = 4.9t2: 式 (1.1)p.4

v(t, T )|T ̸=0 = 9.8t+ 4.9T : 式 (2.4)p.9 v(t) = 9.8t: 式 (2.5)p.10

大切なのは, 小学校の速さ v(t, T )を土台にして, 日常の速さ v(t)が定義される事だ. その定義式が,

式 (2.10)p.14 · · · v(t) = lim
T→0

v(t, T )

だ. 日常の速さが定義された事で, 交通規則の制限速度も「v(t)の上限」として確固たる意味を持つ.

ただし, その揺るぎなさは論理体系の土台の強固さに依存する. 土台となる小学校の速さを割り算だと思うと崩壊す
る. しっかりと理解し, 差分 ∆を用いた二変数関数 v(t, T )だと認識して初めて, 測定時間 T を意識し, T を操作する
lim
T→0

を見抜く準備が出来る. この演算 lim
T→0

は数学では極限と呼ぶが, 本書では「測定時間を一瞬の時間, つまり瞬間に
する」と平易に呼ぼう. 実際に物理では, v(t)を瞬間の速さと呼ぶ.

§ 2.6 まとめ–速い–

一行でまとめると, 微分を理解する上で一つの大切なことは小学校の速さ v(t, T )で, 謎だった測定時間 T は lim
T→0

に
より瞬間になった.
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表 1.1p.5 を振り返ると, 微分の定義は f ′(x) = lim
h→0

f(x+ h)− f(x)

h
だった. 変数を置き換えて x = t, h = T, f = r

とすると,

r′(t) = lim
T→0

r(t+ T )− r(t)

T
(2.12)

となる. この微分の定義式 (3.11)p.21 を本書の知識で導出できれば本節は卒業だ. *5

最後に, 物理の「速さ」を数学では一般に「変化率」と呼ぶ. 落下距離 (m) の時刻 (s) に対する変化率が速さ (m/s)

だ. グラフでいうと, 縦軸 y の横軸 xに対する変化率が傾き (∆y/∆x) である. 逆に言えば傾きは, 横軸 xを時刻 tと
みた時の速さと考えられる. ある落下距離 (縦軸の点)に到達した時刻 (横軸の点) の、その瞬間の速さ (傾き) が同じ
等速度運動 (直線) を接線 (tangent line)と呼ぶ. 図 1.3p.5 で, AI が何を説明していたかを復習してほしい.

コラム：恋する微分

別れ際の恋人が「あなたが分からない」と言えば, 相方が「なら, 私の何を分かっていたというの？私のいったい何
を！」と返す. 物語の山場だが, 現実なら修羅場だ. そして実は, 「微分」でも同じだ. 言いすぎかもしれないが, 完全
に合同である. ２つに分けて説明しよう.

まず１つ目に, 微分が日常の速さであるため, 逆に常識すぎて, 微分演算の大切さに気づかない. だから「微分が分
からない」. これはまるで「あなたが分からない」という人が, 恋した相手の大切さに気づかないのと同じだ. 仲が良
くて常に一緒にいるのが当たり前だからこそ, 気づかない. 気づけなくなってしまう.

そして２つ目に, 小学校の割り算が実は難しかった事を忘れている. 高校生ぐらいになれば「単位あたりの量」など
計算しないから, なおさら舐めて, 割り算が二変数関数である事実も見えない. 要するに, 分からない以前に, 分かっ
ていないことさえ忘れているのである. これはまるで, 別れ際の恋人たちが, 相手に自分の理想だけを見て, 本当の内
面を分かろうとさえしないのと同じだ.

以上２点で, 恋と微分の間の「証明」は終わりである（笑）. 冗談として笑うコラムのはずが, なんだか心の古傷が
痛む恋愛経験豊かな読者がいれば申し訳ない. ただ個人的には, 別れ際の恋人達に大切なのは「思い出すこと」だと考
えている. 二人が初めて出会った頃や, 恋に落ちた瞬間を思い出すことは, 例え最後は別れる定めだとしても, 相手を
人間として大切にする能力を授けてくれる. そう思うのだが, どうだろう.

