
 - 1/8 -

ＪａｖａプログラミングⅠ

８８８８回目回目回目回目 forforforfor 文文文文

●●●● 繰り返し文１繰り返し文１繰り返し文１繰り返し文１ forforforfor文文文文

for文 ① 初期化の式を処理する。

 ② 繰返し条件を処理する。

 A. ②が trueのとき、ブロック内を実行して、更新の式を処理する。

 B. ②が falseのとき、ステップ④へ。

 ③ ステップ②へ。

 ④ 繰り返しを終了する。

 ・初期化の式は最初に一度だけ実行される

 ・繰り返し条件は boolean型であり、関係演算子で表現される式などを記述

 ・常に繰り返し条件はブロック内を実行する前に処理される（前判定ループ）

for(初期化の式 ; 繰り返し条件 ; 更新の式) // � セミコロン無し！！

{

 文;

 ：

} // � ブロック{ }内の文が１つの場合、このブロック記号{ }は省略できる

ソースコード例ソースコード例ソースコード例ソースコード例

ソースファイル名：Sample8_1.java

// for文の実行

class Sample8_1

{

 public static void main(String[] args)

 {

 int i;

 // 変数 iを１つずつ増やし、1から 5になるまで繰り返す

 for(i=1; i<=5; i++)

 {

 System.out.println(i+“回目を繰り返しています。”);

 }

 System.out.println(“繰り返しが終わりました。”);

 }

}

 - 2/8 -

実行画面実行画面実行画面実行画面

>java Sample8_1

1回目を繰り返しています。

2回目を繰り返しています。

3回目を繰り返しています。

4回目を繰り返しています。

5回目を繰り返しています。

繰り返しが終わりました。

 -- Press any key to exit (Input "c" to continue) --

ソースコード例ソースコード例ソースコード例ソースコード例

ソースファイル名：Sample8_2.java

// 1.0から 3.0まで 0.5刻みでの合計を求める

class Sample8_2

{

 public static void main(String[] args)

 {

 double di;

 double sum=0; // 合計の計算用

 // 変数 diを 0.5ずつ増やし、1.0から 3.0になるまで繰り返す

 System.out.println("変数 sum:0.0（初期値）変数 di:1.0～3.0（0.5刻み繰返し）");

 System.out.println("sum + di --> sum");

 for(di=1.0; di<=3.0; di+=0.5)

 {

 System.out.print(sum+" + "+di+" --> ");

 sum += di; // sum = sum + di; と同じ

 System.out.println(sum);

 }

 System.out.println("1.0から 3.0まで 0.5刻みでの合計は"+sum+"です。");

 }

}

 - 3/8 -

実行画面実行画面実行画面実行画面

>java Sample8_2

変数 sum:0.0（初期値）変数 di:1.0～3.0（0.5刻み繰返し）

sum + di --> sum

0.0 + 1.0 --> 1.0

1.0 + 1.5 --> 2.5

2.5 + 2.0 --> 4.5

4.5 + 2.5 --> 7.0

7.0 + 3.0 --> 10.0

1.0から 3.0まで 0.5刻みでの合計は 10.0です。

 -- Press any key to exit (Input "c" to continue) --

○○○○ 初期化の式、条件の式、更新の式を省略したら？初期化の式、条件の式、更新の式を省略したら？初期化の式、条件の式、更新の式を省略したら？初期化の式、条件の式、更新の式を省略したら？

初期化の式 � 初期化ではなにも実行されない

繰り返し条件 � 常に trueになる

更新の式 � 更新ではなにも実行されない

たとえば、

for(; ;)

{

 ・・・

}

は無限ループとなる。

○○○○ 初期化の式初期化の式初期化の式初期化の式と更新の式と更新の式と更新の式と更新の式でででではははは、カンマで区切って、カンマで区切って、カンマで区切って、カンマで区切って２つ以上の２つ以上の２つ以上の２つ以上の式式式式をををを記述できる記述できる記述できる記述できる

// 複数の変数の初期化・更新をおこなう

class Ext8_1

{

 public static void main(String[] args)

 {

 int i, j;

 // 変数の宣言と初期化

 for(i=1,j=1; i<=5; i++,j+=2) // カンマで区切る

 {

 System.out.println(i+"+"+j+"="+(i+j));

 }

 System.out.println("終わり");

 }

}

カンマで区切り

複数の文を記述

 - 4/8 -

○○○○ 初期化の式に変数の宣言初期化の式に変数の宣言初期化の式に変数の宣言初期化の式に変数の宣言（同一の型のみ（同一の型のみ（同一の型のみ（同一の型のみ複数複数複数複数））））をををを含めることもできる含めることもできる含めることもできる含めることもできる

 宣言された変数のスコープは宣言された変数のスコープは宣言された変数のスコープは宣言された変数のスコープは forforforfor 文のブロック内文のブロック内文のブロック内文のブロック内

// 変数の宣言と初期化を行う

class Ext8_2

{

 public static void main(String[] args)

 {

 // 変数の宣言と初期化

 for(int i=1; i<=5; i++) // 宣言と初期化を行う

 {

 System.out.println(i+"回目を繰り返しています。");

