

Thermal Conductivity of β-Si₃N₄: II, Effect of Lattice Oxygen

Mikito Kitayama*,[†]

Synergy Ceramics Laboratory, Fine Ceramics Research Association, 2268-1 Shimo-Shidami, Nagoya, Aichi 463–8687, Japan

Kiyoshi Hirao,* Akira Tsuge, Koji Watari,* Motohiro Toriyama, and Shuzo Kanzaki*

National Industrial Research Institute of Nagoya (NIRIN), 2268-1 Shimo-Shidami, Nagoya, Aichi 463-8687, Japan

Dense β -Si₃N₄ with various Y₂O₃/SiO₂ additive ratios were fabricated by hot pressing and subsequent annealing. The thermal conductivity of the sintered bodies increased as the Y₂O₃/SiO₂ ratio increased. The oxygen contents in the β -Si₃N₄ crystal lattice of these samples were determined using hot-gas extraction and electron spin resonance techniques. A good correlation between the lattice oxygen content and the thermal resistivity was observed. The relationship between the microstructure, grain-boundary phase, lattice oxygen content, and thermal conductivity of β -Si₃N₄ that was sintered at various Y₂O₃/SiO₂ additive ratios has been clarified.

I. Introduction

Our previous work investigated the effects of various micro-structural factors (grain size, thickness of the grain-boundary film, and alignment of elongated grains) of β -Si₃N₄ ceramics on thermal conductivity.¹ Theoretically and experimentally, it was demonstrated that mere grain growth cannot improve thermal conductivity, because of the unique faceting nature of this material. However, it might be possible to improve the thermal conductivity of β -Si₃N₄ significantly by reducing the lattice defects,² especially the content of oxygen that is dissolved in the crystal lattice, as has been shown for AlN ceramics. Since a quantitative correlation between the concentration of oxygen dissolved in the lattice of single-crystal AlN and thermal conductivity was given by Slack and co-workers,^{3,4} there have been several additional studies of AlN polycrystals.^{5–7} To date, there has been no report on the effect of lattice oxygen on the thermal conductivity of $\beta\text{-}Si_3N_4$ ceramics. Oxygen is well-known to dissolve in the $\alpha\text{-}Si_3N_4$ crystal lattice.⁸ However, the fact of whether or not oxygen dissolves in the β-Si₃N₄ crystal latticeand if so, how much-never has been reported.

Recently, we reported on the lattice oxygen content of crystalline β -Si₃N₄ using the hot-gas extraction method,⁹ which has been proven successful in analyzing the lattice oxygen content of AlN ceramics.¹⁰ The pure β -Si₃N₄ crystal was fabricated via heat treatment of α -Si₃N₄ powder with sintering additives, and the

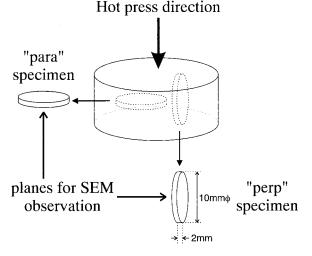
*Member, American Ceramic Society.

1985

secondary phase was removed through acid treatments. The oxygen contents were reported to be 0.258 \pm 0.006 and 0.158 \pm 0.003 wt%. However, this method has not yet been applied to dense β -Si₃N₄ ceramics. In AlN, the electron spin resonance (ESR) method also has been shown to be effective for analyzing lattice defects that are caused by oxygen dissolution.¹¹ The number of spins caused by electrons trapped by nitrogen vacancies was inversely proportional to the lattice oxygen content and, thus, had a good correlation with thermal conductivity. It is expected that the ESR analysis method also could be applied to β -Si₃N₄.

In AlN ceramics that have been sintered with Y_2O_3 , the Y_2O_3 functions as a sintering aid to allow liquid-phase sintering and reduce the lattice oxygen via the formation of Al₂O₃-Y₂O₃ phases. Thus, the ratio of Y_2O_3 and Al_2O_3 (Y_2O_3/Al_2O_3), the latter of which is derived from the oxygen impurities in the raw powder, and, hence, the nature of the second phase were crucial for controlling the lattice oxygen content. $^{5-7}$ Increasing the $Y_2O_3/$ Al₂O₃ ratio results in a change of the grain-boundary phase, from Y₃Al₅O₁₂ (YAG) to YAlO₃ (YAP) to Y₄Al₂O₉ (YAM), a decrease in the lattice oxygen content, and an increase in the thermal conductivity.⁶ In all cases, Y₂O₃ was responsible for the reduction of the lattice oxygen. Thus, the ratio of Y_2O_3 and SiO_2 (Y_2O_3 / SiO_2), the latter of which has been derived from the oxygen impurities in the raw powder, also is expected to have a possibly significant effect on the thermal conductivity of β -Si₃N₄. The purpose of this work is to investigate the effect of the Y_2O_3/SiO_2 additive ratio and, hence, the effect of the lattice oxygen content on the thermal conductivity of β -Si₃N₄. Two methods—hot-gas extraction and ESR-have been combined to analyze and quantify the lattice defects of β -Si₃N₄ ceramics with various Y₂O₃/SiO₂ additive ratios. The effects of various microstructural factors of β -Si₃N₄ ceramics on the thermal conductivity were clarified in the previous work;¹ therefore, isolation of the effect of the lattice oxygen content in this work is now possible.