本書では「自分自身の子供時代」を思い出した. 速さを初めて習った頃や, 割り算 T ÷ T の瞬間を思い出すことは,

例え理系に進まぬ人生だとしても, 微分を大切にする能力を読者に授けてくれる. そう期待したいが, 結果は果たして,

どうだっただろうか？

*5 とはいえ全体を読み返す必要はない. 表 2.2p.15 と式 (2.10)p.14 だけで導出できて,（左辺）= r′(t) = v(t) = lim
T→0

v(t, T ) =

lim
T→0

r(t+ T )− r(t)

T
=（右辺）となる. 速さ v(t) と v(t, T ) の物理量を関係付ける重要な式が, 式 (2.10)p.14 の v(t) = lim

T→0
v(t, T ) に

なる. 演算 lim
T→0

は, 測定時間 T をゼロ時間に極限まで近づける操作を意味する. 用語の補足として, 厳密には, ∆r を差分, dr を微分, ∆r
∆t

を差分商, dr
dt
を微分商と呼び, 微分商 dr

dt
を求めることを「関数 r(t)を微分する」と呼ぶ. 微分した r′(t)も関数なので, 導関数と呼ぶ.
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微分にならんで世間に分かってもらえないのが, 三角関数だろう. 実は微分の先に, 高校, 大学と数学や物理を積み上
げていった先で, ブラックボックスだった三角関数が明らかになる. 謎の数であった円周率 π が原理的に手計算できる
ようになる.

§ 3.1 関数のさしすせそ
関数の「さしすせそ」である三角関数, 指数関数, 対数関数*1, 絶対値関数, 双曲関数の全ては, 物理的な運動の位置や

速度を記述する. 数学ではなく, 問題は物理になったので, シミュレーションする事も出来る. まずは, 関数の「さしす
せそ」が居並ぶ凄さをまとめの表 3.1p.17 と, シミュレーションの 図 3.2p.20 で, 眺めてほしい. 弾性力が産み出す三
角関数は図 1.1p.3 と見比べると良いだろう。

表 3.1 力 F の名称と, 対応する物理量. 同一設定の 図 3.2p.20 も参照.

力
F [N]

加速度
a[m/s2]

位 置
r[m]

速 度
v[m/s]

位置, 速度の
数学関数名

重力 a = 9.8 4.9t2 + t 9.8t+ 1 二次関数, 一次関数
弾性力 a = −r sin(t) cos(t) 共に三角関数
負剛性の力 a = r sinh(t) cosh(t) 共に双曲関数
粘性抵抗力 a = −v 1− exp(−t) exp(−t) 共に指数関数
慣性抵抗力 a = −v2 log(t+ 1) 1

t+1 対数関数, 分数関数
衝撃力 a = −2δ (t− 1) 1− |t− 1| 1− 2Θ (t− 1) 絶対値関数, 階段関数

この様々な関数を計算するスキルを修得しよう. 最初は, 力や加速度を定義から始める.

*1 「さしすせそ」の「す」が対数（たいすう）だが, 若干のインチキ感は否めない. しかし料理のさしすせそだって「せ」が醤油なので, 許容し
よう.
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図 3.1 物理シミュレーションの実行結果 (Algodoo[1, 3]). 質量 m = 1kg とし, 初期時刻 t0 = 0 で初期位置
r0 = 0, 初速度 v0 = 1m/sとした上で, 表 3.1p.17 に対応する力を与え, 位置 r(t)と速度 v(t)をグラフ化している.

その結果は, 表 3.1p.17 の関数に完全に一致する. 上段の左から順に 重力 , 弾性力 , 負剛性の力 , 下段の左か

ら 粘性抵抗力 , 慣性抵抗力 , 衝撃力 で, インストールされていれば四角枠をクリックすると実行される. 左上図
では 重力が F = mg = 9.80Nと読み取れる. その右図は, ばね定数 k = 1N/mの弾性力 F = kr = 0.35N と読み
取れるので, r = −0.35mであり, 三角関数の性質 sin2 t+cos2 t = 1より速度 v = −

√
1− r2 = −0.94m/sとなる

のが分かるが, 図と一致する. 右上図は, 初期速度 v0 = 1m/sが読み取れるだけだが, 実はばね定数 k = −1N/mと
して負の剛性を実現している. 左下図は,粘性抵抗係数 k = 1Ns/mの空気抵抗 |F | = k|v| = 0.83Nと読み取れるの
で, 速度 v = 0.83m/sが図と一致する. その右図は, 粘性抵抗係数 k = 1Ns2/m2 の空気抵抗 |F | = k|v|2 = 0.73N

と読み取れるので, 速度 v =
√
0.73 = 0.86m/sが図と一致する. 右下図は, 衝撃力により時刻 1sで跳ね返った後,

一定速度 v = −1m/sとなり壁から離れていくのが分かる. ただし衝撃力における跳ね返り運動は高校レベルだが,

表 3.1p.17 で用いられる大学レベルの関数であるディラックのデルタ関数 δ(x) やヘヴィサイドの階段関数 Θ(x)

は本来は補足が必要で、後の 図 3.2p.20 も参照。

§ 3.2 物理の運動–力と加速度–

本格的な物理では, 距離・速さではなく, 位置 r, 速度 v を主役とする. さらに加速度 a,力 F を加えて, 表 3.2p.18 と
してまとめられる. 全て時刻 t[s]の関数であり, 定義に微分が用いられる事に注目しよう.

