
 - 1/10 -

ＪａｖａプログラミングⅠ

４４４４回目回目回目回目 演演演演 算算算算 子子子子

 今日の講義で学ぶ内容今日の講義で学ぶ内容今日の講義で学ぶ内容今日の講義で学ぶ内容

・演算子とオペランド、式

・様々な演算子

・代表的な演算子の使用例

演算子とオペランド演算子とオペランド演算子とオペランド演算子とオペランド

演算子演算子演算子演算子 演算演算演算演算の種類種類種類種類 です

 例えば、＋、－、＊、／

 掛け算掛け算掛け算掛け算の記号は×ではなく、＊（ｱｽﾀﾘｽｸ）＊（ｱｽﾀﾘｽｸ）＊（ｱｽﾀﾘｽｸ）＊（ｱｽﾀﾘｽｸ）を使います

 割り算割り算割り算割り算の記号は÷ではなく、／（ｽﾗｯｼｭ）／（ｽﾗｯｼｭ）／（ｽﾗｯｼｭ）／（ｽﾗｯｼｭ）を使います

オペランドオペランドオペランドオペランド 演算演算演算演算の対象対象対象対象です

 例えば、5（値）、num（変数）

 式式式式 演算子演算子演算子演算子とオペランドオペランドオペランドオペランドの組み合わせにより構成される数式数式数式数式です

 式式式式は演算結果演算結果演算結果演算結果をもちます

 例えば、

 1 + num1 + num1 + num1 + num

 単一の単一の単一の単一の変数変数変数変数も式式式式と呼びます

 例えば、

 numnumnumnum

 一般に式は演算結果を持ちますが、演算結果をもたない特殊な

 式もあります。Java プログラミングⅡで解説します

１：１：１：１：オペランドオペランドオペランドオペランド numnumnumnum：：：：オペランドオペランドオペランドオペランド

＋：＋：＋：＋：演算子演算子演算子演算子 式式式式全体：全体：全体：全体：演算結果演算結果演算結果演算結果

式全体式全体式全体式全体：：：：演算結果演算結果演算結果演算結果 numnumnumnum：：：：単一の変数単一の変数単一の変数単一の変数

式式式式

式式式式

 - 2/10 -

ソースコード例ソースコード例ソースコード例ソースコード例

ソースファイル名：Sample4_1.java

// 変数を用いた式

class Sample4_1

{

 public static void main(String[] args)

 {

 // 変数宣言と初期化

 int num1 = 15;

 int num2 = 3;

 // num1 と num2 の四則計算

 int add;

 add = num1 + num2;

 int sub;

 sub = num1 - num2;

 int mul;

 mul = num1 * num2;

 int div;

 div = num1 / num2;

 // 計算結果の出力

 System.out.println(num1 + "と" + num2 + "の四則計算：");

 System.out.println("和 = "+add);

 System.out.println("差 = "+sub);

 System.out.println("積 = "+mul);

 System.out.println("商 = "+div);

 }

}

実行画面実行画面実行画面実行画面

>java Sample4_1

15 と 3 の四則計算：

和 = 18

差 = 12

積 = 45

商 = 5

掛け算掛け算掛け算掛け算は、×ではなく

((*(*(ｱｽﾀﾘｽｸｱｽﾀﾘｽｸｱｽﾀﾘｽｸｱｽﾀﾘｽｸ))))を使います

割り算割り算割り算割り算は、÷ではなく

/(/(/(/(ｽﾗｯｼｭｽﾗｯｼｭｽﾗｯｼｭｽﾗｯｼｭ))))を使います

 - 3/10 -

演算子の種類演算子の種類演算子の種類演算子の種類

演算子演算子演算子演算子は、算術演算子算術演算子算術演算子算術演算子、ビット論理演算子ビット論理演算子ビット論理演算子ビット論理演算子、シフト演算子シフト演算子シフト演算子シフト演算子、インクリメント・デクリメントインクリメント・デクリメントインクリメント・デクリメントインクリメント・デクリメント

演算子演算子演算子演算子、関係関係関係関係演算子演算子演算子演算子、論理演算子論理演算子論理演算子論理演算子、条件演算子条件演算子条件演算子条件演算子、代入演算子代入演算子代入演算子代入演算子など多彩な分類をもちます

（算術演算子）（算術演算子）（算術演算子）（算術演算子） （インクリメント・デクリメント演算子）（インクリメント・デクリメント演算子）（インクリメント・デクリメント演算子）（インクリメント・デクリメント演算子）

