
 - 1/10 -

ＪａｖａプログラミングⅠ

２回目２回目２回目２回目 “ようこそＪａｖａへ”“ようこそＪａｖａへ”“ようこそＪａｖａへ”“ようこそＪａｖａへ”

 今日の講義で学ぶ内容今日の講義で学ぶ内容今日の講義で学ぶ内容今日の講義で学ぶ内容

・画面へのメッセージの表示

・文字や文字列、数値を表現するリテラル

・制御コードを表すエスケープシーケンス

画面画面画面画面出力の基本形出力の基本形出力の基本形出力の基本形

ソースファイル名：ｸﾗｽｸﾗｽｸﾗｽｸﾗｽ名名名名.java

class ｸﾗｽｸﾗｽｸﾗｽｸﾗｽ名名名名

{

 public static void main(String[] args)

 {

 System.out.println("ここに出力したい文字列ここに出力したい文字列ここに出力したい文字列ここに出力したい文字列１行目１行目１行目１行目");

 System.out.println("ここに出力したい文字列ここに出力したい文字列ここに出力したい文字列ここに出力したい文字列２行目２行目２行目２行目");

 ：

}

}

ソースソースソースソースコード例コード例コード例コード例

ソースファイル名：Sample2_1.java

// 画面に文字列を出力するコード

class Sample2_1

{

 public static void main(String[] args)

 {

 System.out.println("ようこそＪａｖａへ！");

 System.out.println("Ｊａｖａをはじめましょう！");

}

}

実行画面実行画面実行画面実行画面

>java Sample2_1

ようこそＪａｖａへ！

Ｊａｖａをはじめましょう！

 - 2/10 -

いろいろな出力方法いろいろな出力方法いろいろな出力方法いろいろな出力方法

１．System.out.printlnSystem.out.printlnSystem.out.printlnSystem.out.println("ここに出力したい文字列");

 ここに出力したい文字列 が画面に表示された後、行末に改行が挿入され改行が挿入され改行が挿入され改行が挿入されますますますます

２．System.out.printSystem.out.printSystem.out.printSystem.out.print("ここに出力したい文字列");

 ここに出力したい文字列 が画面に表示された後、行末に改行が挿入され改行が挿入され改行が挿入され改行が挿入されませんませんませんません

３．System.out.printfSystem.out.printfSystem.out.printfSystem.out.printf("ここに出力したい文字列");

 ここに出力したい文字列 が画面に表示された後、行末に改行が挿入されません改行が挿入されません改行が挿入されません改行が挿入されません

 Ｃ言語 printf()関数と類似しており、\\\\nnnn により改行が可能により改行が可能により改行が可能により改行が可能です

４．System.out.formatSystem.out.formatSystem.out.formatSystem.out.format("ここに出力したい文字列");

 System.out.printf()とまったく同じふるまいをします

ソースソースソースソースコード例コード例コード例コード例

ソースファイル名：Sample2_2.java

class Sample2_2

{

public static void main(String[] args)

{

System.out.println("1. println()による出力（行末に改行あり）");

System.out.print("2. print()による出力（行末に改行なし）");

System.out.printf("3. printf()による出力\n");

System.out.format("4. format()による出力\n");

}

}

実行画面実行画面実行画面実行画面

>java Sample2_2

1. println()による出力（行末に改行あり）

2. print()による出力（行末に改行なし）3. printf()による出力

4. format()による出力

 - 3/10 -

コードの内容コードの内容コードの内容コードの内容

ソースファイル名：Sample2_1.java

// 画面に文字列を出力するコード

class Sample2_1

{

 public static void main(String[] args)

 {

 System.out.println("ようこそＪａｖａへ！");

 System.out.println("Ｊａｖａをはじめましょう！");

}

}

コメントコメントコメントコメント ////////（ダブルスラッシュ）で始まる行、

 または /* *//* *//* *//* */ で囲まれた行（複数行でも可）です

 ・コンパイル時には無視されるコードです

 ・処理の内容などメモを記入しておくのに大変に便利です

クラスクラスクラスクラス キーワード classclassclassclass がついた｛｛｛｛ ｝｝｝｝（括弧）内をいいます

 ・Java のソースコードは少なくとも１つのクラスクラスクラスクラスから成ります

 一般に Java のソースコードは複数のクラスクラスクラスクラスをもちますが、

 ここでは１つのクラスクラスクラスクラスをもつ場合を主に解説していきます

ブロックブロックブロックブロック {{{{ }}}}（括弧）で囲まれた処理の集まり部分です

 ・キーワード classclassclassclass がつく {{{{ }}}} と区別します

main()main()main()main()メソッドメソッドメソッドメソッド public static void main(String[] args)public static void main(String[] args)public static void main(String[] args)public static void main(String[] args) で始まるブロックブロックブロックブロックです