II. Experimental Procedure


Commercial α -Si₃N₄ powder (Product SN-E05, specific surface area of $4-6 \text{ m}^2/\text{g}$, oxygen content of 0.84 wt%; UBE Industries, Ltd., Yamaguchi, Japan) was mixed with Y2O3 and SiO2 powders (purity of >99.9%, specific surface areas of 27 and 140 m^2/g , respectively; Hokko Chemicals, Tokyo, Japan) in a resin-coated ball mill for 3 h, using methanol as a mixing medium. The molar ratios of the Si₃N₄:Y₂O₃:SiO₂ mixtures were 40:1:2, 40:2:1, 40:2.5:0.5, and 40:3:0; these mixtures were designated as samples Y1, Y2, Y3, and Y4, respectively. Each slurry was dried using a rotary evaporator at a temperature of 60°C, subsequently dried at 110°C for 2 h, and passed through a 60 mesh nylon sieve. Thirty grams of each powder mixture was charged into a high-purity graphite dye (Toyotanso Co., Osaka, Japan) that was 30 mm in diameter and coated with high-purity BN powder (GP grade, Denki Kagaku Kogyo Co., Tokyo, Japan); the powder mixture then was hot-pressed at 1800°C for 2 h, under a pressure of 40

R. A Cutler-contributing editor

Manuscript No. 189239. Received July 12, 1999; approved January 26, 2000. Supported by AIST, MITI, Japan, as part of the Synergy Ceramics Project. This work has been supported in part by NEDO. The authors are members of the Joint Research Consortium of Synergy Ceramics.

Work has been supported in part by REDC. The authors are includers of the sound Research Consortium of Synergy Ceramics. Presented at the 51st Pacific Coast Regional Meeting of the American Ceramic Society (Oct. 27–29, 1999, Bellevue, WA), "International Symposium on High Thermal Conductivity Materials: Fundamentals and Applications" (Basic Science Division and Electronics Division).

[†]Author to whom correspondence should be addressed. Now with Functional Materials Engineering Department, Fukuoka Institute of Technology, Fukuoka 811–0295, Japan.

Fig. 1. Illustration showing how the disk specimens (10 mm in diameter, 2 mm thick) were obtained from the sintered samples.

MPa in a flowing nitrogen atmosphere. This procedure resulted in sintered bodies with a relative density of >99%. Hot-pressed sintered bodies subsequently were annealed at 1850°C for 4 h under a nitrogen pressure of 1 MPa in a high-purity BN crucible (N1 grade, Denki Kagaku Kogyo Co.) with a mixed powder bed of Si3N4 (Product SN-E10, UBE Industries, Ltd.) and BN (GP grade, Denki Kagaku Kogyo) (Si₃N₄/BN ratio of 7:3). The hot pressing and annealing were conducted in a furnace with graphite-heating elements that had never been used for materials that contained aluminum. This effort, combined with the use of a resin-coated ball mill and a high-purity graphite dye, evidenced the extreme care that was taken to avoid any possible contamination. Phase identification of the sintered bodies was performed using X-ray diffractometry (XRD) (CuK α radiation, operating conditions of 40 kV and 100 mA, receiving slit width of 0.3 mm). The specimen densities were determined via the Archimedes method.

Disk specimens (10 mm in diameter and 2 mm thick) that were made to measure the thermal diffusivity (α) were taken parallel and perpendicular to the hot-pressed surfaces from all the sintered samples and finished using a 74 μ m diamond wheel: these samples were called the "para" and "perp" specimens, respectively (see Fig. 1). The thermal diffusivity was measured at room temperature, using the laser-flash method (Model TC-3000, ULVAC, Yokohama, Japan) after both sides of specimens were coated with a layer of gold 600 Å thick and, subsequently, a layer of black carbon. The thermal conductivity (κ) was calculated according to the equation

 $\kappa = \rho C_{\rm p} \alpha$

where ρ is the density and $C_{\rm p}$ is the specific heat. A constant value of the specific heat— $C_{\rm p} = 0.7 \ {\rm J} \cdot ({\rm g} \cdot {\rm K})^{-1}$ —was used in this work. Following the measurements of α , all the specimens were surface-finished with a 1 μ m diamond slurry, plasma-etched in CF₄ gas, coated with a layer of gold 200 Å thick, and investigated via

scanning electron microscopy (SEM) (Model JSM-6340F, JEOL, Tokyo, Japan). Mean grain sizes were determined from the SEM micrographs, using the linear-intercept method.

One gram of each sintered body was ground using a WC ball mill for 10 min, dispersed in 50 mL of methanol, passed through a 500 mesh (25 µm) sieve (to remove a trace amount of coarse particles), and dried at a temperature of 60°C. Each powder was treated first with 50% HF at 60°C for 3 h and then with 50% H₂SO₄ at 120°C for 2 h, to remove the grain-boundary phase and possible fluoride compounds, respectively. After washing three times in distilled water, using a centrifugal sedimentation method, each powder was dried at 110°C for 12 h and passed through a 100 mesh (150 µm) nylon sieve. A commercial hot-gas extraction analyzer (Model TC-436, LECO Co., St Joseph, MI) was used for oxygen and nitrogen determinations. Approximately 20 mg of each dried powder sample was weighed into a graphite crucible (10 mm in diameter, 16 mm deep), and ~200 mg of graphite powder (Product 501-073, LECO Co.) was added to the sample to accelerate the carbothermal reduction of the oxide phases. The crucible was heated to 2500°C in 5 min in a flowing argon atmosphere. The release of oxygen and nitrogen, as a function of temperature, and the total concentrations of oxygen and nitrogen were recorded. A total of three measurements were performed for each sample.

Each sintered body also was cut into a bar shape 4 mm in diameter and 10 mm long. ESR measurements were performed at room temperature using an X-band (frequency of 9.0 GHz) spectrometer (Model E-12 ESR, Varian, Palo Alto, CA). The microwave power was 20 μ W, and the magnetic-field modulation and its amplitude were 100 kHz and 0.05 mT, respectively. The *g*-values were determined by comparison with a 2,2-diphenyl-1-picrylhydrazyl (DPPH) standard solution in benzene. The number of spins was determined via double integration of the derivative absorption signals and comparison of them with that of a DPPH standard solution in benzene.

