
 - 1/9 -

ＪａｖａプログラミングⅠ

９回目 while、do while 文

● 繰り返し文２ while 文
while 文 ① 繰り返し条件の式を処理する。

A. 式が true のとき、ブロック内を処理する。
B. 式が false のとき、ステップ③へ。

② ステップ①へ。
③ 繰り返しを終了する。

while(繰り返し条件の式)

{

 文;

 ：
}

※ ブロック{ }内の文が１つの場合、そのブロック記号{ }は省略できる。

ソースコード例
ソースファイル名：Sample9_1.java

// while 文の実行
class Sample9_1
{
 public static void main(String[] args)
 {
 int i = 1;

 // 変数 i が 5 以下なら繰り返す
 while(i<=5)
 {
 System.out.println(i+“回目を繰り返しています。”);
 i++; // 変数 i を１増やす（ここがなければ無限に繰り返す）
 }
 System.out.println(“繰り返しが終わりました。”);
 }
}

 - 2/9 -

実行画面

>java Sample9_1
1 回目を繰り返しています。
2 回目を繰り返しています。
3 回目を繰り返しています。
4 回目を繰り返しています。
5 回目を繰り返しています。
繰り返しが終わりました。
 -- Press any key to exit (Input "c" to continue) --

ソースコード例
ソースファイル名：Sample9_2.java

//フィボナッチ数列の隣接する項の比率は黄金率(1+√5)/2≒1.61803 に収束する
class Sample9_2
{
 public static void main(String[] args)
 {
 int n1=1, n2=1; // 第 1 項、第 2 項
 int n_1, n_2, n_3; // 第 3 項以降の計算用
 double rate; // 隣接する項の比率
 double temp=999.0; // 隣接する項の比率の保存用
 double diff=999.0; // 隣接する項の比率の差

 // 処理内容の出力
 System.out.println("<フィボナッチ数列の隣接する項の比率の収束>");

 // 順次求めながら比率の収束を探す
 n_1 = n1;
 n_2 = n2;
 while(diff>0.00001 || diff<-0.00001) // 比率の差が 0.00001 以下になるまで
 {
 rate = (double)n_2/n_1; // 隣接する項の比率を計算
 diff=temp-rate; // 隣接する項の比率の差
 temp=rate; // 次回の比較のために比率を保存
 System.out.println(n_2+”/”+n_1+”¥t=”+rate);
 n_3 = n_1 + n_2; // 次の項を求める
 n_1 = n_2;
 n_2 = n_3;
 }
 }
}

 - 3/9 -

実行画面

>java Sample9_2
<フィボナッチ数列の隣接する項の比率の収束>
1/1 =1.0
2/1 =2.0
3/2 =1.5
5/3 =1.6666666666666667
8/5 =1.6
13/8 =1.625
21/13 =1.6153846153846154
34/21 =1.619047619047619
55/34 =1.6176470588235294
89/55 =1.6181818181818182
144/89 =1.6179775280898876
233/144 =1.6180555555555556
377/233 =1.6180257510729614
610/377 =1.6180371352785146
987/610 =1.618032786885246
 -- Press any key to exit (Input "c" to continue) --

 - 4/9 -

● 繰り返し文３ do while 文
do while 文 ① ブロック内を処理する。
 ② 繰り返し条件の式を処理する。

A. 式が true のとき、ステップ①へ。
B. 式が false のとき、ステップ③へ。

③ 繰り返しを終了する。

do{

 文;

 ：
：

}while(繰り返し条件の式); // Å セミコロンが必要です。

※ ブロック{ }内の文が１つの場合、そのブロック記号{ }は省略できる。

ソースコード例
ソースファイル名：Sample9_3.java

// do while 文の実行
class Sample9_3
{
 public static void main(String[] args)
 {
 int i = 1;

 // 変数 i が 5 以下なら繰り返す
 do{
 // このブロックは最低でも１度は処理される。
 System.out.println(i+“回目を繰り返しています。”);
 i++; // 変数 i を１増やす（ここがなければ無限に繰り返す）
 }while(i<=5);
 System.out.println(“繰り返しが終わりました。”);
 }
}

