
 - 1/10 -

ＪａｖａプログラミングⅠ

９９９９回目回目回目回目 whilewhilewhilewhile、、、、do whiledo whiledo whiledo while 文文文文

●●●● 繰り返し文繰り返し文繰り返し文繰り返し文２２２２ whilewhilewhilewhile 文文文文

while文 ① 繰り返し条件を処理する。

A. ①が trueのとき、ブロック内を処理する。

B. ①が false のとき、ステップ③へ。

 ② ステップ①へ。

 ③ 繰り返しを終了する。

 ・繰り返し条件は boolean 型であり、関係演算子で表現される式などを記述

 ・常に繰り返し条件はブロック内を実行する前に処理される（前判定ループ）

 ・１度もブロック内が実行されない場合がある

while(繰り返し条件) // � セミコロン無し！！

{

 文;

 ：

} // � ブロック{ }内の文が１つの場合、このブロック記号{ }は省略できる

ソースコード例ソースコード例ソースコード例ソースコード例

ソースファイル名：Sample9_1.java

// while文の実行

class Sample9_1

{

 public static void main(String[] args)

 {

 int i = 1;

 // 変数 i が 5以下なら繰り返す

 while(i<=5)

 {

 System.out.println(i+“回目を繰り返しています。”);

 i++; // 変数 iを１増やす（ここがなければ無限に繰り返す）

 }

 System.out.println(“繰り返しが終わりました。”);

 }

}

 - 2/10 -

実行画面実行画面実行画面実行画面

>java Sample9_1

1 回目を繰り返しています。

2 回目を繰り返しています。

3 回目を繰り返しています。

4 回目を繰り返しています。

5 回目を繰り返しています。

繰り返しが終わりました。

 -- Press any key to exit (Input "c" to continue) --

ソースコード例ソースコード例ソースコード例ソースコード例

ソースファイル名：Sample9_2.java

//フィボナッチ数列の隣接する項の比率は黄金率(1+√5)/2≒1.61803に収束する

class Sample9_2

{

 public static void main(String[] args)

 {

 int n1=1, n2=1; // 第 1 項、第 2 項

 int n_1, n_2, n_3; // 第 3 項以降の計算用

 double rate; // 隣接する項の比率

 double temp=999.0; // 隣接する項の比率の保存用

 double diff=999.0; // 隣接する項の比率の差

 // 処理内容の出力

 System.out.println("<フィボナッチ数列の隣接する項の比率の収束>");

 // 順次求めながら比率の収束を探す

 n_1 = n1;

 n_2 = n2;

 while(diff>0.00001 || diff<-0.00001) // 比率の差が 0.00001以下になるまで

 {

 rate = (double)n_2/n_1; // 隣接する項の比率を計算

 diff=temp-rate; // 隣接する項の比率の差

 temp=rate; // 次回の比較のために比率を保存

 System.out.println(n_2+”/”+n_1+”¥t=”+rate);

 n_3 = n_1 + n_2; // 次の項を求める

 n_1 = n_2;

 n_2 = n_3;

 }

 }

}

1 1

a

a-1

1 : a = a-1 : 1

 - 3/10 -

実行画面実行画面実行画面実行画面

>java Sample9_2

<フィボナッチ数列の隣接する項の比率の収束>

1/1 =1.0

2/1 =2.0

3/2 =1.5

5/3 =1.6666666666666667

8/5 =1.6

13/8 =1.625

21/13 =1.6153846153846154

34/21 =1.619047619047619

55/34 =1.6176470588235294

89/55 =1.6181818181818182

144/89 =1.6179775280898876

233/144 =1.6180555555555556

377/233 =1.6180257510729614

610/377 =1.6180371352785146

987/610 =1.618032786885246

 -- Press any key to exit (Input "c" to continue) --

 - 4/10 -

○次のように○次のように○次のように○次のように whilewhilewhilewhile 文を記述するとどうなる？文を記述するとどうなる？文を記述するとどうなる？文を記述するとどうなる？

// while文のよくあるミス

class Ext9_1

{

 public static void main(String[] args)

 {

 int i=1;

 // while文のブロック { } を忘れたら？

 while(i<=5)

 System.out.println(i+"回目を繰り返しています。");

 i++;

 System.out.println("繰り返しが終わりました。");

 // while文ブロック前に ;（セミコロン）を入れてしまったら？

 while(i<=5);

 {

 System.out.println(i+"回目を繰り返しています。");

 i++;

 }

 System.out.println("繰り返しが終わりました。");

 }

}

while 文のブロック { } が

ない場合は、次の１行が

while 文の繰り返しで実行

される文となる。

繰り返しで実行される

文がない while 文とな

る。次に続くブロック

は while 文による繰り

返しに含まれず、順次

に実行される通常の文

となる。

 - 5/10 -

●●●● 繰り返し文３繰り返し文３繰り返し文３繰り返し文３ do whiledo whiledo whiledo while 文文文文

do while文 ① ブロック内を処理する。

 ② 繰り返し条件を処理する。

 A. ②が true のとき、ステップ①へ。

 B. ②が falseのとき、ステップ③へ。

 ③ 繰り返しを終了する。

 ・繰り返し条件は boolean 型であり、関係演算子で表現される式などを記述

 ・常に繰り返し条件はブロック内を実行した後に処理される（後判定ループ）

 ・少なくとも１度はブロック内が実行される

do{ // � ブロック{ }内の文が１つの場合、このブロック記号{ }は省略できる

 文;

 ：

：

}while(繰り返し条件); // � セミコロンが必要です。

ソースコード例ソースコード例ソースコード例ソースコード例

ソースファイル名：Sample9_3.java

// do while文の実行

class Sample9_3

{

 public static void main(String[] args)