III. Results

(1) Grain-Boundary Phase

Table I summarizes the results of the XRD phase identification for samples Y1-Y4. The Y2O3/SiO2 additive ratios that have been calculated from the oxygen content of the α -Si₃N₄ raw powder, and those of the grain-boundary phases (based on the chemical formulas in the parentheses), also are given in the table. For sample Y1, the Si₂N₂O and Y₂Si₂O₇ phases are observed, and the corresponding Y_2O_3/SiO_2 ratio is bewteen 0/1 and 1/2. For sample Y2, the $Y_2Si_2O_7$ and $Y_{20}N_4Si_{12}O_{48}$ (apatite structure) phases are observed, and the corresponding Y_2O_3/SiO_2 ratio is between 1/2and 10/9. For sample Y3, only the Y₂₀N₄Si₁₂O₄₈ phase is observed, and the corresponding Y_2O_3/SiO_2 ratio is ~10/9. For sample Y4, the $Y_{20}N_4Si_{12}O_{48}$ and $Y_2Si_3N_4O_3$ (melilite structure) phases are observed, and the corresponding Y2O3/SiO2 ratio is bewteen 10/9 and 1/0. Thus, the Y2O3/SiO2 ratios of the grainboundary phases are confirmed to be very similar to the additive compositions for all the samples. A Si₃N₄-Y₂O₃-SiO₂ phase diagram at a temperature of 1850°C can be constructed schematically from these XRD phase-identification results, as shown in Fig. 2. The Si_3N_4 - Si_2N_2O - $Y_2Si_2O_7$ (region I), Si_3N_4 - $Y_2Si_2O_7$ -

Table I. Results of Grain-Boundary-Phase Identification via XRD for Samples Y1-Y4

		Intensity [‡] of phases present			
Sample	Y_2O_3/SiO_2 additive ratio [†]		$\begin{array}{l} Y_{2}Si_{2}O_{7} \\ (Y_{2}O_{3}\cdot 2SiO_{2}), \\ Y_{2}O_{3}/SiO_{2} = 1/2 \end{array}$	$\begin{array}{rl} Y_{20}N_4Si_{12}O_{48}\\ (10Y_2O_3\cdot9SiO_2\cdot Si_3N_4),\\ Y_2O_3/SiO_2=10/9 \end{array}$	$\begin{array}{l} Y_2 S i_3 N_4 O_3 \\ (Y_2 O_3 \cdot S i_3 N_4), \\ Y_2 O_3 / S i O_2 \ = \ 1/0 \end{array}$
Y1	0.289	W	W	ND	ND
Y2	0.807	ND	W	VW	ND
Y3	1.267	ND	ND	m	ND
Y4	2.029	ND	ND	m	W

[†]Corrected for the oxygen content of α -Si₃N₄ powder. [‡]The symbol legend for the intensities is as follows: "m," middle; "w," weak; "vw," very weak; and "ND," not detected.



Fig. 2. Si_3N_4 - Y_2O_3 - SiO_2 phase diagram at 1850°C, constructed schematically from the XRD phase-identification result. Y_2O_3 / SiO_2 additive ratios of samples Y1-Y4 are indicated by arrows.

 $Y_{20}N_4Si_{12}O_{48}$ (region II), and $Si_3N_4-Y_{20}N_4Si_{12}O_{48}-Y_2Si_3N_4O_3$ (region III) three-phase fields correspond to the phase compositions of samples Y1, Y2, and Y4, respectively. The $Si_3N_4-Y_{20}N_4Si_{12}O_{48}$ two-phase field corresponds to the phase composition of sample Y3. The Y_2O_3/SiO_2 additive ratios of samples Y1–Y4, in regard to the oxygen content of the raw α -Si_3N_4 powder, also are indicated by arrows in this figure.

(2) Microstructure and Thermal Conductivity

Figure 3 shows SEM micrographs of polished and etched surfaces of all the samples. All micrographs are for the "para"

Table II summarizes the corrected Y₂O₃/SiO₂ ratios, the grainboundary volume fraction calculated using the phase diagram shown in Fig. 2 (the density of each terminal compound was used for calculation), and the densities of the sintered bodies, as well as the grain sizes and thermal conductivities (κ) of the para and perp specimens. The illustration shown in Fig. 1 indicates that it is easy to understand that the measured k values are the values perpendicular to the planes observed via SEM; hence, the mean grain sizes of the para and perp specimens correspond to the k values of the respective perp and para specimens. The differences in the mean grain size between the para and perp specimens are quite small, probably because of the method of determination. Because of the rodlike grain shape of β -Si₃N₄, the linear-intercept method determines a mean grain size that is similar to the grain width. The κ values of the para specimens are always smaller than those of the perp specimens, because of the alignment of the elongated β -Si₃N₄ grains due to the hot pressing, as noted in the previous paper.1

Figure 4 shows the increase in the κ value of β -Si₃N₄, relative to the increase of the Y_2O_3/SiO_2 ratio. A significant increase in κ occurs at $Y_2O_3/SiO_2\approx 1$. Below and above this critical ratio, the value of κ does not change significantly. Figure 5 shows the relationship between the mean grain size and κ . Data from the previous work¹ (5 wt% Y_2O_3 additive, grain-boundary volume fraction of $\sim 6\%$) also are shown in this figure for comparison. The relationships between the mean grain size and κ for samples Y3

