
ＪａｖａプログラミングⅠ

３回目 変 数

 今日の講義で学ぶ内容

・変数とは

・変数の使い方

・キーボード入力の仕方

変 数

変 数 一時的に値を記憶させておく機能です

 変数は、型（データ型ともいいます）と識別子をもちます

 型 変数に記憶できる値の種類です

 型は、値の種類に応じて次の８種類があり、これを基本型といいます

 基本型 値の種類 値の範囲または例

 boolean 真偽値 true または false

 char 16 ﾋﾞｯﾄ文字(16 ﾋﾞｯﾄ Unicode) 'a'、'b'、…

 byte 8 ﾋﾞｯﾄ符号付き整数 - 128 ～ 127

 short 16 ﾋﾞｯﾄ符号付き整数 - 32768 ～ 32767

 int 32 ﾋﾞｯﾄ符号付き整数 - 231 ～ 231 – 1

 long 64 ﾋﾞｯﾄ符号付き整数 - 263 ～ 263 – 1

 float 32 ﾋﾞｯﾄ単精度浮動小数点数 約±3.4×1038～1.4×10-45

 double 64 ﾋﾞｯﾄ倍精度浮動小数点数 約±1.8×10308～4.9×10-324

 C 言語では型ごとに符号なしや符号ありの指定ができます

 たとえば、unsigned int a; や signed long b; です

 Java では基本型は符号ありのみ（ boolean と char を除く）です

 Ｃ言語では各型が扱う値の範囲はプログラム環境ごとに様々です

 Java では各型が扱う値の範囲は一定です

 'a'や'b'の文字リテラルは Java 内部で 16 ﾋﾞｯﾄ Unicode で表現されています

 char 型は 16 ﾋﾞｯﾄ符号なし整数を用いて 16 ﾋﾞｯﾄ Unicode を扱います

 char 型は 16 ﾋﾞｯﾄ符号なし整数（0～65535）を扱うこともできます

2

識別子 変数につける名前です

 識別子は、変数を一意に識別します

 識別子には、規則があります

 ・使える記号は、a～z、A～Z、0～9、_(ｱﾝﾀﾞｰﾗｲﾝ)、$(ﾄﾞﾙ記号)です

 ・最初の記号は数字以外である必要があります

 ・名前の長さは無制限です

・大文字と小文字は異なるものとして区別されます

・途中に空白(ｽﾍﾟｰｽ)を含めることはできません

・次の Java のキーワード（すべて小文字）は使用できません

abstract const final int public throw

assert continue finally interface return throws

boolean default float long short transient

break do for native static true

byte double goto new strictfp try

case else if null super void

catch enum implements package switch volatile

char extends import private synchronized while

class false instanceof protected this

 識別子として、

 a, abc, ab_c, F1

などは良いですが、

 12a, return, is-a

はエラーです

変数の宣言

変数の宣言 変数を使用できるようにするための準備です

変数の型と識別子を指定して次のように記述します

型 識別子;

コード例 ｜ int num;

変数の初期化 変数を宣言した際に適当な値を代入しておくことです

 宣言された変数には予期しない値が入っていることがあります

 初期化していない変数を利用しようとすると

 「変数○○は初期化されていない可能性があります」

 というコンパイルエラーがでます

右辺を左辺に代入する演算子 ＝（ｲｺｰﾙ）を用いて次のように記述します

識別子 = 値;

コード例 ｜ num = 0;

 プログラミング言語では代入と等しいを明確に区別します

・代入は、＝（ｼﾝｸﾞﾙｲｺｰﾙ）で表現します

・等しいは、＝＝（ﾀﾞﾌﾞﾙｲｺｰﾙ）で表現します

（※）＝＝（ﾀﾞﾌﾞﾙｲｺｰﾙ）は後の回で紹介します

（※）数学では代入と等しいを同じ記号＝（ｲｺｰﾙ）で表記しますので注意しましょう

ソースコード例

ソースファイル名：Sample3_1.java

// 変数の宣言と初期化

class Sample3_1

{

 public static void main(String[] args)

 {

 int num1; // 変数の宣言

 num1 = 0; // 変数の初期化

 // 変数の宣言と初期化を同時に行う

 int num2 = 0;

 // 同一の型の変数を複数同時に宣言する

 // ,(ｶﾝﾏ)で変数を区切る

 int num3, num4;

 // 同一の型の変数を複数同時に宣言・初期化する

 int num5 = 0, num6 =0;