 {

 int i = 1;

 // 変数 i が 5以下なら繰り返す

 do{

 // このブロックは最低でも１度は処理される。

 System.out.println(i+“回目を繰り返しています。”);

 i++; // 変数 iを１増やす（ここがなければ無限に繰り返す）

 }while(i<=5);

 System.out.println(“繰り返しが終わりました。”);

 }

}

 - 6/10 -

実行画面実行画面実行画面実行画面

>java Sample9_3

1 回目を繰り返しています。

2 回目を繰り返しています。

3 回目を繰り返しています。

4 回目を繰り返しています。

5 回目を繰り返しています。

繰り返しが終わりました。

 -- Press any key to exit (Input "c" to continue) --

○○○○ whilewhilewhilewhile 文と文と文と文と do whiledo whiledo whiledo while 文の違い文の違い文の違い文の違い

while文 繰り返し条件を初めに処理 � ブロックを１度も処理しない場合がある。

do while文 繰り返し条件を後で処理 � 最低でも１回はブロックを処理する。

Sample9_1.javaで int型の変数 iを 7で初期化した場合の実行画面

>java Sample9_1

繰り返しが終わりました。

 -- Press any key to exit (Input "c" to continue) --

Sample9_3.javaで int型の変数 iを 7で初期化した場合の実行画面

>java Sample9_3

7 回目を繰り返しています。

繰り返しが終わりました。

 -- Press any key to exit (Input "c" to continue) --

 - 7/10 -

ソースコード例ソースコード例ソースコード例ソースコード例

ソースファイル名：Sample9_4.java

// キーボード判定付き入力

import java.io.*;

class Sample9_4

{

 public static void main(String[] args) throws IOException

 {

 // キーボード入力の準備

 BufferedReader br;

 br = new BufferedReader(new InputStreamReader(System.in));

 int num;

 // 正しい範囲の値が入力されるまで繰り返す

 do{

 System.out.println(“１から１０までの整数を入力してください。”);

 num = Integer.parseInt(br.readLine());

 }while(num<1 || num >10);

 System.out.println(“あなたが入力した値は”+num+”です。”);

 }

}

実行画面実行画面実行画面実行画面

>java Sample9_4

１から１０までの整数を入力してください。

-1

１から１０までの整数を入力してください。

11

１から１０までの整数を入力してください。

7

あなたが入力した値は 7です。

 -- Press any key to exit (Input "c" to continue) --

 - 8/10 -

●●●● breakbreakbreakbreak 文と文と文と文と continuecontinuecontinuecontinue 文文文文

break文 現在の switch文ブロックまたは for, while, do while文ブロック

 の処理を終了して、そのブロックから抜ける。

・・・・・・

{

・・・・・・

・・・・・・

break;

・・・・・・

}

・・・・・・

ソースコード例ソースコード例ソースコード例ソースコード例

ソースファイル名：Sample9_5.java

// 無限ループから break文により抜ける

class Sample9_5

{

 public static void main(String[] args)

 {

 int num=3; // 抜け出す繰り返しの回数番目

 int cnt=0; // 繰り返し回数のカウント

 // 指定された回数番目で break文により抜ける

 while(true) // 無限ループ

 {

 cnt++;

 System.out.println(cnt+“回目を繰り返しています。”);

 if(num==cnt)break;

 }

 }

}

実行画面実行画面実行画面実行画面

>java Sample9_5

1 回目を繰り返しています。

2 回目を繰り返しています。

3 回目を繰り返しています。

 -- Press any key to exit (Input "c" to continue) --

 - 9/10 -

continue文 現在の for, while, do while文ブロックの処理を終了して、

 そのブロックの終端部にスキップする。

・・・・・・

{

・・・・・・

・・・・・・

continue;

・・・・・・

}

・・・・・・

ソースコード例ソースコード例ソースコード例ソースコード例

ソースファイル名：Sample9_6.java

// continue文により繰り返しをスキップ

class Sample9_6

{

 public static void main(String[] args)

 {

 int i;

 int num=3; // スキップする繰り返しの回数番目

 // 指定された回数番目は continue文によりスキップ

 for(i=1;i<=6;i++)

 {

 if(num==i)continue;

 System.out.println(i+“回目を繰り返しています。”);

 }

 }

}

実行画面実行画面実行画面実行画面

>java Sample9_6

1 回目を繰り返しています。

2 回目を繰り返しています。

4 回目を繰り返しています。

5 回目を繰り返しています。

6 回目を繰り返しています。

 -- Press any key to exit (Input "c" to continue) --

 - 10/10 -

○○○○ 入れ子入れ子入れ子入れ子（ネスト）構造（ネスト）構造（ネスト）構造（ネスト）構造の繰返しの中での繰返しの中での繰返しの中での繰返しの中で breakbreakbreakbreak 文文文文やややや continuecontinuecontinuecontinue 文文文文を使うを使うを使うを使うとととと？？？？

break;文や continue;文からみて最も内側の繰返し文に対して有効になる。

ソースコード例ソースコード例ソースコード例ソースコード例

ソースファイル名：Sample9_7.java

// 入れ子の繰返しの中で break文を使う

class Sample9_7

{

 public static void main(String[] args)

 {

 int i;

 // 内側のブロック内で break文を使うと？

 for(i=0;i<3;i++)

 {

 System.out.println("i="+i);

 while(true)

 {

 break;

 }

 }

 }

}

実行画面実行画面実行画面実行画面

>java Sample9_7

i=0

i=1

i=2

 -- Press any key to exit (Input "c" to continue) --