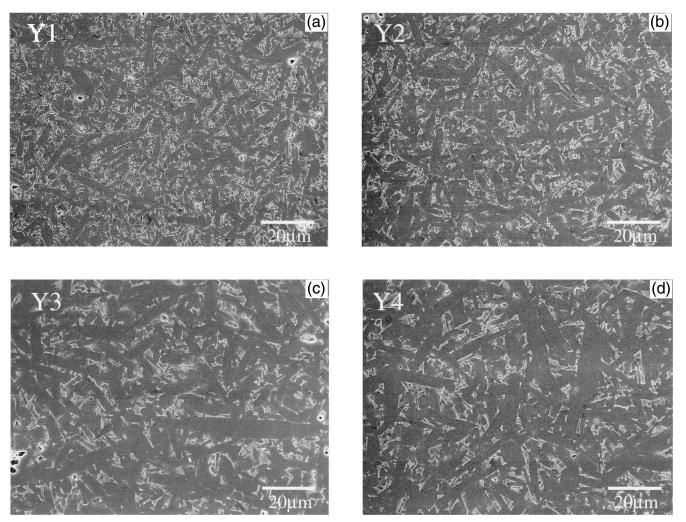


Fig. 3. SEM micrographs of polished and plasma-etched surfaces of samples Y1-Y4. All micrographs are from the "para" specimens.

Table II. Y₂O₃/SiO₂ Ratios, Grain-Boundary Volume Fractions, and Densities of Sintered Bodies, as Well as Grain Sizes and Thermal Conductivities of the "Para" and "Perp" Specimens for Samples Y1–Y4

	Y ₂ O ₃ /SiO ₂	Grain-boundary volume fraction	Density	Grain size (µm)		Thermal conductivity $(W \cdot (m \cdot K)^{-1})$	
Sample	ratio†	(vol%)	(g/cm^3)	Para	Perp	Para	Perp
Y1	0.289	10.11	3.211	1.98	1.73	50.1	58.8
Y2	0.807	8.02	3.240	2.64	2.45	56.0	68.6
Y3	1.267	8.81	3.290	4.17	3.96	79.1	100.4
Y4	2.029	12.33	3.327	4.32	4.17	75.9	99.1

[†]Corrected for the oxygen content of α -Si₃N₄ powder.

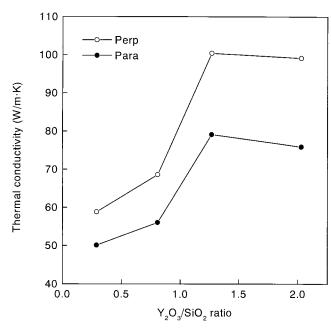


Fig. 4. Relationship between the Y_2O_3/SiO_2 ratios and thermal conductivities of samples Y1–Y4.

and Y4 were very similar to those of the previous data. However, those of samples Y1 and Y2 show smaller values for similar mean grain sizes, which suggests that certain effects other than the grain size and the associated "average grain-boundary-film thickness"¹ significantly decrease the κ values of samples Y1 and Y2.

(3) Hot-Gas Extraction

In a previous paper,⁹ the lattice oxygen content of β -Si₃N₄ crystals that had been heat-treated with a mixture of Y₂O₃ and SiO₂ in a loose powder state was measured, following removal of the grain-boundary phase by acid treatments. Because the decomposition temperature of β -Si₃N₄ was much lower (~1850°C) than that of AlN (~2000°C), the grain-boundary phase had to be removed before analysis. Otherwise, the oxygen release from the grain-boundary phase would almost mask that from the Si₃N₄ crystal. Also, Gaussian peak separation was necessary to distinguish oxygen release from the decomposition of the residual secondary phase and the crystal lattice.⁹ These processes were not necessary for AlN.¹⁰ In this study, this method has been applied further to dense polycrystals.

Table III summarizes the lattice oxygen contents of samples Y1-Y4 and those of samples $Y1^*$ and $Y2^*$; the latter two samples are crystalline β -Si₃N₄ powders that were obtained in the previous work⁹ by heat-treating the powder mixtures in a loose powder state at 1850°C for 2 h, using the same additive ratios as samples Y1 and Y2 in this work, respectively. The lattice oxygen content evidently decreases significantly from sample Y1 to sample Y3 as the Y₂O₃/SiO₂ ratio increases. However, the lattice oxygen content

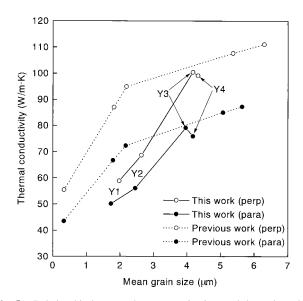


Fig. 5. Relationship between the mean grain sizes and thermal conductivities of samples Y1–Y4. Data from the previous work¹ (5 wt% Y_2O_3 additive, grain-boundary volume fraction of 5%–6%) also are shown for comparison.

Table III.	β -Si ₃ N ₄ Lattice Oxygen Contents Determined by
Hot-Gas	Extraction, and Spin Numbers per Unit Volume
Determi	ned via ESR for Samples Y1–Y4, Y1*, and Y2*

Sample	Lattice oxygen content (wt%)	Spin number per volume $(\times 10^{18}/\text{cm}^3)$
Y1 Y2 Y3 Y4 Y1* Y2*	$\begin{array}{c} 0.400 \pm 0.001 \\ 0.185 \pm 0.014 \\ 0.064 \pm 0.004 \\ 0.058 \pm 0.001 \\ 0.258 \pm 0.006 \\ 0.158 \pm 0.003 \end{array}$	1.13 1.63 3.44 4.82 1.03 2.64

changes only slightly from sample Y3 to sample Y4 with further increases in the Y_2O_3/SiO_2 ratio.

