
 - 1/8 - 

ＪａｖａプログラミングⅠ 

 

５５５５回目回目回目回目    演算子の優先順位と変数の型変換演算子の優先順位と変数の型変換演算子の優先順位と変数の型変換演算子の優先順位と変数の型変換    

 

 

    今日の講義で学ぶ内容今日の講義で学ぶ内容今日の講義で学ぶ内容今日の講義で学ぶ内容        

・演算子の優先順位 

・優先順位の変更の方法 

・キャスト演算子と型変換 

 

 

演算子の優先順位演算子の優先順位演算子の優先順位演算子の優先順位    

 

演算子の優先順位演算子の優先順位演算子の優先順位演算子の優先順位 式を計算するときの演算の順序演算の順序演算の順序演算の順序です 

 例えば、a = b * c + d; では乗算を先に計算するというルールです 

 

（主な演算子の優先順位） 

演算子演算子演算子演算子    名前名前名前名前    結合規則結合規則結合規則結合規則    
++ 後置インクリメント 左左左左 
-- 後置デクリメント 左左左左   
! 論理否定 右右右右 
~ １の補数（反転） 右右右右 
+ プラス 右右右右 
- マイナス 右右右右 
++ 前置インクリメント 右右右右 
-- 前置デクリメント 右右右右   
 ( ) キャスト 右右右右   
* 乗算 左左左左    
/ 除算 左左左左 
% 剰余 左左左左   
+ 加算（文字列連結） 左左左左 
- 減算 左左左左   
<< 左シフト 左左左左 
>> 右シフト 左左左左 
>>> 符号なし右シフト 左左左左   
> より大きい 左左左左 
>= 以上 左左左左 
< 未満 左左左左 
<= 以下 左左左左   
== 等価 左左左左 
!= 非等価 左左左左   
& ビット論理積 左左左左   
^ ビット排他的論理和 左左左左   
| ビット論理和 左左左左   
&& 論理積 左左左左   
|| 論理和 左左左左   
? : 条件 右右右右   
= 代入 右右右右 
+=,-=など 複合代入演算 右右右右   

優先順位優先順位優先順位優先順位がががが低い低い低い低い    

優先順位優先順位優先順位優先順位がががが高い高い高い高い    

優先順位優先順位優先順位優先順位は同じは同じは同じは同じ    

私たちが普段行うように 

加算や減算よりも加算や減算よりも加算や減算よりも加算や減算よりも    

乗算や除算の方が乗算や除算の方が乗算や除算の方が乗算や除算の方が    

優先順位優先順位優先順位優先順位が高いが高いが高いが高いです 

代入演算子代入演算子代入演算子代入演算子は、    

優先順位優先順位優先順位優先順位が最も低くが最も低くが最も低くが最も低く    

最後に処理されます 



 - 2/8 - 

左左左左    結結結結    合合合合 優先順位が等しい場合、左側から順に左側から順に左側から順に左側から順に演算をする規則 

 たとえば、 

 a * b % c / d;a * b % c / d;a * b % c / d;a * b % c / d; の場合 a *a *a *a *①①①①    b %b %b %b %②②②②    c /c /c /c /③③③③    dddd;;;; となる 

 

右右右右    結結結結    合合合合 優先順位が等しい場合、右側から順に右側から順に右側から順に右側から順に演算をする規則 

 たとえば、 

 ~++a;~++a;~++a;~++a; の場合  ~~~~②②②②    ++++++++①①①①aaaa;;;; となる 

    

ソースコード例ソースコード例ソースコード例ソースコード例    

ソースファイル名：Sample5_1.java 

 

// 演算子の優先順位 

class Sample5_1 

{ 

 public static void main(String[] args) 

 { 

  int a=6, b=2, c=5; 

  int d1, d2, d3; 

  String str1; 

 

  // すべて等しい優先順位かつ右結合の演算子なので右側から順に演算 

  d1=d2=d3=0; 

 

  // 加算より乗算の優先順位が高い 

  d1=a+b*c; 