 ・Java ではここからプログラムの処理が始まります

文文文文 最後に；；；；（セミコロン）がついた個々の単一の処理や命令です

 ・ブロックブロックブロックブロックは複数の文文文文をもつことができます

 ・文文文文は上から下へ順番に実行されます

 文文文文には単一の処理や命令の他に if 文文文文や for 文文文文などがあります

 また、文文文文にはブロックブロックブロックブロックを置くこともできます

 これについては if 文文文文の回で詳しく解説します

インデントインデントインデントインデント 行頭での字下げです

 ・ソースコードを読みやすくします

 ・ブロックブロックブロックブロック毎にインデントインデントインデントインデントを付けると見やすくなります

イイイイ

ンンンン

デデデデ

ンンンン

トトトト

main(main(main(main())))メソッドメソッドメソッドメソッド

コメントコメントコメントコメント

クラスクラスクラスクラス

文文文文

文文文文

ブロックブロックブロックブロック

 - 4/10 -

文字文字文字文字やややや文字列、数値の文字列、数値の文字列、数値の文字列、数値の表記表記表記表記

リテラルリテラルリテラルリテラル コード内の値の表現値の表現値の表現値の表現です

 値には、文字や文字列、数値などがあります

 表現する対象に応じて、○○リテラルと呼ばれます

 たとえば、文字リテラル、文字列リテラルなどです

・・・・文字リテラル文字リテラル文字リテラル文字リテラル ' '' '' '' ' （（（（ｼﾝｸﾞﾙｸｫｰﾄｼﾝｸﾞﾙｸｫｰﾄｼﾝｸﾞﾙｸｫｰﾄｼﾝｸﾞﾙｸｫｰﾄ））））で文字を囲み、一文字を一文字を一文字を一文字を表現表現表現表現します

 たとえば、'A'、'b'、'c' などです

・・・・文字列リテラル文字列リテラル文字列リテラル文字列リテラル """" """" （（（（ﾀﾞﾌﾞﾙｸｫｰﾄﾀﾞﾌﾞﾙｸｫｰﾄﾀﾞﾌﾞﾙｸｫｰﾄﾀﾞﾌﾞﾙｸｫｰﾄ））））で文字列を囲み、文字列を文字列を文字列を文字列を表現表現表現表現します

 たとえば、"Hello"、"こんにちは" などです

 "A" は大丈夫ですが、'Hello' はエラーになります

 一文字は文字列の特別な場合と考えることができますので、

 文字列リテラルで表現することができます

 しかし、文字リテラルは一文字である必要があります

・・・・整数整数整数整数リテラルリテラルリテラルリテラル 整数整数整数整数ををををそのまま記述そのまま記述そのまま記述そのまま記述し、整数を表現整数を表現整数を表現整数を表現します

 たとえば、123、-23 などです

・・・・浮動小数点数リ浮動小数点数リ浮動小数点数リ浮動小数点数リテラルテラルテラルテラル 実数値実数値実数値実数値をそのまま記述をそのまま記述をそのまま記述をそのまま記述し、実数値を表現実数値を表現実数値を表現実数値を表現します

 たとえば、3.14、-1.2、0.24 などです

・・・・論理値論理値論理値論理値リテラルリテラルリテラルリテラル truetruetruetrue 又は falsefalsefalsefalse を記述し、論理の真真真真とととと偽を表現偽を表現偽を表現偽を表現します

 この他、空リテラルがありますが、Java プログラミングⅡで詳しく解説します

・・・・空空空空リテラルリテラルリテラルリテラル nullnullnullnull を記述し、空の参照を表現空の参照を表現空の参照を表現空の参照を表現します

 - 5/10 -

ソースコードソースコードソースコードソースコード例例例例

ソースファイル名：Sample2_3.java

class Sample2_3

{

 public static void main(String[] args)

 {

 System.out.println('A');

 System.out.println("Hello");

 System.out.println(123);

 System.out.println(0.24);

