
 - 1/7 -

ＪａｖａプログラミングⅠ

１１１１１１１１回目回目回目回目 多次元配列多次元配列多次元配列多次元配列

●●●● ２次元配列２次元配列２次元配列２次元配列

２次元配列 配列要素が直線上に並ぶ一次元配列に対して、

 平面上に並ぶ配列要素をもつ配列

 直観的には、

●●●● ２次元２次元２次元２次元配列の準備配列の準備配列の準備配列の準備

配列変数の宣言は型と識別子を指定して次のように行う

型 識別子[][];

または

型[][] 識別子;

配列要素の確保は型と配列要素の個数を指定して次のように行う

識別子 = new 型[行の配列要素の個数][列の配列要素の個数];

配列要素の初期化は識別子と添え字を用いて次のように行う

・行の添え字 = 0 ～ (行の配列要素の個数 － 1)

・列の添え字 = 0 ～ (列の配列要素の個数 － 1)

識別子[行の添え字][列の添え字] = 値;

 - 2/7 -

ソースコード例ソースコード例ソースコード例ソースコード例

ソースファイル名：Sample11_1.java

// 配列を用いて３人の学生（３行）の２科目の点数（２列）を管理する

class Sample11_1

{

 public static void main(String[] args)

 {

 // 配列変数の宣言

 int test[][]; // int[][] test; とも記述可能

 // 配列要素の確保

 test = new int[3][2];

 // 配列変数の宣言と配列要素の確保は同時に記述可能

 // int test[][] = new int[3][2];

 // int[][] test = new int[3][2];

 // 各配列要素の初期化（兼、値の代入）

 // 添え字は０から（要素数）－１まで！！

 test[0][0]=80; test[0][1]=50;

 test[1][0]=60; test[1][1]=75;

 test[2][0]=22; test[2][1]=90;

 // 各配列要素を順番に出力

 for(int i=0; i<3; i++)

 {

 System.out.println((i+1)+"番目の学生の国語の点数は"+test[i][0]+"です。");

 System.out.println((i+1)+"番目の学生の算数の点数は"+test[i][1]+"です。");

 }

 }

}

実行画面実行画面実行画面実行画面

>java Sample11_1

1番目の学生の国語の点数は 80です。

1番目の学生の算数の点数は 50です。

2番目の学生の国語の点数は 60です。

2番目の学生の算数の点数は 75です。

3番目の学生の国語の点数は 22です。

3番目の学生の算数の点数は 90です。

 -- Press any key to exit (Input "c" to continue) --

 - 3/7 -

●●●● ２次元２次元２次元２次元配列の初期化配列の初期化配列の初期化配列の初期化

２次元配列の初期化は識別子の宣言時に{ }をさらに入れ子（ネスト）にして次のように行う

型 識別子[][] = {{ 1行 1列目, 1行 2列目,…}, {2行 1列目, 2行 2列目, …}, … {… }};

または

型[][] 識別子 = {{ 1行 1列目, 1行 2列目,…}, {2行 1列目, 2行 2列目, …}, … {… }};

ソースコード例ソースコード例ソースコード例ソースコード例

ソースファイル名：Sample11_2.java

// ２次元配列の初期化

class Sample11_2

{

 public static void main(String[] args)

 {

 // ２次元配列の初期化

 int test[][]={{80, 50}, {60, 75}, {22, 90}};

 // int[][] test={{80, 50}, {60, 75}, {22, 90}}; とも記述可能

 // 各配列要素を順番に出力

 for(int i=0; i<3; i++)

 {

 System.out.println((i+1)+"番目の学生の国語の点数は"+test[i][0]+"です。");

 System.out.println((i+1)+"番目の学生の算数の点数は"+test[i][1]+"です。");

 }

 }

}

実行画面実行画面実行画面実行画面

>java Sample11_2

1番目の学生の国語の点数は 80です。

1番目の学生の算数の点数は 50です。

2番目の学生の国語の点数は 60です。

2番目の学生の算数の点数は 75です。

3番目の学生の国語の点数は 22です。

3番目の学生の算数の点数は 90です。

 -- Press any key to exit (Input "c" to continue) --

 - 4/7 -

●●●● 不規則な２次元配列不規則な２次元配列不規則な２次元配列不規則な２次元配列

Javaでは、各行の配列要素の数がそれぞれ異なる２次元配列を容易に作成できる

不規則な２次元配列は次の２通りの方法で作成できる

１．配列の初期化を利用して作成する方法

２．配列変数の宣言と配列要素の確保の手順にしたがい作成する方法

１．配列の初期化を利用して作成する方法１．配列の初期化を利用して作成する方法１．配列の初期化を利用して作成する方法１．配列の初期化を利用して作成する方法

ソースコード例ソースコード例ソースコード例ソースコード例

ソースファイル名：Sample11_3.java

// 不規則な２次元配列で初期化する
class Sample11_3
{
 public static void main(String[] args)
 {
 int i, j;