++++ 加算（文字列連結） ++++++++ インクリメント（単項）

---- 減算 -------- デクリメント（単項）

**** 乗算 （関係演算子）（関係演算子）（関係演算子）（関係演算子）

//// 除算 >>>> より大きい

%%%% 剰余 >=>=>=>= 以上

（ビット論理演算子）（ビット論理演算子）（ビット論理演算子）（ビット論理演算子） <<<< 未満

&&&& ビット論理積 <=<=<=<= 以下

|||| ビット論理和 ======== 等しい

^̂̂̂ ビット排他的論理和 !=!=!=!= 等しくない

（シフト演算子）（シフト演算子）（シフト演算子）（シフト演算子） （論理演算子）（論理演算子）（論理演算子）（論理演算子）

<<<<<<<< 左シフト !!!! 論理否定（単項）

>>>>>>>> 右シフト &&&&&&&& 論理積

>>>>>>>>>>>> 符号なし右シフト |||||||| 論理和

（その他）（その他）（その他）（その他） （条件演算子）（条件演算子）（条件演算子）（条件演算子）

++++ プラス（単項） ? :? :? :? : 条件（三項演算子）

---- マイナス（単項） （代入演算子）（代入演算子）（代入演算子）（代入演算子）

~~~~ １の補数「反転」（単項） ==== 

 

 

ｎ項演算子ｎ項演算子ｎ項演算子ｎ項演算子 演算子はオペランドの数オペランドの数オペランドの数オペランドの数により単項単項単項単項
．．

、二項二項二項二項
．．

、三項三項三項三項
．．

演算子演算子演算子演算子と呼ばれます 

 ・単項演算子・単項演算子・単項演算子・単項演算子 オペランドが１つ１つ１つ１つ  

  例えば、++（インクリメント） 

 ・二項演算子・二項演算子・二項演算子・二項演算子 オペランドが２つ２つ２つ２つ  

  例えば、+、-、*、/（四則計算） 

 ・三項演算子・三項演算子・三項演算子・三項演算子 オペランドが３つ３つ３つ３つ  

  Java では唯一であり、 ? :（条件演算子） 

 

加算演算子＋加算演算子＋加算演算子＋加算演算子＋ 加算加算加算加算と文字列連結文字列連結文字列連結文字列連結の２つの役割２つの役割２つの役割２つの役割をもちます 

 ２つの役割はオペランドの種類によりどちらかに決まります 

 ・文字列連結・文字列連結・文字列連結・文字列連結 いずれかいずれかいずれかいずれかまたは両方のオペランド両方のオペランド両方のオペランド両方のオペランドが StringStringStringString 型型型型のとき 

 ・・・・加加加加            算算算算 それ以外 

 

   "Hello"などの文字列リテラル文字列リテラル文字列リテラル文字列リテラルは StringStringStringString 型型型型とみなされます 

 

   次のコードを実行すると、右のように出力されます 

 System.out.println("ABC"+"DEF"); → ABCDEF 

 System.out.println("ABC"+50); → ABC50 

 System.out.println(20+50); → 70 



 - 4/10 - 

ソースコード例ソースコード例ソースコード例ソースコード例    

ソースファイル名：Sample4_2.java 

 
// 剰余付き割り算プログラム 
import java.io.*; 
 
class Sample4_2 
{ 
 public static void main(String[] args) throws IOException 
 { 
  // キーボード準備 
  BufferedReader br; 
  br = new BufferedReader(new InputStreamReader(System.in)); 
 
  // 整数用の変数 
  int num1, num2, tmp; 
  int div;   // 商 
  int mod;  // 余り 
 
  // 整数の入力 
  System.out.println("#剰余付き割り算#\n２つの整数を入力してください。"); 
  System.out.println("１つ目の整数を入力してください。"); 
  num1 = Integer.parseInt(br.readLine( )); 
  System.out.println("２つ目の整数を入力してください。"); 
  num2 = Integer.parseInt(br.readLine( )); 
   
  // 剰余の計算 
  mod = num1 % num2; // %は余りを計算する演算子 
 
  // 商の計算 
  tmp = num1 - mod; 
  div = tmp / num2; 
 
  // 結果の出力 
  System.out.println(num1 + " ÷ " + num2 + " = " + div + " あまり " + mod); 
 } 
} 

 

    

実行画面実行画面実行画面実行画面    

 

>java Sample4_2 

#剰余付き割り算# 

２つの整数を入力してください。 

１つ目の整数を入力してください。 

11 

２つ目の整数を入力してください。 

4 

11 ÷ 4 = 2 あまり 3 

 

 



 - 5/10 - 

インクリメント・デクリメント演算子インクリメント・デクリメント演算子インクリメント・デクリメント演算子インクリメント・デクリメント演算子    

 