表 3.2 物理に必要な位置, 速度, 加速度, 力.

物理量 定義 単位
座標位置 r(t) m

速度 v(t) = r′(t) m/s

加速度 a(t) = v′(t) m/s2

力 F (t) = ma(t) kgm/s2 = N

次に、位置 r(t)の微分が速度 v(t) = r′(t)である事に注目する. 第 3章 に従うと、２種類の速度 v は

v(t, T ) =
∆r

∆t
=

r(t+ T )− r(t)

T
(3.1)

v(t) =
dr

dt
= r′(t) = lim

T→0
v(t, T ) (3.2)

のように定義され, 平均の速度 v(t, T ), 瞬間の速度 v(t)と呼び分けるのが分かるだろう。極限 limT→0 は、測定時間 T

を瞬間にするだけなので、v(t)も v(t, T )と同様、単位が m/sとなる事が分かる。

./FitPhys/Algodoo/FreeFallRight.phz
./FitPhys/Algodoo/DampSpringSin.phz
./FitPhys/Algodoo/DampSpringSinh.phz
./FitPhys/Algodoo/DampSpringExp.phz
./FitPhys/Algodoo/DampSpringLog.phz
./FitPhys/Algodoo/DampSpringAbs.phz
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次に速度 v(t)の微分が加速度 a(t) = v′(t)である事に注目しよう. 先ほどと同様に, ２種類の加速度 v は

a(t, T ) =
∆v

∆t
=

v(t+ T )− v(t)

T
(3.3)

a(t) =
dv

dt
= v′(t) = lim

T→0
a(t, T ) (3.4)

と定義され, 平均の加速度 a(t, T ), 瞬間の加速度 a(t)と呼び分ける. 加速度の単位はm/s2 で速度の単位m/sを sで割
り算したものになる. 実は大学物理では 1/sが追加された物理量の多くが微分で定義される*2.

練習問題として位置が r(t) = 4.9t2 として与えられた場合を考えよう. 速度は v(t, T ) = 9.8t+ 4.9T , v(t) = r′(t) =

9.8tとなる事は, 式 (2.4)p.9 , 式 (2.5)p.10 を復習すれば分かる. 次に加速度を求めると

a(t, T ) =
v(t+ T )− v(t)

T
=

9.8(t+ T )− 9.8t

T
=

9.8T

T
= 9.8

T

T
(3.5)

となる. ここで, 測定時間がゼロ時間 (T = 0)かもしれないので T
T = 1と安易に割り算できない事に注意しよう. しか

し, 瞬間を意味する極限記号 limT→0 を用いれば, ゼロ時間ではない事が保証され, T
T = 1と出来る. よって,

a(t) = lim
T→0

9.8
T

T
= 9.8 lim

T→0

T

T
= 9.8× 1 = 9.8m/s2 (3.6)

となる. 最後の答えでは, 分かりやすように数値に単位を明記している.

最後に加速度を質量m倍し, 力

F (t) = ma(t) = 9.8m (3.7)

が求められる. これが重力mg であり, 重力加速度 g = 9.8m/s2 の自由落下を表す事が確認できる. その値は図 2.3p.9

に登場しているので復習してほしい.

以上では, 与えられた位置 r(t)から力 F (t)を求めた. 実際, 実験データなどから位置が関数 r(t)として与えられれ
ば, 微分を二回して質量m[kg]倍して, 力が計算され, F (t) = ma(t) = mv′(t) = mr′′(t)となる. この r′′(t)を二階微
分 (second-order derivative)と呼ぶ.

逆に, 力が与えられれば, 位置を逆算できる. この位置の逆算を「運動方程式 F = maを解く」という. 次で考えよう.

§ 3.2.1 運動方程式を解く

質量 mの物体にはたらく力が, 重力 F = mg と与えられた時, 加速度を求めよう. これは運動方程式 F = maを加
速度 aについて解くため, 両辺mで割って,

a =
F

m
=

mg

m
= g (3.8)

となる. 地表の重力加速度 g = 9.8m/s2 とすると, a = 9.8m/s2 となり, 表 3.1p.17 の加速度の式が得られる. これに初
期条件を追加すると,

a(t) = 9.8m/s2, r(0) = 0, v(0) = 1m/s (3.9)

となるが, この３式を満たす位置 r(t)を求める事を運動方程式を解くという. 一度 r(t)が求められれば, 後は微分して,

v(t), a(t)など全ての物理量が求められる事になる. *3

*2 電気量 Cと電流 A = C/sや、エネルギー (仕事)Jと仕事率W = J/sなどは、位置mと速度m/sと同様に微分で定義される。アンペア A

やワットWなど義務教育でも習う物理量についても、大学では微分は不可欠になる。
*3 ちなみに瞬間の速さは, 絶対値を用いて, |v(t)| = |r′(t)|と表される. 速さには負の値が存在せず, また移動距離が減少する事もない. 振動な
どを記述するために, 本格的な物理学では位置, 速度が主役とする.
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運動方程式を解くのは大学レベルになるが, 今の我々でも, 位置 r(t) = 4.9t2 + tが, 式 (3.9)p.19 を満たす事は証明
できる. *4 さらに, 数式処理のスキル表 2.1p.11 を使えば, 微分や代入が誰にでも出来るので, 表 3.1p.17 は証明可能だ.