 // 同一の型の変数を複数同時に宣言、一部初期化する

 int num7 = 0, num8, num9 = 0;

 }

}

変数の利用

変数は宣言された直後から利用することができます

宣言されていない（宣言する前に）変数を利用しようとすると

「シンボルを見つけられません」

というコンパイルエラーがでます

変数の値の変更 変数がもつ値を変更します

 変数への値の代入や変数の値の上書き・変更が行えます

 変数の初期化が終わればそれ以降その変数は

 初期化で代入した値を保持しています

右辺を左辺に代入する演算子 ＝（ｲｺｰﾙ）を用いて次のように記述します

識別子 = 値;

コード例 ｜ num = 2;

または

識別子 1 = 識別子 2;

コード例 ｜ num = a;

変数の値の出力 変数がもつ値を画面に表示します

変数の識別子を指定して次のように記述します

System.out.println(識別子);

コード例 ｜ System.out.println(num);

 System.out.println(); の他に、

・System.out.print();

・System.out.printf();

を用いてもよいですが、行末に改行が自動的に入るかどうかに気を付けましょう

ソースコード例

ソースファイル名：Sample3_2.java

// 変数の利用

class Sample3_2

{

 public static void main(String[] args)

 {

 // 変数の宣言と初期化

 int num1 = 0;

 int num2 = 0;

 // 変数の値の出力

 System.out.println("変数 num1 の値は" + num1 + "です。");

 System.out.println("変数 num2 の値は" + num2 + "です。");

 // 変数の値を変更

 num1 = 5;

 System.out.println("変数 num1 の値を変更しました。");

System.out.println("変数 num1 の値は" + num1 + "です。");

 System.out.println("変数 num2 の値は" + num2 + "です。");

 // ほかの変数の値を代入

 num2 = num1;

 System.out.println("変数 num1 の値を変数 num2 に代入しました。");

System.out.println("変数 num1 の値は" + num1 + "です。");

 System.out.println("変数 num2 の値は" + num2 + "です。");

}

}

実行画面

>java Sample3_2

変数 num1 の値は 0 です。

変数 num2 の値は 0 です。

変数 num1 の値を変更しました。

変数 num1 の値は 5 です。

変数 num2 の値は 0 です。

変数 num1 の値を変数 num2 に代入しました。

変数 num1 の値は 5 です。

変数 num2 の値は 5 です。

ここで、演算子＋は文字列を連結

する機能をもちます

（参照）第 2 回目講義ﾌﾟﾘﾝﾄ

ある変数の値

を別の変数に

代入すること

もできます

キーボード入力の基本形（文字列を入力する場合）

キーボードからの文字列入力を行うコードは以下のような形です

ソースファイル名：ｸﾗｽ名.java

import java.io.*;

class ｸﾗｽ名

{

 public static void main(String[] args) throws IOException

 {

 BufferedReader br;

br = new BufferedReader(new InputStreamReader(System.in));

 ：

 String str;

str = br.readLine();

 ：

}

}

String 型 文字列を代入できる型です

 "Hello"や"こんにちは"など文字列リテラルを代入することができます

 変数の基本型には、

 boolean、char、byte、short、int、long、float、double

 の８種類があります

 String 型は基本型ではなく、参照型とよばれる型です

 これらの違いは後の回で詳しく解説します

 ここでは、基本型と同様に考えてください

このように記述

Ｃ言語の#include に対応します

キーボード入力の機能が使用可能になります

このように記述
このように記述

キーボード入力をす

る前に一度だけ記述

します

br.readLine();

ユーザからの入力を待つ状態で止まります

文字列をキーボードから入力し Enter キーを押す

とその文字列が代入演算子＝により変数 str に代

入されます

String str;

文字列を扱う String 型の変数を宣言します

キーボードから入力される文字列を代入する

ために用います

ソースコード例

ソースファイル名：Sample3_3.java

// キーボードから文字列を入力する

import java.io.*;

class Sample3_3

{

 public static void main(String[] args) throws IOException

 {

 BufferedReader br;

 br = new BufferedReader(new InputStreamReader(System.in));

 // キーボードからの文字列を受け取る変数の宣言

 String str1, str2;

 // キーボードからの入力を促すメッセージと入力

 System.out.println("１つ目の文字列を入力してください。");

 str1 = br.readLine();