 

  // 加算より剰余の優先順位が高い 

  d2=c%b+a; 

 

  // 乗算と除算の優先順位は同じかつ左結合の演算子なので左側から順に演算 

  d3=a/b*c; 

   

  // 加算より除算の優先順位が高いかつ加算は左結合の演算子なので左側から 

  // 順に演算 

  // ((((重要重要重要重要))))加算ではオペランドに文字列がある場合は、文字列連結オペランドに文字列がある場合は、文字列連結オペランドに文字列がある場合は、文字列連結オペランドに文字列がある場合は、文字列連結となる 

  str1=a/b+"文字列"+b+c; 

 

  System.out.println("a=" + a + ", b=" + b + ", c=" + c);  

  System.out.println("a+b*c = " + d1); 

  System.out.println("c%b+a = " + d2); 

  System.out.println("a/b*c = " + d3); 

  System.out.println("a/b+\"文字列\"+b+c = " + str1); 

 } 

} 

 

d1 ====③③③③ d2 ====②②②② d3 ====①①①① 0; 

d1 ====③③③③ a ++++②②②② b ****①①①① c ; 

 

d2 ====③③③③ c %%%%①①①① b ++++②②②② a; 

d3 ====③③③③ a ////①①①① b ****②②②② c; 

str1 ====⑤⑤⑤⑤ a ////①①①① b ++++②②②②    "文字列" ++++③③③③    b    ++++④④④④ c; 

代入演算子代入演算子代入演算子代入演算子"=""=""=""="は演算演算演算演算結果結果結果結果を持ちます 

・右辺右辺右辺右辺の値の値の値の値を左辺に代入を左辺に代入を左辺に代入を左辺に代入します 

・式の演算結果は代入された値演算結果は代入された値演算結果は代入された値演算結果は代入された値です 

例えば、 

int d; 

System.out.println(dddd=6=6=6=6); 

とすると、画面には 

6666    

と出力されて dddd にはにはにはには 6666 が代入が代入が代入が代入されます 

加算演算子＋加算演算子＋加算演算子＋加算演算子＋ 

文字列連結と文字列連結と文字列連結と文字列連結として機能して機能して機能して機能    

した場合の演算結果は、 

連結された文字列連結された文字列連結された文字列連結された文字列です。 



 - 3/8 - 

実行画面実行画面実行画面実行画面    

 

>java Sample5_1 

a=6, b=2, c=5 

a+b*c = 16 

c%b+a = 7 

a/b*c = 15 

a/b+"文字列"+b+c = 3 文字列 25 

    

    

    

““““（（（（    ））））””””によるによるによるによる演算子の演算子の演算子の演算子の優先順位の変更優先順位の変更優先順位の変更優先順位の変更    

 

式のグループ化式のグループ化式のグループ化式のグループ化 式を““““（）（）（）（）””””でででで囲みグループにする囲みグループにする囲みグループにする囲みグループにすることにより、 

 その部分を他より先に行わせる他より先に行わせる他より先に行わせる他より先に行わせることができます 

  

 たとえば、 

 ( a + b ) * c( a + b ) * c( a + b ) * c( a + b ) * c;;;;    の場合 ( a +( a +( a +( a +①①①①    b ) *b ) *b ) *b ) *②②②②    cccc;;;;    となる 

    

   括括括括弧弧弧弧は、入れ子（括弧の中にさらに括弧）入れ子（括弧の中にさらに括弧）入れ子（括弧の中にさらに括弧）入れ子（括弧の中にさらに括弧）にもできます 

 この場合、内側の括弧から演算内側の括弧から演算内側の括弧から演算内側の括弧から演算が行われます 

ソースコード例ソースコード例ソースコード例ソースコード例    

ソースファイル名：Sample5_2.java 

 

// 演算子の優先順位の変更 

class Sample5_2 

{ 

 public static void main(String[] args) 

 { 

  // 括弧内の演算が先にされ、その後は優先順位に従い除算が行われる 

  int a=10/(5-3); 