 - 5/9 -

実行画面

>java Sample9_3
1 回目を繰り返しています。
2 回目を繰り返しています。
3 回目を繰り返しています。
4 回目を繰り返しています。
5 回目を繰り返しています。
繰り返しが終わりました。
 -- Press any key to exit (Input "c" to continue) --

○ while 文と do while 文の違い
while 文 繰り返し条件の式を初めに処理 Æ ブロックを１度も処理しない場合がある。
do while 文 繰り返し条件の式を後で処理 Æ 最低でも１回はブロックを処理する。

Sample9_3.java で int 型の変数 i を 7 で初期化した場合の実行画面

>java Sample9_3
7 回目を繰り返しています。
繰り返しが終わりました。
 -- Press any key to exit (Input "c" to continue) --

 - 6/9 -

ソースコード例
ソースファイル名：Sample9_4.java

// キーボード判定付き入力
import java.io.*;

class Sample9_4
{
 public static void main(String[] args) throws IOException
 {
 // キーボード入力の準備
 BufferedReader br;
 br = new BufferedReader(new InputStreamReader(System.in));

 int num;

 // 正しい範囲の値が入力されるまで繰り返す
 do{
 System.out.println(“１から１０までの整数を入力してください。”);
 num = Integer.parseInt(br.readLine());
 }while(num<1 || num >10);

 System.out.println(“あなたが入力した値は”+num+”です。”);
 }
}

実行画面

>java Sample9_4
１から１０までの整数を入力してください。
-1
１から１０までの整数を入力してください。
11
１から１０までの整数を入力してください。
7
あなたが入力した値は 7 です。
 -- Press any key to exit (Input "c" to continue) --

 - 7/9 -

● break 文と continue 文
break 文 現在の switch 文ブロックまたは for, while, do while 文ブロック
 の処理を終了して、そのブロックから抜ける。

・・・・・・
{

・・・・・・
・・・・・・
break;
・・・・・・

}
・・・・・・

ソースコード例
ソースファイル名：Sample9_5.java

// 無限ループから break 文により抜ける
class Sample9_5
{
 public static void main(String[] args)
 {
 int num=3; // 抜け出す繰り返しの回数番目
 int cnt=0; // 繰り返し回数のカウント

 // 指定された回数番目で break 文により抜ける
 while(true) // 無限ループ
 {
 cnt++;
 System.out.println(cnt+“回目を繰り返しています。”);
 if(num==cnt)break;
 }
 }
}

実行画面

>java Sample9_5
1 回目を繰り返しています。
2 回目を繰り返しています。
3 回目を繰り返しています。
 -- Press any key to exit (Input "c" to continue) --

 - 8/9 -

continue 文 現在の for, while, do while 文ブロックの処理を終了して、
 そのブロックの終端部にスキップする。

・・・・・・
{

・・・・・・
・・・・・・
continue;
・・・・・・

}
・・・・・・

ソースコード例
ソースファイル名：Sample9_6.java

// continue 文により繰り返しをスキップ
class Sample9_6
{
 public static void main(String[] args)
 {
 int i;
 int num=3; // スキップする繰り返しの回数番目

 // 指定された回数番目は continue 文によりスキップ
 for(i=1;i<=6;i++)
 {
 if(num==i)continue;
 System.out.println(i+“回目を繰り返しています。”);
 }
 }
}

実行画面

>java Sample9_6
1 回目を繰り返しています。
2 回目を繰り返しています。
4 回目を繰り返しています。
5 回目を繰り返しています。
6 回目を繰り返しています。
 -- Press any key to exit (Input "c" to continue) --

 - 9/9 -

○ 入れ子の繰返しの中で break 文を使うと？
break;文からみて最も内側の繰返し文を一つだけ抜ける。

ソースコード例
ソースファイル名：Sample9_7.java

// 入れ子の繰返しの中で break 文を使う
class Sample9_7
{
 public static void main(String[] args)
 {
 int i;

 // 内側のブロック内で break 文を使うと？
 for(i=0;i<3;i++)
 {
 System.out.println("i="+i);
 while(true)
 {
 break;
 }
 }
 }
}

実行画面

>java Sample9_7
i=0
i=1
i=2
 -- Press any key to exit (Input "c" to continue) --