Although the Y_2O_3/SiO_2 additive ratios of samples Y1 and Y2 are the same as those of samples Y1* and Y2*, the lattice oxygen contents of the former samples are much larger than those of the latter samples. This disparity is probably due to differences in the amount of total SiO₂, which is caused by the use of different amounts of Si₃N₄ raw powder (samples Y1 and Y2 have twice as much Si₃N₄ as samples Y1* and Y2*). Also, the heat-treatment conditions (hot pressing for the former samples and a loose powder state for the latter samples) will lead to differences in the amount of SiO₂, because of vaporization.

As mentioned elsewhere,⁹ the peak for oxygen release coincides with that for nitrogen release, because of the decomposition of the β -Si₃N₄ crystal. Thus, we judged that it be the oxygen dissolved in the β -Si₃N₄ crystal lattice. To confirm that the oxygen amounts

August 2000

shown in Table III do, in fact, dissolve in the $\beta\text{-}Si_3N_4$ crystal lattice, additional ESR analyses were performed.

(4) ESR Analyses

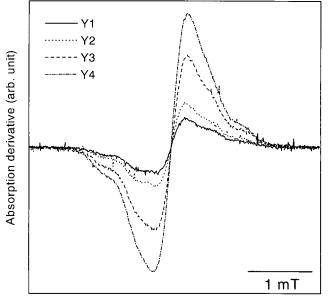
Figure 6 shows the ESR spectra of samples Y1–Y4. The specimen volumes were not constant; therefore, ESR spectra were normalized by their volumes. The *g*-value was determined to be 2.0028, by comparison with that of DPPH. This value agrees with that measured for stoichiometric amorphous Si₃N₄ that was made via the thermal nitridation of silicon metal and is characterized as a dangling bond on a Si atom back-bonded to three N atoms (\cdot Si \equiv N₃); this location is called the K-center.¹² It is identical to the nitrogen vacancy V_{N}^{m} in the β -Si₃N₄ crystal lattice. Table III also gives the numbers of spins per unit volume of samples Y1–Y4, as well as those of samples Y1* and Y2*, as determined using double integration of the derivative absorption signals that are shown in Fig. 6. Good correlation was observed between the number of spins per unit volume and the thermal conductivities of samples Y1–Y4, as observed for AlN ceramics.¹¹

IV. Discussion

(1) Relationship between the Number of Spins Determined by ESR and the Oxygen Contents

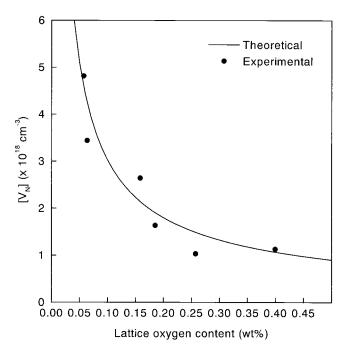
The relationship between the concentrations of lattice oxygens and nitrogen vacancies has been reported for AlN,¹¹ and the same discussion can be made for Si₃N₄. When O atoms are incorporated into the Si₃N₄ crystal lattice and substitute onto a portion of the N sites, it produces a Si vacancy $(V_{si}^{'''})$:

$$2O_2 \rightarrow 4O'_N + V'''_{Si} \tag{1}$$


Thus,

$$K_1 = \frac{[O_N^{\cdot}]^4 [V_{Si}^{'''}]}{(P_{O_2})^2}$$
(2)

where P_{O_2} is the partial pressure of oxygen. The electroneutrality condition requires


$$[V_{\rm Si}'''] = \frac{1}{4} [O_{\rm N}^{\cdot}] \tag{3}$$

In the Si₃N₄ crystal lattice, silicon and nitrogen vacancies are

Magnetic field →

Fig. 6. Normalized ESR derivative absorption spectra of samples Y1-Y4.

Fig. 7. Comparison of experimental and theoretical relationships between the lattice oxygen content and the nitrogen vacancy concentration.

produced under thermal equilibrium:

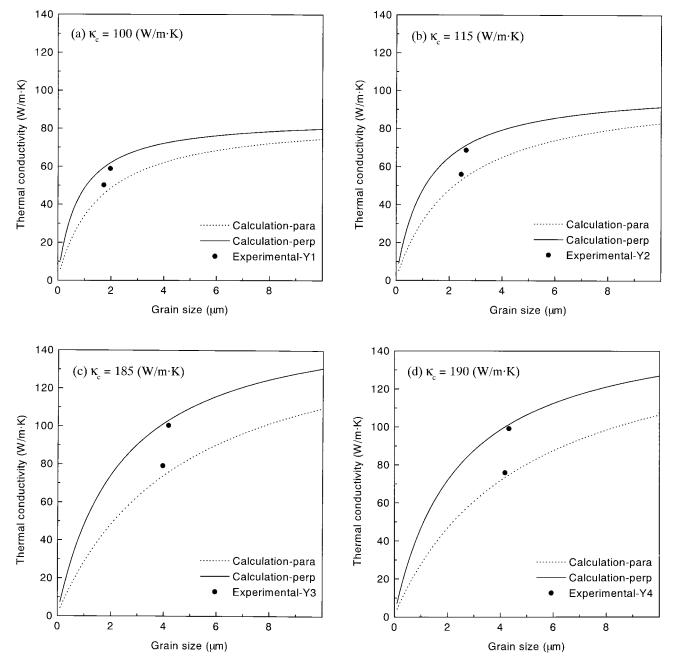
$$\operatorname{null} \to 3[V_{\mathrm{Si}}^{\prime\prime\prime\prime}] + 4[V_{\mathrm{N}}^{\prime\prime\prime}] \tag{4}$$

Thus,

$$K_2 = [V_{\rm Si}^{\prime\prime\prime\prime}]^3 [V_{\rm N}^{...}]^4 \tag{5}$$

Combining Eqs. (3) and (5), the relationship between nitrogen vacancies and the oxygen concentration is expressed by the following equation:

$$\begin{bmatrix} V_{\rm N}^{\rm m} \end{bmatrix} = \left\{ \frac{K_2}{\left(\frac{1}{4} \begin{bmatrix} {\rm O}_{\rm N} \end{bmatrix} \right)^3} \right\}^{1/4} \tag{6}$$


This equation indicates that the concentration of nitrogen vacancies increases as the oxygen concentration decreases.