もっといえば, 解く (solve)だけなら数式処理ツールで 図 3.2p.20 のように誰にでも出来る.

Mathematica で実行

図 3.2 数式処理ツール (Mathematica) で運動方程式を　
solve

解いた　結果. 表 3.1p.17 の関数が求められているの
が分かる. とはいえ, 最後の衝撃力は分かりにくいので図示している. 図 3.1p.18 の最後の図と一致するのが
分かる. ちなみに, ディラックのデルタ関数 δ(x) は DiracDelta であり, ヘヴィサイドの階段関数 Θ(x) は
HeavisideTheta で, Θ(−x) = Θ(x) や, |x| = 2xΘ(x) − x などの性質を使うと一致が示せる. 具体的には
1−|t−1| = 1−2(t−1)Θ(t−1)+(t−1) = t−2(t−1)Θ(t−1) = t-2(-1+t)HeavisideTheta[-1+t] である.

§ 3.3 時間刻み幅とデータ
関数を得るため運動方程式を解くだけなら、シミュレーションでも数式処理でも何でも用いれば誰でも出来る時代だ
が, 関数が未知のブラックボックスとして残るのが、誰にとっても問題になる. よって四則演算で関数を求める方法を
習得しよう. 二次関数はそもそも四則演算なのでご利益がないが, 三角関数 sin(t)なども四則演算の反復で求められる.

これは関数を理解する上での大きな進歩なので, しっかり基礎を学ぼう.

基礎の基礎は, 時刻 tになる. 反復計算の n番目のステップでの時刻 tn を

tn = nT (3.10)

としよう. この T を時間刻み幅 (time step)と呼ぶ. 初期時刻 t0 = 0 × T = 0から, 次の時刻 t1 = T , その次の時刻
t2 = 2T , . . . と無限に続く数のデータ*5 になる. 運動の測定開始から終了までの測定時間ではなく, 初期時刻 t0 から無
限に続く時間というものを, 細かく刻んだものが時間刻み幅 T になる. 図 3.1p.18 のシミュレータ（60FPS=60Hz）な
ら, 時間刻み幅 T = 1

60 sである.

*4 詳しい計算は省くが, まず微分して, 速度 v(t) = 9.8t + 1, 加速度 a(t) = 9.8 を求める. 次に初期条件である, 初期時刻 t = 0, 初期位置
r(0), 初速度 v(0), を考えると, r(0) = 4.9× 02 + 0 = 0, v(0) = 9.8× 0 + 1 = 1m/s となる. 得られた結果を, 式 (3.9)p.19 と比較する
と, 三つの式を満たす事が確認できる.

*5 データ tn を高校数学で数列 (sequence)と呼ぶ. データ tn の通し番号 nをシーケンス番号と呼び, チケットなどの seq の項目にある. ちな
みに, 数列の和を級数 (series)と呼ぶ.

./FitPhys/Calc/Bfuncs.m
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このデータ tn に対する差分 ∆tn は, 今現在を n番目のデータ tn として, 一つ次の (n+ 1)番目のデータ tn+1 との
引き算

∆tn = tn+1 − tn (3.11)

として定義される.

逆に, 差分 ∆tn の式が問題文で与えられ, 時刻データ tn を逆算させられることもある. 例えば, 初期条件 (n = 0の
データ)と共に

∆tn = T, t0 = 0, (3.12)

のように与えられる. *6 試しに方程式 (3.12)p.21 を解いてみよう. 解く際は, 差分の定義式 (3.11)p.21 の両辺に tn を
加えて整理し

tn+1 = tn +∆tn (3.13)

としておくと考えやすい. 要するに, ∆tn は差分というより,「増分」と見たほうが分かりやすいことになる. 増分∆tn

は, 一般にこれまでのデータで与えられるので, 次の (n+ 1)番目のデータ tn+1 がわかる. このように最初の初期条件
t0 から順次データが t1, t2, . . .と無限に求められる.