System.out.println(true);

}

}

実行画面実行画面実行画面実行画面

>java Sample2_3

A

Hello

123

0.24

true

 - 6/10 -

エスケープシーケンスエスケープシーケンスエスケープシーケンスエスケープシーケンス

エスケープシーケンスエスケープシーケンスエスケープシーケンスエスケープシーケンス \\\\（（（（円円円円ﾏｰｸﾏｰｸﾏｰｸﾏｰｸ））））をつけた２つの文字により表現される一一一一文字文字文字文字です

 たとえば、'\n'、'\t' などです

 エスケープシーケンスは一文字の表現であるため、

 文字リテラルで表現することができます

 エスケープシーケンスは、改行やタブなどの機能を表現改行やタブなどの機能を表現改行やタブなどの機能を表現改行やタブなどの機能を表現します

 たとえば、System.out.print('\n'); で改行が行われます

 次のような種類があります

 表記表記表記表記 表記の表記の表記の表記の機能機能機能機能、、、、またはまたはまたはまたは意味意味意味意味

 \b バックスペース

 \t 水平タブ

 \n 改行

 \f 改ページ

 \r 復帰

 \" " �ﾀﾞﾌﾞﾙｸｫｰﾄ自身の表現ﾀﾞﾌﾞﾙｸｫｰﾄ自身の表現ﾀﾞﾌﾞﾙｸｫｰﾄ自身の表現ﾀﾞﾌﾞﾙｸｫｰﾄ自身の表現に用います

 \' ' �ｼﾝｸﾞﾙｸｫｰﾄ自身の表現ｼﾝｸﾞﾙｸｫｰﾄ自身の表現ｼﾝｸﾞﾙｸｫｰﾄ自身の表現ｼﾝｸﾞﾙｸｫｰﾄ自身の表現に用います

 \\ \ �￥ﾏｰｸ自身の表現￥ﾏｰｸ自身の表現￥ﾏｰｸ自身の表現￥ﾏｰｸ自身の表現に用います

 エスケープシーケンスは、

 A や B などの一文字と同様に、文字列を構成する文字として

 用いることができ、文字列リテラルに含めることができます

 たとえば、"Hello\\\\nnnn" です

 一文字は文字列の特別な場合と考えることができますので、

 １つのエスケープシーケンスを"\\\\nnnn"のように文字列リテラルで

 表現しても問題はありません

 - 7/10 -

ソースコードソースコードソースコードソースコード例例例例

ソースファイル名：Sample2_4.java

class Sample2_4

{

 public static void main(String[] args)

 {

 System.out.println("バックスペースします\b バックスペースしました");

 System.out.println("水平タブいれます\t 水平タブいれました");

 System.out.println("改行します\n 改行しました");

 System.out.println("復帰します\r 復帰しました");

 System.out.println("ダブルクォートを表示します");

 System.out.println('\"');

 System.out.println("円マークを表示します");

 System.out.println('\\');

}

}

実行実行実行実行画面画面画面画面

>java Sample2_4

バックスペースしまバックスペースしました

水平タブいれます 水平タブいれました

改行します

改行しました

復帰しました

ダブルクォートを表示します

"

円マークを表示します

\

 - 8/10 -

整数整数整数整数リテラルとリテラルとリテラルとリテラルと進数進数進数進数表現表現表現表現

整数リテラルを用いて整数を表現するとき、12 や -4 のように通常は１０進数を用います

このほかに、８進数８進数８進数８進数やややや１６進数での１６進数での１６進数での１６進数での整数の整数の整数の整数の表現が可能表現が可能表現が可能表現が可能です

10 の 8888 進数表現進数表現進数表現進数表現 000012 ０で数値を始める０で数値を始める０で数値を始める０で数値を始める � ８進数表現８進数表現８進数表現８進数表現とみなされます

 たとえば、System.out.println(012); は 10 と出力されます

10 の 11116666 進数表現進数表現進数表現進数表現 0x0x0x0xA 0x0x0x0x で数値を始めるで数値を始めるで数値を始めるで数値を始める � 16161616 進数表現進数表現進数表現進数表現とみなされます

 たとえば、System.out.println(0xA); は 10 と出力されます

 記号 xxxx は大文字でも小文字でもよい大文字でも小文字でもよい大文字でも小文字でもよい大文字でも小文字でもよいです

 0xA と 0XA は同じ整数 10 を表現します

10 の 11110000 進数表現進数表現進数表現進数表現 10 上記以外上記以外上記以外上記以外 � 10101010 進数表現進数表現進数表現進数表現とみなされます