Each silicon vacancy $V_{Si}^{'''}$ in the Si₃N₄ lattice is surrounded by four N atoms with a dangling bond, which can readily make two local N—N bonds. Thus, $V_{Si}^{'''}$ is not expected to be an ESR-active vacancy. In contrast, each nitrogen vacancy in the Si₃N₄ lattice ($V_{N}^{'''}$) is surrounded by three Si atoms with a dangling bond (the K-center). Two of these atoms can make one local Si—Si bond, but one dangling bond still remains; thus, $V_{N}^{'''}$ is expected to be an ESR-active vacancy. This hypothesis is plausible for the following reasons: (i) the *g*-value determined in this work agrees quite well with the known *g*-value for the K-center,¹² and (ii) simulations that assumed hyperfine interaction between the electron spin and nucleus spins of three N atoms back-bonded to Si (*C*3 symmetry)

Table IV. Estimated Thermal Conductivity of Crystalline β -Si₃N₄ for Samples Y1–Y4

Sample	Average grain-boundary film thickness, δ^{\dagger} (nm)	Thermal conductivity of the β -Si ₃ N ₄ crystal, κ^{\ddagger} (W·(m·K) ⁻¹)
Y1	15	100
Y2	19	115
Y3	27	185
Y4	28	190

 † Values estimated from mean grain sizes obtained via comparison with the previous data.¹ ‡ Values estimated from calculations based on the modified Wiener model.

Fig. 8. Comparison of the grain-size/thermal-conductivity relationship between calculations (solid and dotted lines) and experimental data (data points). Calculations are performed using "average grain-boundary-film thicknesses" and thermal conductivities of crystalline β -Si₃N₄ (κ_c) of (a) 15 nm and 100 W·(m·K)⁻¹, (b) 19 nm and 115 W·(m·K)⁻¹, (c) 27 nm and 185 W·(m·K)⁻¹, and (d) 28 nm and 190 W·(m·K)⁻¹ for samples Y1, Y2, Y3, and Y4, respectively.

successfully produced ESR spectra that were very similar to those observed for samples Y1-Y4.13 If two or more electron spins exist, resultant ESR spectra become much-more complicated than those shown in Fig. 6. Thus, if $V_{\rm N}^{\rm m}$ is the only source of electron spins that are detected via ESR, the number of spins per unit volume is equal to $[V_{\rm N}^{\rm m}]$. Equation (6) indicates that the product $(\frac{1}{4}[O_{\rm N}^{\rm m}])^3 \times$ $[V_{\rm N}^{\rm m}]^4$ should be constant. The $(\frac{1}{4}[O_{\rm N}])^3 \times [V_{\rm N}^{\rm m}]^4$ products are calculated from measured oxygen contents (determined via hot-gas extraction) and the numbers of spins (determined via ESR), and then the products are averaged. Using this value (K_2) , a theoretical relationship between the concentrations of lattice oxygen atoms and nitrogen vacancies (equal to the number of spins per unit volume) is determined, according to Eq. (6). Figure 7 compares the theoretical relationship with the experimental data given in Table III. The experimentally determined relationship between the concentrations of lattice oxygen atoms and nitrogen vacancies agrees quite well with that determined theoretically from Eq. (6), which indicates the validity of the above-mentioned assumptions and

further suggests that oxygen, in fact, dissolves in the β -Si₃N₄ crystal lattice. This work has shown the possibility that the ESR analysis quantifies the lattice oxygen content, using Eq. (6).

(2) Estimated Thermal Conductivity of the β -Si₃N₄ Crystal

As reported elsewhere,¹⁴ the Y_2O_3/SiO_2 additive ratio has a significant effect on the grain-growth behavior of β -Si₃N₄. In this study, grain size has been confirmed to increase as the Y_2O_3/SiO_2 additive ratio increases. According to previous work,¹ κ increases steeply up to a certain critical grain size. In addition, a new concept of the average grain-boundary-film thickness was introduced. Although a portion of the grain boundary has an "equilibrium film thickness" of ~1 nm,¹⁵ a majority of the grain-boundary phase has a tendency to have a filmlike morphology with a much-larger thickness than the equilibrium film thickness, because of the faceting nature of crystalline β -Si₃N₄. We have defined it as a

"thick film." Because of the filmlike morphology, the grainboundary phase significantly reduces the κ value of the β -Si₃N₄ sintered body. The average grain-boundary-film thickness also has been demonstrated to increase as the grain size increases. Thus, the thermal conductivity (κ) of the β -Si₃N₄ sintered body was expressed as a function of the average grain size \bar{d} , the average grain-boundary-film thickness $\bar{\delta}$, shape factors F_s (aspect ratio and alignment), and lattice defects D_i :

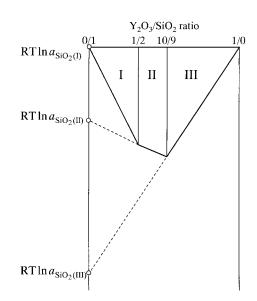
$$\kappa = f(\bar{d}, \bar{\delta}, F_s, D_1)$$