実際, 方程式 (3.12)p.21 では, 増分 ∆tn はステップ数 nに依存しない一定値 T で,

t0 = 0, ... 式 (3.12)p.21 の初期条件
t1 = t0 +∆t0 = 0 + T = T,

t2 = t1 +∆t1 = T + T = 2T,

t3 = t2 +∆t2 = 2T + T = 3T (3.14)

と無限に求められ, 一般式 (3.10)p.20 が得られる. *7

§ 3.4 運動方程式を解く–オイラー法–

物理では時刻 tn だけではなく, 物体の位置 rn と速度 vn も求めていかなければならない. データを反復計算してい
くには増分が必要だが, オイラー法と呼ばれる方法では

∆rn = vn∆tn, ∆vn = an∆tn (3.15)

と与えられる. これを考えよう.

§ 3.4.1 オイラー法を理解する

オイラー法の式 (3.15)p.21 の意味は, 物理的な単位を考えると分かりやすい. 最初の式 ∆rn = vn∆tn は, 速度
vn[m/s]に,単位 sを持つ微小時間 ∆tn をかけることで, 単位は m/s× s = mとなる. この単位の計算は小学校の速さ
が (距離m) = (速さm/s)× (時間 s)なのと同じだ (図 2.1p.7 ). つまり∆rn は, 微小な位置の変化（微小変位）を表す
のが分かる. これと全く同様に, ∆vn = an∆tn も理解できる.

さらにオイラー法は, 微分による定義式 (3.2)p.18 と式 (3.4)p.19 と対応している. 微分 dを差分 ∆に近似的に対応
させると,

dr

dt
= v(t),

dv

dt
= a(t) ⇒ ∆rn

∆tn
= vn,

∆vn
∆tn

= an (3.16)

*6 式 (3.12)p.21 を一般に差分方程式と呼び, 方程式を満たす tn を逆算することを差分方程式を解くと呼ぶ. 高校数学では漸化式であり, 時刻
tn は差分が一定の等差数列である.

*7 一般式 (3.10)p.20 を証明するには, 数学的帰納法などを用いる事になる.
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となるが, 変形後の両辺に微小時間 ∆tn をかけると, 式 (3.15)p.21 が導出できる. 要するに, 最初の式 ∆rn = vn∆tn

も２つ目の式 ∆vn = an∆tn も, 同じ数学的構造 (＝微分による定義)を持つために, 同様に成立するのである.

§ 3.4.2 オイラー法で反復計算する手順

オイラー法の式 (3.15)p.21 を解くために必要な情報をまとめると,

1. 微小な時間刻み幅 T

2. 加速度 aの式（具体的には表 3.1p.17 のように与えられる*8）
3. 初期時刻 t0, 初期位置 r0, 初期速度 v0

となる. 順次データを求める際に必要な ∆tn,∆rn,∆vn は式 (3.12)p.21 , 式 (3.15)p.21 で与えられるため, それを増分
として考えて, 次の (n+ 1)番目のデータを

tn+1 = tn +∆tn, rn+1 = rn +∆rn, vn+1 = vn +∆vn (3.17)

と求めていけば良い. 重要なことは, 一つ一つの計算は四則演算のみで構成されているため, 手計算もできる事だ.

§ 3.5 関数を四則演算で求める
オイラー法の反復計算は手計算でもできるが, ここは表計算ソフトを用いよう. 表計算ソフトを習っていない読者も
いるはずなので, 具体的な作り方である 図 3.3p.23 は眺めるだけで構わない. 重要なことは, 計算は四則演算のみで, そ
れどころか和 +と積*のみで計算される事だ.

先程の例で得られるのは自由落下だが, 重力ではなく、弾性力による加速度

a = −r (3.18)

とすれば得られる関数は表 3.1p.17 から三角関数となる事が分かる. 実際に計算して図示すると 図 3.4p.23 となり, 位
置 rn のグラフを見れば振動しているのが分かる. 結果のグラフが正しいことは, 最初に遊んだ図 1.1p.3 と比較すれば
よい.

関数は一度定義すれば, ブラックボックスとして簡単に利用できた（図 1.2p.4 ). 逆にブラックボックスの中身が不明
になる欠点があり, 特に sinを含む「関数のさしすせそ」(表 3.1p.17 )などで問題になる. だからこそ, オイラー法が重
要になる.

§ 3.5.1 補足：オイラー法の誤差

オイラー法は四則演算だけなので簡単だが, 実は誤差が含まれる. これを自由落下 a = 9.8m/s2 の場合に確認してお
こう. 初期条件は t0 = 0, r0 = 0, v0 = 0としよう. この時, 厳密な答えは r(t) = 4.9t2, v(t) = 9.8tである.

まず加速度は an = 9.8m/s2 となる. これは問題文で与えられている.

