
 - 1/10 -

ＪａｖａプログラミングⅠ

４回目 演 算 子

 今日の講義で学ぶ内容

・演算子とオペランド、式

・様々な演算子

・代表的な演算子の使用例

演算子とオペランド

演算子 演算の種類 です

 例えば、＋、－、＊、／

 掛け算の記号は×ではなく、＊（ｱｽﾀﾘｽｸ）を使います

 割り算の記号は÷ではなく、／（ｽﾗｯｼｭ）を使います

オペランド 演算の対象です

 例えば、5（値）、num（変数）

 式 演算子とオペランドの組み合わせにより構成される数式です

 式は演算結果をもちます

 例えば、

 1 + num

 単一の変数も式と呼びます

 例えば、

 num

 一般に式は演算結果を持ちますが、演算結果をもたない特殊な

 式もあります。Java プログラミングⅡで解説します

１：オペランド num：オペランド

＋：演算子 式全体：演算結果

式全体：演算結果 num：単一の変数

式

式

 - 2/10 -

ソースコード例

ソースファイル名：Sample4_1.java

// 変数を用いた式

class Sample4_1

{

 public static void main(String[] args)

 {

 // 変数宣言と初期化

 int num1 = 15;

 int num2 = 3;

 // num1 と num2 の四則計算

 int add;

 add = num1 + num2;

 int sub;

 sub = num1 - num2;

 int mul;

 mul = num1 * num2;

 int div;

 div = num1 / num2;

 // 計算結果の出力

 System.out.println(num1 + "と" + num2 + "の四則計算：");

 System.out.println("和 = "+add);

 System.out.println("差 = "+sub);

 System.out.println("積 = "+mul);

 System.out.println("商 = "+div);

 }

}

実行画面

>java Sample4_1

15 と 3 の四則計算：

和 = 18

差 = 12

積 = 45

商 = 5

掛け算は、×ではなく

*(ｱｽﾀﾘｽｸ)を使います

割り算は、÷ではなく

/(ｽﾗｯｼｭ)を使います

 - 3/10 -

演算子の種類

演算子は、算術演算子、ビット論理演算子、シフト演算子、インクリメント・デクリメント

演算子、関係演算子、論理演算子、条件演算子、代入演算子など多彩な分類をもちます

（算術演算子） （インクリメント・デクリメント演算子）

+ 加算（文字列連結） ++ インクリメント【単項演算子】

- 減算 -- デクリメント【単項演算子】

* 乗算 （関係演算子）

/ 除算 > より大きい

% 剰余 >= 以上

（ビット論理演算子） < 未満

& ビット論理積 <= 以下

| ビット論理和 == 等しい

^ ビット排他的論理和 != 等しくない

（シフト演算子） （論理演算子）

<< 左シフト ! 論理否定【単項演算子】

>> 右シフト && 論理積

>>> 符号なし右シフト || 論理和

（その他） （条件演算子）

+ プラス【単項演算子】 ? : 条件【三項演算子】

- マイナス【単項演算子】 （代入演算子）

~ １の補数「反転」【単項演算子】 =

ｎ項演算子 演算子はオペランドの数により単項
．．

、二項
．．

、三項
．．

演算子と呼ばれます

 ・単項演算子 オペランドが１つ

 例えば、++（インクリメント）

 ・二項演算子 オペランドが２つ

 例えば、+、-、*、/（四則計算）

 ・三項演算子 オペランドが３つ

 Java では唯一であり、 ? :（条件演算子）

加算演算子＋ 加算と文字列連結の２つの役割をもちます

 ２つの役割はオペランドの種類によりどちらかに決まります

 ・文字列連結 いずれかまたは両方のオペランドが String 型のとき

 ・加 算 それ以外

 "Hello"などの文字列リテラルは String 型とみなされます

 次のコードを実行すると、右のように出力されます

 System.out.println("ABC"+"DEF"); → ABCDEF

 System.out.println("ABC"+50); → ABC50

 System.out.println(20+50); → 70

 - 4/10 -

ソースコード例

ソースファイル名：Sample4_2.java

// 剰余付き割り算プログラム
import java.io.*;

class Sample4_2
{
 public static void main(String[] args) throws IOException
 {
 // キーボード準備
 BufferedReader br;
 br = new BufferedReader(new InputStreamReader(System.in));