 たとえば、System.out.println(10); は 10 と出力されます

 019や 0x4g はエラーとなります

 これは 8888 進数進数進数進数のののの各桁各桁各桁各桁を０～７０～７０～７０～７までを用いて表現するため、

 また 16161616 進数進数進数進数のののの各桁各桁各桁各桁は 0000～～～～15151515 であり、アルファベットで

 ０～９、０～９、０～９、０～９、aaaa～～～～ffff（または大文字Ａ～ＦＡ～ＦＡ～ＦＡ～Ｆでもよい）を用いて

 表現するためです

ソースコードソースコードソースコードソースコード例例例例

ソースファイル名：Sample2_5.java

class Sample2_5

{

 public static void main(String[] args)

{

 System.out.print("10 -> ");

 System.out.print(10);

 System.out.print(", 012 -> ");

 System.out.print(012);

 System.out.print(", 0xa -> ");

 System.out.print(0xa);

 }

}

 - 9/10 -

実行実行実行実行画面画面画面画面

>java Sample2_5

10 -> 10, 012 -> 10, 0xa -> 10

浮動小数点数リテラル浮動小数点数リテラル浮動小数点数リテラル浮動小数点数リテラルとととと指数表現指数表現指数表現指数表現

浮動小数点数リテラルを用いて実数を表現するとき、通常 3.14 や 0.2 のように書きます

しかし、非常に大きな大きな大きな大きな実数実数実数実数や小さなや小さなや小さなや小さな実数実数実数実数にはにはにはには指数表現を用いると指数表現を用いると指数表現を用いると指数表現を用いると大変に大変に大変に大変に便利便利便利便利です

たとえば、

1.2eeee+2 は 1.2××××101010102 を表現します

System.out.println(1.2e+2); とすると、120.0 と出力されます

1.0eeee-2 は 1.0××××10101010-2 を表現します

System.out.println(1.0e-2); とすると、0.01 と出力されます

 記号 eeee は大文字でも小文字でもよい大文字でも小文字でもよい大文字でも小文字でもよい大文字でも小文字でもよいです

1.2e+2 と 1.2E+2 は同じ実数 120.0 を表現します

ソースコード例ソースコード例ソースコード例ソースコード例

ソースファイル名：Sample2_6.java

class Sample2_6

{

 public static void main(String[] args)

{

 System.out.print("1.2e+2 -> ");

 System.out.print(1.2e+2);

 System.out.print(", 1.0e-2 -> ");

 System.out.print(1.0e-2);

 }

}

実行画面実行画面実行画面実行画面

>java Sample2_6

1.2e+2 -> 120.0, 1.0e-2 -> 0.01

 - 10/10 -

文字列リテラルと他のリテラルとの連結文字列リテラルと他のリテラルとの連結文字列リテラルと他のリテラルとの連結文字列リテラルと他のリテラルとの連結

文字列リテラルは文字列リテラルは文字列リテラルは文字列リテラルは、、、、整数リテラルや文字リテラルなど他の他の他の他のリテラルとリテラルとリテラルとリテラルと＋により連結＋により連結＋により連結＋により連結できます

連結を上手に用いると、画面出力をするコードがすっきり見やすくなります

たとえば、"9の次は"＋＋＋＋10 とすると、"9の次は 10"となり連結されます

 連結の記号＋は演算子といいます

演算子＋の詳しい解説は「演算子」の回で行います

ここでは演算子＋と連結の機能を押さえておきましょう

ソースファイル名：Sample2_7.java

class Sample2_7

{

 public static void main(String[] args)

 {

 // 文字列リテラル"9の次は"と整数リテラル 10 を連結します

 System.out.println("9の次は"+10);

 // 文字列リテラル"πは"と浮動小数点数リテラル 3.14 を連結します

 System.out.println("πは"+3.14);

 // 文字列リテラル"A の小文字は"と文字リテラル'a'を連結します

 System.out.println("A の小文字は"+'a');

 // 文字列リテラル"true の反対は"と論理値リテラル false を連結します

 System.out.println("true の反対は"+false);

 }

}

実行画面実行画面実行画面実行画面

>java Sample2_7

9の次は 10

πは 3.14

A の小文字は a

true の反対は false