次に速度は, 初期条件 v0 = 0から増分∆vn = an∆tn = 9.8T を考え, v1 = v0 + a0∆t0 = 9.8T , v2 = v1 + a1∆t1 =

9.8T +9.8T = 2× 9.8T , v3 = v2 + a2∆t2 = 2× 9.8T +9.8T = 3× 9.8T となるので, 一般に vn = 9.8nT となる. *9

*8 物理の問題では, 物体に働く力 F は, 時刻 t, 位置 r と速度 v に依存して与えられる. よって加速度は, 一般には t,r,v の関数となる. 最
も簡単な場合には定数になり例えば重力 F = mg となる. 力 F が与えられれば, 定義 F = ma を逆算して加速度 a が求められる. その
ようにして求めた加速度を表 3.1p.17 に記しているので, 確認してほしい. 正確には力は三変数関数 F (t, r, v) として与えられ, 加速度は
a = F (t, r, v)/mとなる. この関数を用いて, nステップ目の加速度は an = F (tn, rn, vn)/mとなる.

*9 実際, n = 0 を代入しても v0 = 0 が成立し, vn+1 = 9.8nT + 9.8T = vn + 9.8T = vn + an∆tn が成立するため, 証明（数学的帰納法）
は可能だ.
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Excelで実行

図 3.3 加速度 a = 9.8, 時間刻み幅 T = 0.01 で, 初期条件 t0 = 0, r0 = 0, v0 = 1 と与えられた時のオイラー
法の反復計算 (Excel) と解説. 対応が見やすいように, セルと説明の色が赤, 黄土色, 緑, 青と対応している. 例
えば緑のセル G2 は ∆r0 を意味し, ∆r0 = v0∆t0 =（セル D2）×（セル F2）となる. 青のセル B3 は t1 を意
味し t1 = t0 + ∆t0 =（セル B1）+（セル F2）となる. この問題設定は表 3.1p.17 から来ており, 式 (3.12)p.21

式 (3.15)p.21 時間刻み幅 T を小さくすると, 高精度になるが計算量が膨大になる.

Excelで実行

図 3.4 加速度を a = −r に変更した時のセルと結果. n = 0 の加速度を意味するセル E2 は a0 = −r0 =

−（セル C2）となり, セル E3 は a1 = −r1 = −（セル C3）となる. それ以外は 図 3.3p.23 と同じになる. 結果は
三角関数で r(t) = sin(t), v(t) = cos(t)となることが表 3.1p.17 から分かる. その図示は, 図 1.1p.3 で行われてい
るので確かめると良い.

さらに tn = nT と厳密な解 v(t) = 9.8tを用いてまとめると,

vn = 9.8nT = 9.8tn = v(tn) (3.19)

となる. この意味で厳密な答えに等しい事が分かる.

次に位置を考えたいが, 高校レベルなので, 結果だけ紹介すると, 位置 rn は厳密な r(t) = 4.9t2 とは誤差が生じ

rn = r(tn)− 4.9tnT (3.20)

となる. この 4.9tnT が誤差である. 今回のように T = 0.01s で時刻 10s までの計算であれば, 誤差は最大でも
4.9tnT = 4.9× 10× 0.01 = 0.49mとなるのが分かる. もちろん時間刻み幅 T が小さければ, さらに誤差を小さくでき
る. *10

*10 このようにオイラー法は四則演算で簡単だが, 結果には誤差が含まれる. しかし, 時間刻み幅 T を小さくすれば誤差は小さくできるのである.

./FitPhys/Calc/excel.xlsx
./FitPhys/Calc/excelsin.xlsx
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§ 3.5.2 応用：円周率を四則演算で求める

誤差があるとしても, ブラックボックスである関数を四則演算で計算できるのは, 非常に強力だ. 例えば, 三角関数は
sin(0) = sin(π) = 0を満たす事が知られている. ならば, オイラー法で位置 r(t) = sin(t) = 0となる時刻 tを逆算すれ
ば, 円周率 π になる. つまり, 四則演算で円周率が求められるはずだ.

実際, 図 3.4p.23 のグラフからも t = 3.1sぐらいで位置 r = 0となるのが分かる. より詳細に求めるならプログラム
(While文)を用いて 図 3.5p.24 のように求めることが出来て, 答えは 3.14159となる.

Maxima , Mathematica で実行

図 3.5 数式処理ツールで円周率を求めたプログラム例 (Mathematica). 四則演算を繰り返しただ
けで円周率は時刻 t として算出できる. 結果は 3.14159 なので十分な精度を持っているが, その
際の時間刻み幅 dt は 0.000001s=1µs である. ここで, t+=dt は t=t+dt と同じで, t+dt を計算
した後に, 変数 t に代入することを意味している. データ列 tn ではなく, 変数 t を上書き更
新して, 時間を進めている事になる. C言語 なら主要部分は double dt=0.000001,t=0,r=0,v=1,a;

while(r>=0){a=-r;t+=dt;r+=v*dt;v+=a*dt;} printf("%e,%e,%e\n",t,r,v); とほぼ同じになる. 三角関数
が a = −r で求まるのは 図 3.4p.23 と同じだ.