 // ２次元配列の初期化

 int test[][]={{80, 60, 22}, {50, 75}, {72, 33, 75, 63}};

 // 各行の配列要素数（.lengthの詳細は次節）と要素を順番に出力

 for(i=0; i<3; i++)

 {

 System.out.println((i+1)+”行目の要素数は”+test[i].length+”です。”);

 for(j=0; j<test[i].length; j++)

 System.out.print(test[i][j]+” ”);

 System.out.println();

 }

 }

}

 - 5/7 -

実行画面実行画面実行画面実行画面

>java Sample11_3

1行目の要素数は 3です。

80 60 22

2行目の要素数は 2です。

50 75

3行目の要素数は 4です。

72 33 75 63

 -- Press any key to exit (Input "c" to continue) --

○○○○ .length.length.length.length修飾子修飾子修飾子修飾子とその利用とその利用とその利用とその利用

.length修飾子 配列要素の数を得るための修飾子

１次元配列の場合：

配列変数.length 配列要素の数

２次元配列の場合：

配列変数.length 行数

配列変数[i].length 第 i行の配列要素の数

３次元配列の場合：

配列変数.length 行数

配列変数[i].length 第 i行の列数

配列変数[i][j].length 第 i行 j列の配列要素の数

（４次元以降、同様）

ソースコード例ソースコード例ソースコード例ソースコード例

ソースファイル名：Sample11_4.java

// .length修飾子
class Sample11_4
{
 public static void main(String[] args)
 {
 // 配列の初期化

 int test[]={72, 33, 75, 63};

 System.out.println(“配列要素の数は”+test.length+”です。”);

 }

}

 - 6/7 -

実行画面実行画面実行画面実行画面

>java Sample11_4

配列要素の数は 4です。

 -- Press any key to exit (Input "c" to continue) --

２．配列変数の宣言と配列要素の確保の手順にしたがい作成する方法２．配列変数の宣言と配列要素の確保の手順にしたがい作成する方法２．配列変数の宣言と配列要素の確保の手順にしたがい作成する方法２．配列変数の宣言と配列要素の確保の手順にしたがい作成する方法

ソースコード例ソースコード例ソースコード例ソースコード例

ソースファイル名：Sample11_5.java

// 不規則な 2次元配列を宣言する

class Sample11_5

{

 public static void main(String[] args)

 {

 // (ポイント)

 // ２次元配列は、１次元配列の配列 である

 // int型の配列型の配列型の変数

 int[] test[];

 // 下記と同じ意味である

 // int test[][];

 // int[][] test;

 // 行数のみで部分的に２次元配列を作成

 test = new int[3][]; // 配列は３行からなる

 // 各行に列を作成して２次元配列は完成

 test[0] = new int[3]; // １行目の配列要素は３つ

 test[1] = new int[2]; // ２行目の配列要素は２つ

 test[2] = new int[4]; // ３行目の配列要素は４つ

 // 各行の配列要素数（.lengthの詳細は前節）と要素を順番に出力

 System.out.println("配列は"+test.length+"行からなる");

 for(int i=0; i<test.length; i++)

 {

 System.out.println((i+1)+"行目には"+test[i].length+"個の配列要素がある");

 }

 }

}

実際は、

int[][] ary;

int[][]

int[]
int

ary=new int[3][4];

 - 7/7 -

実行画面実行画面実行画面実行画面

>java Sample11_5

配列は 3行からなる

1行目には 3個の配列要素がある

2行目には 2個の配列要素がある

3行目には 4個の配列要素がある

 -- Press any key to exit (Input "c" to continue) --

参考：例題 Sample11_5の変数の振る舞いは図的に次のように理解できる

int[] test[]; // int型の配列型の配列型の変数

test = new int[3][]; // int型の配列型の配列要素を３つ確保

test[0] = new int[3]; // int型の配列要素を３つ確保

test[1] = new int[2]; // int型の配列要素を２つ確保

test[2] = new int[4]; // int型の配列要素を４つ確保