  System.out.println("10/(5-3)=" + a); 

   

  // 括弧内の演算が先にされ、その後は優先順位に従い剰余、減算と進む 

  int b=(4+17)%2-1; 

  System.out.println("(4+17)%2-1=" + b); 

   

  // すべて等しい優先順位かつ左結合の演算子なので左側から順に演算 

  System.out.println("1+2=" + 1+2 + "です。"); // 期待通りの結果が得られない 

  System.out.println("1+2=" + (1+2) + "です。"); // ( )により優先順位を変更 

 

  // 加算より乗算の優先順位が高い 

  System.out.println("3*4=" + 3*4 + "です。"); 

 } 

} 



 - 4/8 - 

実行画面実行画面実行画面実行画面    

 

>java Sample5_2 

10/(5-3)=5 

(4+17)%2-1=0 

1+2=12 です。 

1+2=3 です。 

3*4=12 です。 

 

 

  演算子の優先順位をすべて覚えるのは大変です 

意図的に“（意図的に“（意図的に“（意図的に“（    ））））”を用いて優先順位を指定する”を用いて優先順位を指定する”を用いて優先順位を指定する”を用いて優先順位を指定するとよいでしょう 

    

 

 

 

値値値値の型変換の型変換の型変換の型変換    

 

型のランク型のランク型のランク型のランク 型は値の表現範囲値の表現範囲値の表現範囲値の表現範囲より次のようにランク付けランク付けランク付けランク付けされています 

 これを型のランク型のランク型のランク型のランクといいます 

 

低い低い低い低い            高い高い高い高い 

 

 

 

 

 

    

    

値の型変換値の型変換値の型変換値の型変換 値の型を変換する型を変換する型を変換する型を変換することです 

 たとえば、double 型から int 型、byte 型から int 型の変換です 

  

 型変換型変換型変換型変換は型のランク型のランク型のランク型のランクにもとづき区別され処理されます 

 

 

高いランク高いランク高いランク高いランクへの型への型への型への型変換変換変換変換 値は拡張拡張拡張拡張されます    

（拡大変換（拡大変換（拡大変換（拡大変換といいます）））） たとえば、int 型 2 � double 型 2.0 

 

   低いほうの型で表現されない情報は０で補完されます 

 

 

低いランク低いランク低いランク低いランクへの型への型への型への型変換変換変換変換 値は切り捨て切り捨て切り捨て切り捨てられます 

（縮小変換（縮小変換（縮小変換（縮小変換といいます）））） たとえば、double 型 2.5 � int 型 2 

 

   低いほうの型で表現される情報だけ残ります 

doubledoubledoubledouble    floatfloatfloatfloat    longlonglonglong    intintintint    shortshortshortshort    bybybybytetetete    

charcharcharchar    



 - 5/8 - 

ＯＫ 

型変換型変換型変換型変換はいつはいつはいつはいつ行われる？行われる？行われる？行われる？ （１）（１）（１）（１）変数に値を代入するとき変数に値を代入するとき変数に値を代入するとき変数に値を代入するとき    （２）（２）（２）（２）演算を行うとき演算を行うとき演算を行うとき演算を行うとき    

 

（１）（１）（１）（１）変数に値を代入するとき変数に値を代入するとき変数に値を代入するとき変数に値を代入するとき 

    

高いランクの型の変数へ代入高いランクの型の変数へ代入高いランクの型の変数へ代入高いランクの型の変数へ代入 自動的自動的自動的自動的に型の拡大拡大拡大拡大変換変換変換変換が行われます 

 たとえば、 

 int  i  =  5;int  i  =  5;int  i  =  5;int  i  =  5;    

    double  ddouble  ddouble  ddouble  d        = = = =     iiii;;;; 

 

 

低いランクの低いランクの低いランクの低いランクの型の変数へ代入型の変数へ代入型の変数へ代入型の変数へ代入 自動的な自動的な自動的な自動的な縮小変換縮小変換縮小変換縮小変換は行われません行われません行われません行われません！！！！！！！！ 