§ 3.6 まとめ–自然は数学という言語でかかれている–

微分を土台とし, 運動方程式を解くことで, 最後は円周率 π さえも四則演算で求めた. 原理的に手計算できると思え
る事は, π や sinを非常に身近に感じさせてくれる. それが, 微分を学んで良かったことベスト１だ.

三角形も円弧も円の面積もないのに, 円周率 πが四則演算できたのは何故？
何故なら, 三角関数や円周率という数学は, 幾何学だけではなく身近な運動をも記述する能力があるからである. 実際

に, 今回の振動は, 初期時刻 t0 = 0に座標原点 r0 = 0を初速度 v0 = 1m/sで出発し, まさに振動ならではの現象とし
て, ある時刻に原点に回帰する. その帰還時刻こそが 3.14秒, そして厳密には π 秒なのである. 高校物理を学べば, 紐
の長さ 9.8mの振り子の運動が同じ帰還時刻を示すことが分かる*11. 自然が数学で書かれるというのはそういう事だ.

二次関数や三角関数を, 自然界で見たこともないです
少なくとも 20世紀はそうだった. しかし, 現代では, 単に時代遅れと言わざるを得ない. 自然界における二次関数や

なら時間刻み幅 T を瞬間にすれば・・・, そう! 厳密解になる. 実際, an = 9.8に対する vn, rn の計算は「区分求積法」の一種であり,極限
では「積分法」になる. ただし数学的には証明が必要で, 現実的には計算精度を越えて T を小さく出来ない.

*11 この三角関数で表される運動は単振動と呼ばれ, 高校物理で習う. 具体的には重力加速度 g, 紐の長さ l の単振り子の加速度は a = −gr/l で、
周期は T = 2π

√
l/g だと高校物理で学ぶ. よって, g = 9.8m/s2 と等しい長さ l = 9.8m を用いれば T = 2π sとなる. ただし重力加速度

の値は場所に依存する [11] ので, 精度を出すには工夫が必要になる. まさに大学の物理実験のボルダ振り子などが高精度実験の一例になる
(図 3.6p.25 ).

./FitPhys/Calc/EularMethodPi.wxm
./FitPhys/Calc/EularMethodPi.m
./FitPhys/Calc/EularMethodPi.c
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三角関数は, ICT 時代では図 3.6p.25 のように, 誰でも簡単に可視化出来る. しかも, 可視化ソフトウェアを無料で作る
ことさえ容易だ. この流れが加速すると思われる AI 時代に, 本書を読んで, 数学知識や IT 技術が少しでもアップデー
トされれば幸いだ.

図 3.6 動画像処理ソフトを用いた物理実験. 筆者の所属学科では, 卒研生が OpenCV[5]を用いて開発したソフト
ウェアを, 一年生がユーザーとして利用して, 物理実験で運動を可視化する [8]. 上図は, 斜面を転がる物体（ボール
や台車）の運動の可視化における実験状況（左）と得られたグラフ（右）. 最初の登坂と, 途中からの降坂で, 動摩擦
（転がり抵抗）が逆むきに働くため, 二次関数は非対称になる事も読み取れる. 下図は, ボルダ振り子の運動の可視化
における実験状況（左）と得られたグラフ（右）. グラフは三角関数だが, さらに学生はデータ（エクセル CSV)を
フィッティングして周期を求め, 慣性モーメント等を考慮し重力加速度を見積もる.
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コラム：数学の悲劇

微分とは何か？と問われれば「グラフの傾きを求める演算だ」と答える. 正しいが, 教え方としては間違っている.

問題は, 誰も「傾き」を求めたくない事だ. もっと言えば「グラフ」など見たくもない. そもそも小学校時代から三角
も円も, どんな図形が好きじゃなかった. つまり, 好きでもないことの, 見たくないものについて, 求めたくもないも
のを算出する. 全く学習意欲が湧かないだろう.

このげんなりした気持ちを初学者は「数学が分からない」と表現する事がある. これは別れ際の恋人が「あなたが
分からない」と言うの同じ意味だが, もし仮に初学者のそばに数学好きがいると悲しい破局が起こる.

その悲劇とは, 数学が分かっているからこそ, 喜んで丁寧に教える事だ. 教える側は誠実だろうが, その誠実さを目
の当たりにして初学者は分かってしまう—「数学など, 自分に分かるわけもない」と悟ってしまう. 冷めるからこそ熱
く関数や接線を説明されれば, 「数学を分かる奴らとは, 人として分かりあえない」と離れていく. こうして数学がも
たらす悲しい破局が繰り返されてきた—というのは冗談だが, およそ戦後日本における理系文系の断絶を言い当てて
いるように思える.