インクリメントインクリメントインクリメントインクリメント演算子演算子演算子演算子 ++++++++ オペランドの変数の値を１増やします値を１増やします値を１増やします値を１増やします 

  演算結果は次のようになります 

 

a++a++a++a++ 後置後置後置後置インクリメント 変数変数変数変数 aaaa をををを演算結果と演算結果と演算結果と演算結果としたしたしたした後、、、、aaaa の値をの値をの値をの値を 1111 増やします増やします増やします増やします 

++a++a++a++a 前置前置前置前置インクリメント 変数変数変数変数 aaaa の値をの値をの値をの値を 1111 増やした増やした増やした増やした後、、、、aaaa をををを演算結果とし演算結果とし演算結果とし演算結果としますますますます 

 

デクリメント演算子デクリメント演算子デクリメント演算子デクリメント演算子 -------- オペランドの変数の値値値値を１減らしますを１減らしますを１減らしますを１減らします 

  演算結果は次のようになります 

 

aaaa-------- 後置後置後置後置デクリメント 変数変数変数変数 aaaa をををを演算結果とし演算結果とし演算結果とし演算結果としたたたた後、、、、aaaa の値をの値をの値をの値を 1111 減らします減らします減らします減らします 

--------aaaa 前置前置前置前置デクリメント 変数変数変数変数 aaaa の値をの値をの値をの値を 1111 減らした減らした減らした減らした後、、、、aaaa をををを演算結果とし演算結果とし演算結果とし演算結果としますますますます 

 

  演算結果が出されるタイミングタイミングタイミングタイミングに注意しましょう 

 

ソースコード例ソースコード例ソースコード例ソースコード例    

ソースファイル名：Sample4_3.java 

 
// 前置・後置インクリメント 
class Sample4_3 
{ 
 public static void main(String[] args) 
 { 
  // 変数の宣言と初期化 
  int a1 = 0, a2 = 0; 
  int b = 0, c = 0; 
   
  System.out.println("a1="+ a1); 
  System.out.println("a2="+ a2); 
   
  // 前置・後置インクリメントの違い 
  b = a1++; 
  c = ++a2; 
  System.out.println("後置・前置インクリメントをします"); 
  System.out.println("後置インクリメント(b=a1++;) b="+ b); 
  System.out.println("前置インクリメント(c=++a2;) c="+ c); 
  System.out.println("a1="+ a1); 
  System.out.println("a2="+ a2); 
   
  // 単独で用いると１増えるだけ 
  a1++; 
  ++a2; 
  System.out.println("単独で後置・前置インクリメントもできます"); 
  System.out.println("後置インクリメント a1++; "); 
  System.out.println("前置インクリメント ++a2; "); 
  System.out.println("a1="+ a1); 
  System.out.println("a2="+ a2); 
 } 
} 



 - 6/10 - 

実行画面実行画面実行画面実行画面    

 

>java  Sample4_3 

a1=0 

a2=0 

後置・前置インクリメントをします 

後置インクリメント(b=a1++;) b=0 

前置インクリメント(c=++a2;) c=1 

a1=1 

a2=1 

単独で後置・前置インクリメントもできます 

後置インクリメント a1++; 

前置インクリメント ++a2; 

a1=2 

a2=2 

 

 

        インクリメント・デクリメント演算子インクリメント・デクリメント演算子インクリメント・デクリメント演算子インクリメント・デクリメント演算子では、 

そのオペランドの変数の値オペランドの変数の値オペランドの変数の値オペランドの変数の値そのものそのものそのものそのものが演算前と演算後で変化演算前と演算後で変化演算前と演算後で変化演算前と演算後で変化します 

 

一般に、式を計算するとき、オペランドの値を用いて演算結果を計算します 

オペランドの変数の値は参照されるだけで、新しい値が代入されることはありません 

 

例えば、 

 

 

  i + numi + numi + numi + num    

 

 

    

    

 

 

例外として、インクリメント・デクリメント演算子インクリメント・デクリメント演算子インクリメント・デクリメント演算子インクリメント・デクリメント演算子と代入演算子代入演算子代入演算子代入演算子（次に説明）では 

オペランドの変数に新しい値が代入されます 

 

 例えば、 

 

 

  ++++++++    iiii    

 

 

    

    

    

iiii はははは参照されるだけです参照されるだけです参照されるだけです参照されるだけです    

変数 i の値はそのままです 

numnumnumnum はははは参照されるだけです参照されるだけです参照されるだけです参照されるだけです    

変数 num の値はそのままです 

加算加算加算加算演算子演算子演算子演算子    参照された値を用参照された値を用参照された値を用参照された値を用

