
 - 1/10 -

ＪａｖａプログラミングⅠ

７回目 switch 文と論理演算子

 今日の講義で学ぶ内容

・switch 文

・論理演算子

・条件演算子

条件判断文３ switch 文

switch 文 式が case のラベルと一致する場所から直後の break;まで処理します

 どれにも一致しない場合、default:から直後の break;まで処理します

 式 byte, short, int, char 型（文字または整数）を演算結果とします

 ラベル 整数リテラル、文字リテラルを指定します

switch(式)

{

 case ラベル１: 文１

 ⋮

 break;

 case ラベル２: 文２

 ⋮

 break;

 ⋮

default: 文３

 ⋮

 break;

}

 ラベルは重複しないように注意しましょう

 default:は指定しないか、または１つ指定するかであり複数指定することはできません

default:を省略するとどのラベルとも一致しない場合、何もせず switch 文を抜けます

 switch 文の式にはこの他列挙型やラッパクラス、またラベルには定数などの定数式を書

くことができより柔軟なプログラムが可能です。ＪａｖａプログラミングⅡで解説します。

式の結果

ラベル１ ラベル２ 以外

文１ 文２ 文３ ・・・

コロンです

一般に default:は最後

に書くようにします

セミコロンです

 - 2/10 -

break 文 switch ブロック内の実行中の処理を強制的に終了し、ブロックから抜けます

 switch(i)

 {

 ・・・・・・

 break;

 ・・・・・・

 }

 ・・・・・・

ソースコード例

ソースファイル名：Sample7_1.java

// 入力値の判定

import java.io.*;

class Sample7_1

{

 public static void main(String[] args) throws IOException

 {

 // キーボード入力の準備

 BufferedReader br;

 br = new BufferedReader(new InputStreamReader(System.in));

 // キーボード入力

 System.out.println("整数を入力してください。");

 int i;

 i=Integer.parseInt(br.readLine());

 switch(i) // 変数 i により処理を分岐

 {

 case 1: // i が 1 のとき、

 System.out.println("1 が入力されました。");

 break;

 case 2: // i が 2 のとき、

 System.out.println("2 が入力されました。");

 break;

 default: // i が 1 でも 2 でもないとき、

 System.out.println("1 か 2 を入力してください。");

 break;

 }

}

}

強制終了

 - 3/10 -

実行画面

>java Sample7_1

整数を入力してください。

1

1 が入力されました。

>java Sample7_1

整数を入力してください。

2

2 が入力されました。

>java Sample7_1

整数を入力してください。

3

1 か 2 を入力してください。

ソースコード例

ソースファイル名：Sample7_2.java

// 入力文字の判定

class Sample7_2

{

 public static void main(String[] args)

 {

 char c='b';

 switch(c) // 変数 c により処理を分岐

 {

 case 'a': // c が'a'のとき、

 System.out.println("a です");

 break;

 case 'b': // c が'b'のとき、

 System.out.println("b です");

 break;

 default: // c が'a'でも'b'でもないとき、

 System.out.println("a でも b でもありません");

 break;

 }

 }

}

 - 4/10 -

実行画面

>java Sample7_2

b です

switch 文で break;を省略したらどうなる？

・続けて次のラベルからの処理を行います

・以降、最初に出会う break;まで来たらブロックを抜けます

・すべての break;を書かない場合 switch ブロックの最後まで来るとブロックを抜けます

Sample7_1.java の break;をすべて取り除いた場合の実行画面

>java Sample7_1

整数を入力してください。

1

1 が入力されました。

2 が入力されました。

1 か 2 を入力してください。

>java Sample7_1

整数を入力してください。

2

2 が入力されました。

1 か 2 を入力してください。

>java Sample7_1

整数を入力してください。

3

1 か 2 を入力してください。

 - 5/10 -

論理演算子

論理演算子 !, &&, || オペランド間の論理的な関係

 ・～ではない

 ・かつ

 ・または

 を評価して 真または偽を判断します

 オペランドは boolean 型です

 演算結果は boolean 型です

 boolean 型は論理値リテラルの

 true と false を代入できる型です

論理演算子とその意味

ここで、変数 a と b を boolean 型とします

論理否定 ! a !a

「～ではない」 true false

 false true

 たとえば、

 !(3 < 5)  false

論理積 && a b a && b

「かつ」 true true true

 true false false

 false true false

 false false false

 たとえば、

 (1 == 0)&&(1 < 2)  false

論理和 || a b a || b

「または」 true true true

 true false true

 false true true

 false false false

 たとえば、

 (1 == 0)||(1 < 2)  true

関係演算子と一緒に

関係演算子の演算結果は

boolean 型です

論理演算子のオペランドに

関係演算子を用いた式を書

くことが多いです

 - 6/10 -

ソースコード例

ソースファイル名：Sample7_3.java

// 論理演算子の真理値表

class Sample7_3

{

 public static void main(String[] args)