数学を分かる人間と, 数学を分からない人間の, ２種類に分けられる. 昔も今も変わらぬと思われたが, 実は今, 現
状が変わろうとしている. この「数学を分かっている」側に, 近年 AIが加わったからだ (図 1.3p.5 ). この AI時代で
は, 数学を分からない人間の上位に AIが位置するだけでなく, 数学を教える人間の役割さえ AIが担うのである.

一方で AI開発に目を向ければ, AIを構築する関数の微分勾配消失が問題だったりもする. その現状において, AI

を作る人材を教育で産み出すならば, 国民の半数が微分や三角関数を毛嫌いしても許される時代は終わらせるべきだ
ろう. 言いすぎかもしれないが, そう表現すると, 若者を教える側の私の焦燥感が伝わるだろうか？
本書の目標は, 数学を AIよりも分かってもらえる事だ. ここで分かるというのは, 腑に落ちる以上に, もう一度好

きになるという意味に近い. 数学を愛せるなら, 心を持てぬ AIに勝る— というのは暑苦しい理想で, 現実にはこの瞬
間に多くの読者が離れていく悲劇が訪れたとしたら, 本当に言い過ぎました, すいません.



27

第 4章

FIT用セットアップ 2026

§ 4.1 FITの PCにログインする

§ 4.1.1 pdfの設定（pdf関連付けとログイン)

1. pdf などが入ったディレクトリ（pack）をデスクトップにコピー
2. コピーしたディレクトリの FitPhysIsteamL.pdf をダブルクリック (IsteamSではない方）
3.「アプリを選択して.pdf を開く」で「Adobe Acrobat」を「常に使う」で選択
4. しばらくすると「ログイン」が出るので、 bene.fit.ac.jp のメールアドレスでログイン
5. 左タブ「すべてのツール」は閉じる
6. 右下アイコンで「スクロールを有効にする」を OFF

7. マウスホイールで１ページつづ見える事を確認する

§ 4.1.2 URLクリックの確認

1. 最初の方のページに、google などのサイトへのアクセスがあるので、クリックして EDGE が起動する事を確認

§ 4.1.3 Maxima の設定 (wmx ファイルの関連付け)

Maxima の場所を確認し、関連付けする

1. ウィンドウズ画面下部の検索で wxmaxima と打ち込む
2. 検索結果に「wxMaxima(GUI for Maxim)」がでるので、左の「ファイルの場所を開く」をクリック
3. 立ち上がったファイルエクスプローラーの、上部のディレクトリ名 C:...systemを上手くコピーする。
4. 図 2.4p.10 の Maxima をクリック
5. wmxを開くアプリを設定する。まずディレクトリは先程の文字列 C:...systemをコピーする
6. すると「wxMaxima(GUI for Maxim)」のショートカットが出るので選択し、「開く」をクリック
7.「常に使う」をクリックすると、恐らく失敗する
8. 再度、 図 2.4p.10 の Maxima をクリックすると上手く起動する
9. 起動したら CTRL+A, SHIFT+ENTERで実行確認
10. ×を押して閉じる
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§ 4.1.4 Python の設定 (ipynb ファイルの関連付け)

1. 図 2.4p.10 の Python をクリック
2. ipynbを開くファイルを設定する。まずディレクトリは C:Software/miniconda3/Script なので、Cドライ
ブ、Software、miniconda3、Scriptと順に選んでいく。

3. ディレクトリ内にファイルが多数あるので、下の方のファイル jupyter-notebook.exe を選び「開く」をク
リック。

4.「常に使う」をクリック。これで開くファイルが設定され、起動する
5. 起動したら CTRL+A, SHIFT+ENTERで実行確認
6. ×を押して閉じる。コマンドプロンプト（黒）も×を押して閉じる

*1

§ 4.1.5 Mathematica の設定 (m ファイルの関連付け)

1. 図 2.4p.10 の Mathematica をクリック
2.「おすすめのアプリ」から Mathematica を選んで「常に使う」をクリック。これで開くファイルが設定され、起
動する

3. 起動したら CTRL+A, SHIFT+ENTERで実行確認
4. ×を押し、「保存しない」を選んで閉じる（ただし、 Mathematica 自体は終了しない。終了すると、起動に時間
がかかるため）

*1 不要の旧バージョン：Python の設定 (ipynb ファイルの関連付け)

1. 図 2.4p.10 の Python をクリック
2. Visual Studio Code が立ち上がると思われる。
3. 上部に「制限モード・・・」とでるので、「管理」、「信頼する」をクリックし、ちょっと待つ
4.「ipykernel パッケージが必要」と出たら、「インストール」
5. Python 環境を整えるため、左上カーネルをクリックし、順に「Python 環境」、「base(Python 3.12.9)」を選択
6. base環境には sympy が存在するはずだが、無ければ「pip install sympy」を SHIFT+ENTERする。（時間がかかるが、終わらせる）
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