 System.out.println("２つ目の文字列を入力してください。");

 str2 = br.readLine();

 // 読込まれた文字列を表示する

 System.out.println(str1 + "と"+ str2 + "が入力されました。");

 }

}

実行画面

>java Sample3_3

１つ目の文字列を入力してください。

楽しい

２つ目の文字列を入力してください。

Ｊａｖａ

楽しいとＪａｖａが入力されました。

キーボード入力の基本形（整数を入力する場合）

キーボードからの整数入力を行うコードは以下のような形です

ソースファイル名：ｸﾗｽ名.java

import java.io.*;

class ｸﾗｽ名

{

 public static void main(String[] args) throws IOException

 {

 BufferedReader br;

br = new BufferedReader(new InputStreamReader(System.in));

 ：

 int num;

num = Integer.parseInt(br.readLine());

 ：

}

}

このように記述

Ｃ言語の#include に対応します

キーボード入力の機能が使用可能になります

このように記述 このように記述

キーボード入力をす

る前に一度だけ記述

します

int num;

整数を扱う int 型の変数を宣言します

 この部分 は

変換したい型に応じて次のように使い分けます

（入力したいデータ型） （コード）

boolean 型  Boolean.parseBoolean(…);

byte 型  Byte.parseByte(…);

short 型  Short.parseShort(…);

int 型  Integer.parseInt(…);

long 型  Long.parseLong(…);

float 型  Float.parseFloat(…);

double 型  Double.parseDouble(…);

さらに、

入力された値を代入する変数の型も合わせて変更します

たとえば、

実数を入力したい場合は、

double d;

d = Double.parseDouble(br.readlLine());

とすればよいです

Integer.parseInt(br.readLine());

ユーザからの入力を待つ状態で止まります

文字列をキーボードから入力し Enter キーを押すと

入力された文字列が int 型の数値に変換され、代入演

算子＝により int 型の変数 num に代入されます

ソースコード例

ソースファイル名：Sample3_4.java

// キーボードから整数を入力する

import java.io.*;

class Sample3_4

{

 public static void main(String[] args) throws IOException

 {

 BufferedReader br;

 br = new BufferedReader(new InputStreamReader(System.in));

 // キーボードからの入力を促すメッセージ

 System.out.println("整数を入力してください。");

 // キーボードから整数を読込む

 int num;

 num = Integer.parseInt(br.readLine());

 // 読込まれた整数を表示する

 System.out.println(num + "が入力されました。");

 }

}

実行画面

>java Sample3_4

整数を入力してください。

123

123 が入力されました。

Sample3_4 実行時に数値を入力するのを間違えて文字を入力したら？

実行画面

>java Sample3_4

整数を入力してください。

a

Exception in thread "main" java.lang.NumberFormatException: For input string: "a"

 at java.lang.NumberFormatException.forInputString(NumberFormatException.java:48)

 at java.lang.Integer.parseInt(Integer.java:447)

 at java.lang.Integer.parseInt(Integer.java:497)

 at Sample3_4.main(Sample3_4.java:20)

Java ではこのような実行時におけるエラーを処理する“例外処理”という枠組みが備えられ

ています。ここでは詳細にはふれず、Java プログラミングⅡで詳しく解説します。

キーボード入力のその他の方法

ソースコード例

ソースファイル名：Ext3_1.java

// キーボードから数値を直接読み込む

import java.util.*;

class Ext3_1

{

 public static void main(String[] args)

 {

 Scanner s;

 s = new Scanner(System.in);

 // こちらの方法では以下の例のように int 型整数、long 型整数、

 // float 型実数、double 型実数を変数に読み込むことができます

 int i = s.nextInt();

 long l = s.nextLong();

 float f = s.nextFloat();

 double d = s.nextDouble();

 String str = s.next();

 // 変数の中身をみてみましょう

 System.out.println("i="+i+", l="+l+", f="+f+", d="+d+", str="+str);

 }

}

このように記述

ユーザからの入力を待つ状態で止まります

文字列をキーボードから入力し Enter キーを押

すとその文字列が指定の型に変換されて、代入演

算子＝により各変数に代入されます

このように記述

Ｃ言語の#include に対応します

以下のキーボード入力の機能が使用可能になります

このように記述

キーボード入力をする前に一度だけ

記述します

実行画面

>java Ext3_1

12

2007

12.4

3.1415

Hello

i=12, l=2007, f=12.4, d=3.1415, str=Hello