 {

 System.out.println("!true = "+ (!true));

 System.out.println("!false = " + (!false));

 System.out.println("true && true = "+ (true && true));

 System.out.println("true && false = "+ (true && false));

 System.out.println("false && true = "+ (false && true));

 System.out.println("false && false = "+ (false && false));

 System.out.println("true || true = "+ (true || true));

 System.out.println("true || false = "+ (true || false));

 System.out.println("false || true = "+ (false || true));

 System.out.println("false || false = "+ (false || false));

 }

}

実行画面

>java Sample7_3

!true = false

!false = true

true && true = true

true && false = false

false && true = false

false && false = false

true || true = true

true || false = true

false || true = true

false || false = false

 - 7/10 -

ソースコード例

ソースファイル名：Sample7_4.java

// 大文字・小文字の処理

import java.io.*;

class Sample7_4

{

 public static void main(String[] args) throws IOException

 {

 // キーボード入力の準備

 BufferedReader br;

 br = new BufferedReader(new InputStreamReader(System.in));

 System.out.println("あなたは男性ですか？\nY か N を入力してください。");

 // キーボードから一文字を入力

 char c = br.readLine().charAt(0);

 if(c == 'Y' || c == 'y') // Y または y のとき、

 System.out.println("あなたは男性ですね。");

 else

 {

 if(c == 'N' || c == 'n') // N または n とき、

 System.out.println("あなたは女性ですね。");

 else

 System.out.println("Y か N を入力してください。");

 }

 }

}

実行画面

>java Sample7_4

あなたは男性ですか？

Y か N を入力してください。

y

あなたは男性ですね。

一文字入力とキーボード入力の種類

//キーボードから文字列を入力
String str = br.readLine();
//キーボードから整数を入力
int i = Integer.parseInt(br.readLine());
//キーボードから実数を入力
double d = Double.parseDouble(br.readLine());
//キーボードから一文字を入力
char c = br.readLine().charAt(0);

 - 8/10 -

 if 文の条件内の論理演算子 || を switch 文でわかりやすく表現してみよう

ソースファイル名：Ext7_1.java

// 大文字・小文字の処理 2

import java.io.*;

class Ext7_1

{

 public static void main(String[] args) throws IOException

 {

 // キーボード入力の準備

 BufferedReader br;

 br = new BufferedReader(new InputStreamReader(System.in));

 System.out.println("あなたは男性ですか？\nY か N を入力してください。");

 // キーボードから一文字を入力

 char c = br.readLine().charAt(0);

 switch(c)

 {

 case 'Y':

 case 'y': // Y または y のとき、

 System.out.println("あなたは男性ですね。");

 break;

 case 'N':

 case 'n': // N または n とき、

 System.out.println("あなたは女性ですね。");

 break;

 default:

 System.out.println("Y か N を入力してください。");

 }

 }

}

 - 9/10 -

条件演算子

条件演算子 ? : 条件が

 ・true のとき式１

 ・false のとき式２

 を処理します

 条件は boolean 型で、関係演算子で表現される式などを記述します

 例えば、a < b、a != 5 など

 演算結果は条件が

 ・true のとき式１の値

 ・false のとき式２の値

 です

 演算結果の型は式１と式２の演算結果の型のうちランクの高い型です

 最終的に演算結果となる値は式１と式２のどちらかですが、

 どちらになるかは実際に実行しないとわからないため、たとえば

 条件演算子の演算結果を別の変数に代入などを行なう場合にどちら

 でも対応できるようにランクの高い型になるようになっています

条件 ? 式１ : 式２

コード例 ｜ a == 2 ? 10 : 20 ;

コード例 ｜ a >= 0 ? 1 : 1.5 ;

ソースコード例

ソースファイル名：Sample7_5.java

// 偶数・奇数の判定

class Sample7_5

{

 public static void main(String[] args)

 {

 int i = 3;

 // 偶数・奇数の判断

 String str;

 str = ((i%2==0) ? "偶数" : "奇数");

 System.out.println("与えられた整数は"+str+"です。");

 }

}

 - 10/10 -

実行画面

>java Sample7_5

与えられた整数は奇数です。

条件演算子と if 文の違いは？

if 文 制御構造の一つ  演算結果をもちません

条件演算子 演算子の一つ  演算結果をもちますので、式の一部に利用できます

次の条件演算子のコードは

ans = 条件 ? 式１ : 式２ ;

if～else 文を用いて

if(条件)

 ans = 式１ ;

else

 ans = 式２ ;

と同じです