Here, we want to estimate the κ value of the β -Si₃N₄ crystal itself and elucidate the effect of lattice defects ($\kappa = f(D_1)$) by excluding the microstructural effects of the \bar{d} , $\bar{\delta}$, and F_s terms. The value of δ is calculated from the mean grain sizes of samples Y1–Y4, using the relationship of grain size versus average grain-boundary-film thickness that was obtained in the previous work.1 The mean aspect ratio is assumed to be equal to 2, and the κ value of the grain-boundary phase is assumed to be 1 $W(m\cdot K)^{-1}$. Several calculations based on the modified Wiener's model¹ were performed using various κ values of crystalline β -Si₃N₄. The κ values of crystalline β -Si₃N₄ yielded the most-similar grain-size/thermalconductivity relationships for each sample; these values are summarized in Table IV. Figures 8(a), (b), (c), and (d) compare the results of calculations and experimental data for samples Y1, Y2, Y3, and Y4, respectively. Good agreement between the values was observed in each case.

The lattice-defects term D_1 is a sum of point defects, line defects (dislocations), and stacking faults. A significant density of dislocations (~10⁹/cm²) was observed for β -Si₃N₄ on crystallization of the grain-boundary phase.¹⁶ However, point defects generally are accepted to have a dominant effect on κ for inorganic crystalline materials that transfer heat predominantly via phonons.³ Figure 9 shows the relationship between the lattice oxygen content and the estimated thermal resistivity (1/ κ) of crystalline β -Si₃N₄ shown in Table IV. For AlN single crystals, a linear relationship has been proposed,^{3,4} which is given by the line in Fig. 9. A positive correlation also is observed for crystalline β -Si₃N₄. Although some deviations would exist between the true and estimated values, this trend would be unchanged.

Consequently, we conclude that the point defects in the β -Si₃N₄ crystal lattice that are created by oxygen dissolution dictate the thermal conductivity of this material, similar to the case in AIN




Fig. 9. Relationship between the lattice oxygen contents determined by the hot-gas extraction method and thermal resistivities (inverse of thermal conductivities) of β -Si₃N₄ crystal estimated from calculations shown in Fig. 8. Line represents the theoretical correlation for single-crystal AlN.

ceramics. The correlation between the lattice oxygen content and the thermal resistivity of crystalline β -Si₃N₄ is not a straight line, as was proposed for AlN single crystals. This nonlinear relation may be due to the more-complicated structure of the β -Si₃N₄ crystal than that of the AlN crystal, which is categorized as a simple adamantine compound.

(3) Effect of the Grain-Boundary Phase on the Lattice Oxygen Content

Following thermodynamic arguments that were made by Jackson *et al.*⁷ to explain the effect of the grain-boundary phase composition on the κ value of Y₂O₃-doped AlN ceramics, a corresponding standard free-energy diagram, as a function of the Y_2O_3/SiO_2 ratio of the grain-boundary phase, is shown in Fig. 10. The activity of SiO₂ (a_{SiO_2}) in the three-phase fields may be related solely to the Y_2O_3/SiO_2 ratio, because the activity of Si_3N_4 is always unity. The liquid phase at the annealing temperature was assumed to be in equilibrium with the phases observed via XRD. For sample Y1, the value of a_{SiO_2} is determined by the Si₂N₂O- $Y_2Si_2O_7$ tie line and is equal to that of the Si_3N_4 -Si_2N_2O system. Thus, the activity in this sample is the highest of all the samples. For sample Y2, the value of a_{SiO_2} is determined by the Y₂Si₂O₇- $Y_{20}N_4Si_{12}O_{48}$ tie line and is smaller than that of sample Y1. For sample Y4, the value of a_{SiO_2} is determined by the $Y_{20}N_4Si_{12}O_{48}$ - $Y_2Si_3N_4O_3$ tie line and is the smallest value among all the samples. The activity of SiO₂ of the grain-boundary phase should affect the oxygen solubility in the β -Si₃N₄ crystal lattice of sintered bodies, which explains the change of lattice oxygen atoms due to the Y_2O_3/SiO_2 ratio in this work. Although only $Y_{20}N_4Si_{12}O_{48}$ was observed for sample Y3, it probably contains a small amount of $Y_2Si_3N_4O_3$ phase, considering that the oxygen content and κ value of sample Y3 were almost identical to that of sample Y4. Because the melting points, viscosities, and wetting behaviors would differ for different phases, and their different effects indeed affect the oxygen removal during sintering, the total change of these properties due to various Y2O3/SiO2 ratios would control the value of κ for β-Si₃N₄.

The experimental results strongly suggest that both the $Y_{20}N_4Si_{12}O_{48}$ and $Y_2Si_3N_4O_3$ phases should be present in the grain-boundary phase of β -Si₃N₄ ceramics that have been sintered with Y_2O_3 to guarantee high κ values. However, greater Y_2O_3 addition than that in sample Y3 does not improve κ , as demonstrated experimentally; it significantly increases the amount of the grain-boundary phase, because of the formation of the $Y_2Si_3N_4O_3$

Fig. 10. Schematic standard free-energy diagram, as a function of the Y_2O_3/SiO_2 ratio of the grain-boundary phase. Extrapolations of tie lines to $Y_2O_3/SiO_2 = 0$ represent *RT* ln a_{SiO_2} values.

V. Conclusions

Two methods that were developed to analyze the lattice oxygen content and associated lattice defects in AlN-hot-gas extraction and electron spin resonance-have been shown to be applicable to β -Si₃N₄. The thermal conductivity (κ) and lattice oxygen content have been evaluated for β -Si₃N₄ that has been sintered at various Y₂O₃/SiO₂ additive ratios. The following conclusions can be determined, based on the current work:

(1) The κ value for β -Si₃N₄ increases as the Y₂O₃/SiO₂ additive ratio increases. A significant increase in k occurs near the $Y_2O_3/SiO_2 = 1$ grain-boundary phase composition.