 例えば、 

 doubledoubledoubledouble        dddd        =  5.5=  5.5=  5.5=  5.5;;;;    

    short  sshort  sshort  sshort  s        =  d=  d=  d=  d;;;; 

 

   このようなコードをコンパイルしたら 

 「精度が落ちている可能性精度が落ちている可能性精度が落ちている可能性精度が落ちている可能性」 

 というコンパイルエラーコンパイルエラーコンパイルエラーコンパイルエラーがでます 

  

 キャスト演算子キャスト演算子キャスト演算子キャスト演算子により明示的明示的明示的明示的に型変換型変換型変換型変換を行います 

 

 

キャスト演算子“キャスト演算子“キャスト演算子“キャスト演算子“（）（）（）（）”””” 式の値を（）内で指定した型に一時的に一時的に一時的に一時的に型型型型変換変換変換変換します 

 たとえば、 

    (double)(double)(double)(double)    10101010    

    (int)(int)(int)(int)    aaaa    

 

( ( ( ( 型型型型    ) ) ) ) 式式式式    

 

 先ほどの例では、 

 double  ddouble  ddouble  ddouble  d        =  =  =  =  5.5;5.5;5.5;5.5;    

    short  s  =  short  s  =  short  s  =  short  s  =  (short)(short)(short)(short)    dddd;;;;  

 とすれば、明示的明示的明示的明示的に型の縮小変換縮小変換縮小変換縮小変換が行われ、 

 変数変数変数変数 ssss に 5555 が代入されます 

  

   キャストキャストキャストキャスト演算演算演算演算は、一時的一時的一時的一時的なななな型変換型変換型変換型変換ですので 

 このとき、変数変数変数変数 dddd の値は 5.55.55.55.5 のままです 

 

   一般に、キャスト演算子キャスト演算子キャスト演算子キャスト演算子は型の拡大変換拡大変換拡大変換拡大変換にも使えます 

 たとえば、 

 int 型の値を double 型にキャストキャストキャストキャストする場合は、 

    int  i  =  5;int  i  =  5;int  i  =  5;int  i  =  5;    

    double  ddouble  ddouble  ddouble  d        =  =  =  =  (double)(double)(double)(double)    i;i;i;i;    

    とすれば、明示的明示的明示的明示的に型の拡大変換拡大変換拡大変換拡大変換が行われます 

縮小変換縮小変換縮小変換縮小変換では、情報が情報が情報が情報が

失われます失われます失われます失われます。 

プログラマがこれを

承知して行っている

かかどうか Java が

判断できないため、エ

ラーを出します。 

エラーエラーエラーエラー    

ＯＫ 



 - 6/8 - 

   キャスト演算子キャスト演算子キャスト演算子キャスト演算子と演算子の優先順位変更演算子の優先順位変更演算子の優先順位変更演算子の優先順位変更の記号は、 

 どちらも （（（（    ）））） です 

 きちんと区別して間違えないようしましょう！！ 

 ★キャスト演算子キャスト演算子キャスト演算子キャスト演算子の場合は括弧の中には型型型型を書きます 

 ★優先順位変更優先順位変更優先順位変更優先順位変更の場合は括弧の中には式式式式を書きます 

 

ソースコード例ソースコード例ソースコード例ソースコード例    

ソースファイル名：Sample5_3.java 

 

// 代入時の型変換 

class Sample5_3 

{ 

 public static void main(String[] args) 

 { 

  byte a; 

  int b; 

  double c; 

   

  // int 型から double 型への型変換 

  b = 2; 

  c = b; // 高いランクの型への変換 

  System.out.println("int 型" + b + " -> double 型" + c); 

 

  // double 型から int 型への型変換 

  c = 2.5; 

  b = (int)c; // 低いランクの型への変換 キャスト演算子必要 

  // キャスト演算は一時的な型変換なので変数 c そのものの値は変化しない    

  System.out.println("double 型" + c + " -> int 型" + b); 