 // 整数用の変数
 int num1, num2, tmp;
 int div; // 商
 int mod; // 余り

 // 整数の入力
 System.out.println("#剰余付き割り算#\n２つの整数を入力してください。");
 System.out.println("１つ目の整数を入力してください。");
 num1 = Integer.parseInt(br.readLine());
 System.out.println("２つ目の整数を入力してください。");
 num2 = Integer.parseInt(br.readLine());

 // 剰余の計算
 mod = num1 % num2; // %は余りを計算する演算子

 // 商の計算
 tmp = num1 - mod;
 div = tmp / num2;

 // 結果の出力
 System.out.println(num1 + " ÷ " + num2 + " = " + div + " あまり " + mod);
 }
}

実行画面

>java Sample4_2

#剰余付き割り算#

２つの整数を入力してください。

１つ目の整数を入力してください。

11

２つ目の整数を入力してください。

4

11 ÷ 4 = 2 あまり 3

 - 5/10 -

インクリメント・デクリメント演算子

インクリメント演算子 ++ オペランドの変数の値を１増やします

 演算結果は次のようになります

a++ 後置インクリメント 変数 a を演算結果とした後、a の値を 1 増やします

++a 前置インクリメント 変数 a の値を 1 増やした後、a を演算結果とします

デクリメント演算子 -- オペランドの変数の値を１減らします

 演算結果は次のようになります

a-- 後置デクリメント 変数 a を演算結果とした後、a の値を 1 減らします

--a 前置デクリメント 変数 a の値を 1 減らした後、a を演算結果とします

 演算結果が出されるタイミングに注意しましょう

ソースコード例

ソースファイル名：Sample4_3.java

// 前置・後置インクリメント
class Sample4_3
{
 public static void main(String[] args)
 {
 // 変数の宣言と初期化
 int a1 = 0, a2 = 0;
 int b = 0, c = 0;

 System.out.println("a1="+ a1);
 System.out.println("a2="+ a2);

 // 前置・後置インクリメントの違い
 b = a1++;
 c = ++a2;
 System.out.println("後置・前置インクリメントをします");
 System.out.println("後置インクリメント(b=a1++;) b="+ b);
 System.out.println("前置インクリメント(c=++a2;) c="+ c);
 System.out.println("a1="+ a1);
 System.out.println("a2="+ a2);

 // 単独で用いると１増えるだけ
 a1++;
 ++a2;
 System.out.println("単独で後置・前置インクリメントもできます");
 System.out.println("後置インクリメント a1++; ");
 System.out.println("前置インクリメント ++a2; ");
 System.out.println("a1="+ a1);
 System.out.println("a2="+ a2);
 }
}

 - 6/10 -

実行画面

>java Sample4_3

a1=0

a2=0

後置・前置インクリメントをします

後置インクリメント(b=a1++;) b=0

前置インクリメント(c=++a2;) c=1

a1=1

a2=1

単独で後置・前置インクリメントもできます

後置インクリメント a1++;

前置インクリメント ++a2;

a1=2

a2=2

 インクリメント・デクリメント演算子では、

そのオペランドの変数の値そのものが演算前と演算後で変化します

一般に、式を計算するとき、オペランドの値を用いて演算結果を計算します

オペランドの変数の値は参照されるだけで、新しい値が代入されることはありません

例えば、

 i + num

例外として、インクリメント・デクリメント演算子と代入演算子（次に説明）では

オペランドの変数に新しい値が代入されます

 例えば、

 ++ i

i は参照されるだけです

変数 i の値はそのままです

num は参照されるだけです

変数 num の値はそのままです

加算演算子 参照された値を用

いて加算の演算結

果が計算されます

i の値が変わります

変数 i の値は１加算されます

インクリメント演算子

前置インクリメン

トなので、加算さ

れた後の変数 i の

値が演算結果です

 - 7/10 -

代入演算子

代入演算子 = 右辺の値を左辺の変数に代入します

 演算結果は左辺に代入された値です

 n=10

 たとえば、

 int n;

 System.out.println(n=10);