(2) Grain size also increases as the Y_2O_3/SiO_2 additive ratio increases.

(3) The lattice oxygen content decreases as the Y_2O_3/SiO_2 additive ratio increases and attains a constant value if the grainboundary phase composition of $Y_2O_3/SiO_2 \approx 1$ is exceeded.

(4) To compare the κ value of β -Si₃N₄ crystals by excluding the microstructural effects, calculations were performed based on the model that was proposed in the previous work.¹ A positive correlation between the lattice oxygen contents and estimated thermal resistivities of β -Si₃N₄ crystal was observed, as was demonstrated for single-crystal AlN.

(5) The grain-boundary phase composition dictates the lattice oxygen content of β -Si₃N₄. The lattice oxygen content is lowest when both $Y_{20}N_4Si_{12}O_{48}$ and $Y_2Si_3N_4O_3$ are present in the grain-boundary phase. Excess Y2O3 addition results in an increase of the grain-boundary phase without decreasing the lattice oxygen content. Thus, it is concluded that an optimum amount of Y_2O_3 addition exists, depending on the amount of oxygen impurities in the Si₃N₄ raw powder, to achieve the highest κ value in β -Si₃N₄.

Collectively, the relationship between the microstructure, grainboundary phase, lattice oxygen content, and κ value of β -Si₃N₄ that has been sintered at various Y2O3/SiO2 additive ratios has been clarified in this work.

Acknowledgments

The authors deeply thank Dr. M. Okazaki (NIRIN) for his kind measurements of ESR spectra and helpful discussions. The authors also greatly appreciate simulations of ESR spectra that were performed by Dr. K. Toriyama (NIRIN).

References

¹M. Kitayama, K. Hirao, M. Toriyama, and S. Kanzaki, "Thermal Conductivity of B-Si₂N₄: I. Effects of Various Microstructural Factors," J. Am. Ceram. Soc., 82 [11] 3105-12 (1999).

²K. Watari, K. Hirao, M. Toriyama, and K. Ishizaki, "Effect of Grain Size on the Thermal Conductivity of Si₃N₄," J. Am. Ceram. Soc., 82 [3] 777-79 (1999)

³G. A. Slack, "Nonmetallic Crystals with High Thermal Conductivity," J. Phys. Chem. Solids, 34, 321-35 (1973).

⁴G. A. Slack, R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande, "The Intrinsic Thermal Conductivity of AlN," *J. Phys. Chem. Solids*, **48** [7] 641–47 (1987).

⁵A. V. Virkar, T. B. Jackson, and R. A. Cutler, "Thermodynamic and Kinetic Effects of Oxygen Removal on the Thermal Conductivity of Aluminum Nitride, J. Am. Ceram. Soc., 72 [11] 2031-42 (1989).

⁶H. Buhr, G. Müller, H. Wiggers, F. Aldinger, P. Foley, and A. Roosen, "Phase Composition, Oxygen Content, and Thermal Conductivity of AlN(Y2O3) Ceramics," J. Am. Ceram. Soc., 74 [4] 718-23 (1991).

⁷T. B. Jackson, A. V. Virkar, K. L. More, R. B. Dinwiddie Jr., and R. A. Cutler, "High-Thermal-Conductivity Aluminum Nitride Ceramics: The Effect of Thermodynamic, Kinetic, and Microstructural Factors," J. Am. Ceram. Soc., 80 [6] 1421-35 (1997).

⁸C.-M. Wang, X. Pan, M. Rühle, F. L. Riley, and M. Mitomo, "Review: Silicon Nitride Crystal Structure and Observations of Lattice Defects," J. Mater. Sci., 31, 5281-98 (1996).

⁹M. Kitayama, K. Hirao, M. Toriyama, and S. Kanzaki, "Oxygen Content in β-Si₃N₄ Crystal Lattice," J. Am. Ceram. Soc., 82 [11] 3263–65 (1999). ¹⁰A. Thomas and G. Müller, "Determination of the Concentration of Oxygen

Dissolved in the AlN Lattice by Hot Gas Extraction from AlN Ceramics," J. Eur. Ceram. Soc., 8, 11-19 (1991).

¹¹S. Nakahata, K. Sogabe, T. Matsuura, and A. Yamakawa, "Electron Spin Resonance Analysis of Lattice Defects in Polycrystalline Aluminum Nitride," J. Am. Ceram. Soc., 80 [6] 1612-14 (1997).

¹²A. Stesmans and G. Van Gorp, "·Si=Si₃ Defect at Thermally Grown (111)Si/ Si₃N₄ Interfaces," Phys. Rev. B: Condens. Matter, 52 [12] 8904–20 (1995).

¹³M. Okazaki and K. Toriyama; unpublished work (1999).

¹⁴M. Kitayama, K. Hirao, M. Toriyama, and S. Kanzaki, "Control of β-Si₃N₄ Crystal Morphology and Its Mechanism: I. Effect of SiO2 and Y2O3 Ratio," J. Ceram. Soc. Jpn., **107** [10] 930–34 (1999). ¹⁵D. R. Clarke and G. Thomas, "Grain Boundary Phases in Hot-Pressed MgO

Fluxed Silicon Nitride," J. Am. Ceram. Soc., **60** [11–12] 491–95 (1977). ¹⁶W. E. Lee and G. E. Hilmas, "Microstructural Changes in β-Silicon Nitride Grains upon Crystallizing the Grain-Boundary Glass," J. Am. Ceram. Soc., 72 [10] 1931-37 (1989).