
コンパイラ

１２回目 コード生成 課題

課題課題課題課題１１１１ 次に演算式とその構文木を示す。表の命令をもつスタック機械でこの演算を実行す次に演算式とその構文木を示す。表の命令をもつスタック機械でこの演算を実行す次に演算式とその構文木を示す。表の命令をもつスタック機械でこの演算を実行す次に演算式とその構文木を示す。表の命令をもつスタック機械でこの演算を実行す

るための機械語コードを作成しなさい。るための機械語コードを作成しなさい。るための機械語コードを作成しなさい。るための機械語コードを作成しなさい。最初、最初、最初、最初、スタックスタックスタックスタックはははは空空空空であであであであり、り、り、り、最終的最終的最終的最終的ににににここここのののの演算演算演算演算のののの結結結結

果果果果であであであであるるるる真真真真（（（（１１１１））））ままままたたたたはははは偽偽偽偽（（（（００００））））ののののみみみみががががスタックスタックスタックスタックにににに残残残残るるるるここここととととととととすすすするるるる。。。。

（演算式）（演算式）（演算式）（演算式） p > 10 || p > 10 || p > 10 || p > 10 || qqqq <<<< 0000

（構文木）（構文木）（構文木）（構文木）

（スタック機械命令）（スタック機械命令）（スタック機械命令）（スタック機械命令）

命令（オペコード） パラメータ（オペランド） 機能 意味

PUSH para プッシュ
paraが変数であればその中の値をスタックへ積み、paraが数値であればその値
をスタックへ積む。

POP ポップ スタックのトップの値を取り出す。
ASSIGN var アサイン スタックのトップをポップし、その値を変数varへ書き込む。
JUMP label 分岐 ラベルlabelへ飛ぶ。
FJUMP label 分岐 スタックのトップをポップし、０であればラベルlabelへ飛ぶ。
TJUMP label 分岐 スタックのトップをポップし、０でなければラベルlabelへ飛ぶ。

INV 符号反転
スタックのトップをポップし、その値の符号を反転する。結果をスタックのトップへ
プッシュする。

ADD 加算
スタックのトップと２番目をポップし、それらを加算する。結果をスタックのトップへ
プッシュする。

SUB 減算
スタックのトップと２番目をポップし、２番目からトップを減ずる。結果をスタックの
トップへプッシュする。

MULT 乗算
スタックのトップと２番目をポップし、それらを乗算する。結果をスタックのトップへ
プッシュする。

DIV 除算
スタックのトップと２番目をポップし、２番目をトップで割る。結果をスタックのトップ
へプッシュする。

MOD 剰余
スタックのトップと２番目をポップし、２番目をトップで割ったときの余りを計算す
る。結果をスタックのトップへプッシュする。

GTOP >
スタックのトップと２番目をポップし、２番目がトップより大きければ１、そうでなけ
れば０をスタックのトップへプッシュする。

GEOP >=
スタックのトップと２番目をポップし、２番目がトップ以上であれば１、そうでなけ
れば０をスタックのトップへプッシュする。

LTOP <
スタックのトップと２番目をポップし、２番目がトップより小さければ１、そうでなけ
れば０をスタックのトップへプッシュする。

LEOP <=
スタックのトップと２番目をポップし、２番目がトップ以下であれば１、そうでなけ
れば０をスタックのトップへプッシュする。

EQOP ==
スタックのトップと２番目をポップし、２番目とトップが等しいならば１、そうでなけ
れば０をスタックのトップへプッシュする。

NEOP !=
スタックのトップと２番目をポップし、２番目とトップが等しくないならば１、そうでな
ければ０をスタックのトップへプッシュする。

ANDOP &&
スタックのトップと２番目をポップし、２番目とトップで一方または両方が０ならば
０、そうでなければ１をスタックのトップへプッシュする。

OROP ||
スタックのトップと２番目をポップし、２番目とトップで両方が０ならば０、そうでな
ければ１をスタックのトップへプッシュする。