 

  // int 型から byte 型への型変換 

  b = 256; 

  a = (byte)b; // 低いランクの型への変換 キャスト演算子必要 

  System.out.println("int 型" + b + " -> byte 型" + a); 

 } 

} 

 

 

 

実行画面実行画面実行画面実行画面    

 

>java Sample5_3 

int 型 2 -> double 型 2.0 

double 型 2.5 -> int 型 2 

int 型 256 -> byte 型 0 

    

256256256256(10)(10)(10)(10)=1111,,,,    0000000000000000,,,,0000000000000000(2)(2)(2)(2) 

この値を byte 型（8 ビット）で切り取ると、 

0000000000000000,,,,0000000000000000(2)(2)(2)(2) となります 



 - 7/8 - 

（（（（２２２２））））演算を行うとき演算を行うとき演算を行うとき演算を行うとき 

    

演算時の型変換演算時の型変換演算時の型変換演算時の型変換 異なるランクの型が同じ式に混在する場合、 

 演算前に一方のオペランドオペランドオペランドオペランドがランクの高いランクの高いランクの高いランクの高い型に型に型に型に一時的に型型型型変換変換変換変換されます 

  

 演算後の式の演算演算演算演算結果結果結果結果はオペランドの型の中でランクの高いランクの高いランクの高いランクの高い型型型型になります 

 

 例えば、 

 2 * 2.5 � 2.02.02.02.0 * 2.5 � 5.05.05.05.0 

 5 / 2.0 � 5.05.05.05.0 / 2.0 � 2.52.52.52.5 

 

   bytebytebytebyte 型型型型と shortshortshortshort 型型型型、charcharcharchar 型型型型のオペランドは、 

 演算前演算前演算前演算前に一時的にランクの高い intintintint 型へ型へ型へ型へ拡大拡大拡大拡大変換変換変換変換されます 

 

ソースソースソースソースコード例コード例コード例コード例    

ソースファイル名：Sample5_4.java 

 

// 演算時の型変換１ 

class Sample5_4 

{ 

 public static void main(String[] args) 

 { 

  int diameter=2; 

  double pi=3.14; 

   

// 円周の計算 

  System.out.println("直径が" + diameter + "cm の円の"); 

  System.out.println("円周は" + (diameter*pi) + "cm です。"); 

 

  // int 型＊double 型であるため、 

  // int 型変数は double 型に変換されて演算される 

// 式の値は double 型になる 

} 

} 

 

    

実行画面実行画面実行画面実行画面    

 

>java Sample5_4 

直径が 2cm の円の 

円周は 6.28cm です。 

 

 

 

 



 - 8/8 - 

ソースコード例ソースコード例ソースコード例ソースコード例    

ソースファイル名：Sample5_5.java 

 

// 演算時の型変換２ 

class Sample5_5 

{ 

 public static void main(String[] args) 

 { 

  int num1=5; 

  int num2=4; 

  double div; 

   

  div = num1/num2; 

  System.out.println("5 / 4 は" + div + "です。"); 

 

// int 型／int 型であるため型変換はされず、式の値は int 型になる 

// このため期待通りの答えが得られない 

// 一方の変数を double 型にキャスト演算子を用いて拡大変換することで 

// 演算は double 型で行われる 

div = ((double)num1)/num2; 

System.out.println("5 / 4 は" + div + "です。"); 

} 

} 

 

    

 

実行画面実行画面実行画面実行画面    

 

>java Sample5_5 

5 / 4 は 1.0 です。 

5 / 4 は 1.25 です。 

整数整数整数整数同士の同士の同士の同士の除算除算除算除算にににに要要要要注意注意注意注意！！！！！！！！    

整数値や整数型の変数のみか

らなる足し算や引き算の式で

は答えは整数ですね 

 

しかし、 

除算を含む場合は小数が出る

場合がありますので、演算結果

の型の決まり方に注意！！ 