 }

 System.out.println("繰り返しが終わりました。");

 }

}

○○○○ スコープスコープスコープスコープ

変数のスコープとは その変数を参照可能なコードの上の領域のこと

 スコープの開始：変数の宣言

 スコープの終了：それが属するブロックの終わり

 同じスコープ(ネストも含む)内で同名の変数は宣言できない

// 変数のスコープ

class Ext8_3

{

 public static void main(String[] args)

 {

 int i=10; // mainメソッドブロックの最後までがスコープ

 if(true)

 {

 int j=10; // if文ブロックの最後までがスコープ

 System.out.println(i); // ＯＫ

 System.out.println(j); // ＯＫ

 }

 System.out.println(i); // ＯＫ

 System.out.println(j); // コンパイルエラー

 }

}

変数の宣言と

初期化ができる

 - 5/8 -

○次の○次の○次の○次のようにようにようにように forforforfor 文を記述するとどうなる？文を記述するとどうなる？文を記述するとどうなる？文を記述するとどうなる？

// for文のよくあるミス

class Ext8_4

{

 public static void main(String[] args)

 {

 int i=0;

 // for文のブロック { } を忘れたら？

 for(i=1; i<=5; i++)

 System.out.println(i+"回目を繰り返しています。");

 System.out.println("次の繰り返しに進みます。");

 System.out.println("処理を終了します。¥n");

 // for文ブロック前に ;（セミコロン）を入れてしまったら？

 for(i=1; i<=5; i++);

 {

 System.out.println(i+"回目を繰り返しています。");

 System.out.println("次の繰り返しに進みます。");

 }

 System.out.println("処理を終了します。");

 }

}

実行画面実行画面実行画面実行画面

>java Ext8_4

1回目を繰り返しています。

2回目を繰り返しています。

3回目を繰り返しています。

4回目を繰り返しています。

5回目を繰り返しています。

次の繰り返しに進みます。

処理を終了します。

6回目を繰り返しています。

次の繰り返しに進みます。

処理を終了します。

 -- Press any key to exit (Input "c" to continue) --

for 文のブロック { } がな

い場合は、次の１行が for

文の繰り返しで実行される

文となる。

繰り返しで実行され

る文がない for 文と

なる。次に続くブロ

ックは for 文による

繰り返しに含まれ

ず、順次に実行され

る通常の文となる。

 - 6/8 -

●●●● forforforfor 文の入れ子（ネスト）文の入れ子（ネスト）文の入れ子（ネスト）文の入れ子（ネスト）構造構造構造構造

for文のブロック内に for文をさらに入れた構造であり、多重の繰り返しを処理できる。

for(初期化の式１ ; 繰り返し条件２ ; 更新の式３)

{

 for(初期化の式Ａ ; 繰り返し条件Ｂ ; 更新の式Ｃ)

 {

 文;

 ：

 }

}

ソースコード例ソースコード例ソースコード例ソースコード例

ソースファイル名：Sample8_3.java

// for文のネスト構造

class Sample8_3

{

 public static void main(String[] args)

 {

 int i, j;

 // ２重の繰り返し

 for(i=0;i<5;i++) // 変数 iを 0から 4まで繰り返す。

 {

 for(j=0;j<3;j++) // 変数 iを１度繰り返す度に変数 jを 0から 2まで繰り返す。

 {

 System.out.println(“iは”+i+“：jは”+j);

 }

 }

 }

}

 - 7/8 -

実行画面実行画面実行画面実行画面

>java Sample8_3

iは 0：jは 0

iは 0：jは 1

iは 0：jは 2

iは 1：jは 0

iは 1：jは 1

iは 1：jは 2

iは 2：jは 0

iは 2：jは 1

iは 2：jは 2

iは 3：jは 0

iは 3：jは 1

iは 3：jは 2

iは 4：jは 0

iは 4：jは 1

iは 4：jは 2

 -- Press any key to exit (Input "c" to continue) --

ソースコード例ソースコード例ソースコード例ソースコード例

ソースファイル名：Sample8_4.java

// 九九の表

class Sample8_4

{

 public static void main(String[] args)

 {

 int i, j;

 // 九九を計算して表として出力する

 for(i=1; i<=9; i++) // 変数 iを 1から 9まで繰り返す。

 {

 for(j=1; j<=9; j++) // 変数 jを 1から 9まで繰り返す。

 {

 // i段 j列目の九九を計算

 System.out.printf(“ %2d”,i*j);

 }

 // 1段毎に改行を入れる

 System.out.println();

 }

 }

}

 - 8/8 -

実行画面実行画面実行画面実行画面

>java Sample8_4

 1 2 3 4 5 6 7 8 9

 2 4 6 8 10 12 14 16 18

 3 6 9 12 15 18 21 24 27

 4 8 12 16 20 24 28 32 36

 5 10 15 20 25 30 35 40 45

 6 12 18 24 30 36 42 48 54

 7 14 21 28 35 42 49 56 63

 8 16 24 32 40 48 56 64 72

 9 18 27 36 45 54 63 72 81

 -- Press any key to exit (Input "c" to continue) --