いていていていて加算の演算結演算結演算結演算結

果果果果が計算されます 

iiii のののの値が変わります値が変わります値が変わります値が変わります    

変数 i の値は１加算されます 

インクリメントインクリメントインクリメントインクリメント演算子演算子演算子演算子    

前置インクリメン

トなので、加算さ加算さ加算さ加算さ

れた後れた後れた後れた後の変数の変数の変数の変数 iiii のののの

値値値値が演算結果演算結果演算結果演算結果です 



 - 7/10 - 

代入演算子代入演算子代入演算子代入演算子    

 

代入演算子代入演算子代入演算子代入演算子 ==== 右辺の値右辺の値右辺の値右辺の値を左辺の変数左辺の変数左辺の変数左辺の変数に代入代入代入代入します 

  演算結果演算結果演算結果演算結果は左辺に左辺に左辺に左辺に代入された値代入された値代入された値代入された値です 

  

  

  

  n=10n=10n=10n=10    

  

 

    

 

 

    たとえば、 

  int int int int nnnn;;;;    

        System.out.println(System.out.println(System.out.println(System.out.println(nnnn=10=10=10=10););););    

  とすると、10101010 が画面に出力されます 

   

    代入演算子の目的は代入代入代入代入です 

  代入演算子自身の演算結果を利用することは少ないです 

 

複合的な複合的な複合的な複合的な ■■■■==== 左辺と右辺を用いて演算■をした後演算■をした後演算■をした後演算■をした後、結果を左辺に結果を左辺に結果を左辺に結果を左辺に代入代入代入代入します 

代入演算子代入演算子代入演算子代入演算子        演算結果演算結果演算結果演算結果は左辺に代入された値で左辺に代入された値で左辺に代入された値で左辺に代入された値です 

   

  ■には次のような演算子を入れて利用できます  

 

  aaaa    +=+=+=+=    bbbb    加算+代入 a = a + ba = a + ba = a + ba = a + b    

 aaaa    ----====    bbbb 減算+代入 a = a a = a a = a a = a ––––    bbbb 

 aaaa    *=*=*=*=    bbbb 乗算+代入 a = a * ba = a * ba = a * ba = a * b 

 aaaa    /=/=/=/=    bbbb 除算+代入 a = a / ba = a / ba = a / ba = a / b 

 aaaa    %=%=%=%=    bbbb 剰余+代入 a = a % ba = a % ba = a % ba = a % b 

 aaaa    &=&=&=&=    bbbb 論理積+代入 a = a & ba = a & ba = a & ba = a & b 

 aaaa    |=|=|=|=    bbbb 論理和+代入 a = a | ba = a | ba = a | ba = a | b 

 aaaa    ^=^=^=^=    bbbb 排他的論理和+代入 a = a ^ ba = a ^ ba = a ^ ba = a ^ b    

 aaaa    <<<<<=<=<=<=    bbbb 左シフト+代入 a = a << ba = a << ba = a << ba = a << b    

 aaaa    >>=>>=>>=>>=    bbbb 右シフト+代入 a = a >> ba = a >> ba = a >> ba = a >> b 

 aaaa    >>>=>>>=>>>=>>>=bbbb 符号なし右シフト+代入 a = a >>> ba = a >>> ba = a >>> ba = a >>> b    

 

   たとえば、 

  int nint nint nint n=5=5=5=5;;;;    

        System.out.println(System.out.println(System.out.println(System.out.println(n+n+n+n+=10);=10);=10);=10);    

  とすると、15151515 が画面に出力されます 

   

    複合的な代入演算子の目的は演算を伴った演算を伴った演算を伴った演算を伴った代入代入代入代入です 

  複合的代入演算子自身の演算結果を利用することは少ないです 

値が変わります値が変わります値が変わります値が変わります    

変数 n の値は１0 になります 

代入演算子代入演算子代入演算子代入演算子    左辺に代入された値左辺に代入された値左辺に代入された値左辺に代入された値

10 が演算結果演算結果演算結果演算結果です 

機能的には 

aaaa    ■■■■====    bbbb  

と 

aaaa    ====    aaaa    ■■■■    bbbb  

は同じです 



 - 8/10 - 

ソースソースソースソースコード例コード例コード例コード例    

ソースファイル名：Sample4_4.java 

 

// 複合的な代入演算子を用いた総計処理 

class Sample4_4 

{ 

 public static void main(String[] args) 

 { 

  int sum=0; // 総計用の変数、ゼロで初期化 

 