 とすると、10 が画面に出力されます

 代入演算子の目的は代入です

 代入演算子自身の演算結果を利用することは少ないです

複合的な ■= 左辺と右辺を用いて演算■をした後、結果を左辺に代入します

代入演算子 演算結果は左辺に代入された値です

 ■には次のような演算子を入れて利用できます

 a += b 加算+代入 a = a + b

 a -= b 減算+代入 a = a – b

 a *= b 乗算+代入 a = a * b

 a /= b 除算+代入 a = a / b

 a %= b 剰余+代入 a = a % b

 a &= b 論理積+代入 a = a & b

 a |= b 論理和+代入 a = a | b

 a ^= b 排他的論理和+代入 a = a ^ b

 a <<= b 左シフト+代入 a = a << b

 a >>= b 右シフト+代入 a = a >> b

 a >>>=b 符号なし右シフト+代入 a = a >>> b

 たとえば、

 int n=5;

 System.out.println(n+=10);

 とすると、15 が画面に出力されます

 複合的な代入演算子の目的は演算を伴った代入です

 複合的代入演算子自身の演算結果を利用することは少ないです

値が変わります

変数 n の値は１0 になります

代入演算子 左辺に代入された値

10 が演算結果です

機能的には

a ■= b

と

a = a ■ b

は同じです

 - 8/10 -

ソースコード例

ソースファイル名：Sample4_4.java

// 複合的な代入演算子を用いた総計処理

class Sample4_4

{

 public static void main(String[] args)

 {

 int sum=0; // 総計用の変数、ゼロで初期化

 // 処理内容のメッセージ

 System.out.println("３つの整数の総計を求めます。");

 System.out.println("１つ目の整数は３");

 sum += 3;

 System.out.println("２つ目の整数は５");

 sum += 5;

 System.out.println("３つ目の整数は２");

 sum += 2;

 // 総計の表示

 System.out.println("総計は" + sum + "です。");

 }

}

実行画面

>java Sample4_4

３つの整数の総計を求めます。

１つ目の整数は３

２つ目の整数は５

３つ目の整数は２

総計は 10 です。

 - 9/10 -

シフト演算子

シフト演算子 <<、>>、>>> 指定ビットシフトします

 演算結果は指定ビットシフトした値です

a << b 左シフト演算子 b ビット分 a のビット列を左へシフトし、

 右を 0 で埋めます

 シフト演算子のオペランドの変数の値は

 加算や減算などの算術演算子と同様に

 演算前と演算後で変化しません

a >> b 右シフト演算子 b ビット分 a のビット列を右へシフトし、

 a が正の場合は 0 で、負の場合は 1 で左を埋めます

 右シフト演算子は左側を０又は１で埋めることに

 よりシフトする値の正負を保持します

a >>> b 符号なし右シフト演算子 b ビット分 a のビット列を右へシフトし、

 0 で左を埋めます

ソースコード例

ソースファイル名：Sample4_５.java

// シフト演算
class Sample4_5
{
 public static void main(String[] args)
 {
 int i=2, ans;

 // シフト演算例
 ans = i << 1; // 1 ビット左へ（２倍）
 System.out.println(ans);
 ans = i >> 1; // 1 ビット右へ（０．５倍）
 System.out.println(ans);
 }
}

実行画面

>java Sample4_5

4

1

変数 a のビット列

 0 0

シフトの回数 b

変数 a のビット列

0/1 0/1

 0 0

 - 10/10 -

ソースコード例

ソースファイル名：Sample4_６.java

// シフト演算の働き

class Sample4_６

{

 public static void main(String[] args)

 {

 int i;

 short num=5;

 // ビット列出力

 System.out.print("シフト前 ");

 for(i=0;i<16;i++)

 System.out.print(0x0001&(num>>(15-i)));

 System.out.println("(b)");

 // シフト演算

 num <<= 2;

 // ビット列出力

 System.out.print("シフト後 ");

 for(i=0;i<16;i++)

 System.out.print(0x0001&(num>>(15-i)));

 System.out.println("(b)");

 }

}

実行画面

>java Sample4_６

シフト前 0000000000000101(b)

シフト後 0000000000010100(b)