  // 処理内容のメッセージ 

  System.out.println("３つの整数の総計を求めます。"); 

  System.out.println("１つ目の整数は３"); 

  sum += 3; 

  System.out.println("２つ目の整数は５"); 

  sum += 5; 

  System.out.println("３つ目の整数は２"); 

  sum += 2; 

 

  // 総計の表示 

  System.out.println("総計は" + sum + "です。"); 

 } 

} 

    

    

    

実行画面実行画面実行画面実行画面    

 

>java Sample4_4 

３つの整数の総計を求めます。 

１つ目の整数は３ 

２つ目の整数は５ 

３つ目の整数は２ 

総計は 10 です。 

 

 

 

 

 

 

 

 

 

 

 



 - 9/10 - 

シフト演算子シフト演算子シフト演算子シフト演算子    

 

シフト演算子シフト演算子シフト演算子シフト演算子 <<<<<<<<、、、、>>>>>>>>、、、、>>>>>>>>>>>> 指定ビット指定ビット指定ビット指定ビットシフトシフトシフトシフトします 

  演算結果演算結果演算結果演算結果は指定ビットシフトシフトシフトシフトした値した値した値した値です 

 

a << ba << ba << ba << b 左シフト左シフト左シフト左シフト演算子 b ビット分 a のビット列を左へシフト左へシフト左へシフト左へシフトし、 

  右を右を右を右を 0000 でででで埋めます 

 

    シフト演算子のシフト演算子のシフト演算子のシフト演算子のオペランドのオペランドのオペランドのオペランドの変数の値変数の値変数の値変数の値は 

  加算や減算などの算術演算子と同様に 

  演算前演算前演算前演算前と演算と演算と演算と演算後で後で後で後で変化変化変化変化しませんしませんしませんしません    

 

    

a >> ba >> ba >> ba >> b 右シフト右シフト右シフト右シフト演算子 b ビット分 a のビット列を右へシフト右へシフト右へシフト右へシフトし、 

  a が正の場合は正の場合は正の場合は正の場合は 0000 で、負の場合は負の場合は負の場合は負の場合は 1111 で左を埋めます 

 

    右シフト演算子右シフト演算子右シフト演算子右シフト演算子は左側を０又は１で埋めることに 

  よりシフトシフトシフトシフトするするするする値の正負を保持値の正負を保持値の正負を保持値の正負を保持します 

 

a >>> ba >>> ba >>> ba >>> b 符号なし右シフト符号なし右シフト符号なし右シフト符号なし右シフト演算子 b ビット分 a のビット列を右へシフト右へシフト右へシフト右へシフトし、 

  0000 でででで左を左を左を左を埋めます 

 

    

ソースコード例ソースコード例ソースコード例ソースコード例    

ソースファイル名：Sample4_５.java 

 
// シフト演算 
class Sample4_5 
{ 
 public static void main(String[] args) 
 { 
  int i=2, ans; 
 
  // シフト演算例 
  ans = i << 1;  // 1 ビット左へ（２倍） 
  System.out.println(ans); 
  ans = i >> 1;  // 1 ビット右へ（０．５倍） 
  System.out.println(ans); 
 } 
} 

 

 

実行画面実行画面実行画面実行画面    

 

>java Sample4_5 

4 

1 

変数変数変数変数 aaaa のビット列のビット列のビット列のビット列    

  0000    0000    

シフトの回数シフトの回数シフトの回数シフトの回数 bbbb    

変数変数変数変数 aaaa のビット列のビット列のビット列のビット列    

  
0/10/10/10/1    0/10/10/10/1    

  0000    0000    



 - 10/10 - 

ソースコード例ソースコード例ソースコード例ソースコード例    

ソースファイル名：Sample4_６.java 

 

// シフト演算の働き 

class Sample4_６ 

{ 

 public static void main(String[] args) 

 { 

  int i; 

  short num=5; 

 

  // ビット列出力 

  System.out.print("シフト前 "); 

  for(i=0;i<16;i++) 

   System.out.print(0x0001&(num>>(15-i))); 

  System.out.println("(b)"); 

   

  // シフト演算 

  num <<= 2; 

 

  // ビット列出力 

  System.out.print("シフト後 "); 

  for(i=0;i<16;i++) 

   System.out.print(0x0001&(num>>(15-i))); 

  System.out.println("(b)"); 

 } 

} 

 

 

 

実行画面実行画面実行画面実行画面    

 

>java Sample4_６ 

シフト前 0000000000000101(b) 

シフト後 0000000000010100(b) 

    

 


