
 - 1/9 -

ＪａｖａプログラミングⅠ

８回目 for 文

 今日の講義で学ぶ内容

・for 文

・変数のスコープ

・for 文の入れ子

繰り返し文１ for 文

for 文 最初に一度だけ初期化の式を処理します

 条件が true の場合、文を実行し、更新の式を処理して繰り返します

 条件が false の場合、for 文を終了します

 条件は boolean 型で、関係演算子で表現される式などを記述します

for(初期化の式 ; 条件 ; 更新の式) 文

コード例 ｜ for(a=0 ; a<10 ; a++) b++ ;

 条件は常に文を実行する前に処理され

ます（前判定ループといいます）

for 文はブロックを用いて次のように記述することもできます

for(初期化の式 ; 条件 ; 更新の式) { 文１ 文２ … }

または、次のように書くと読みやすく分かりやすいでしょう

for(初期化の式 ; 条件 ; 更新の式)

{

 文１

 文２

 ⋮

}

false

true

条件 文 更新の式

初期化の式
セミコロンです

 - 2/9 -

ソースコード例

ソースファイル名：Sample8_1.java

// for 文の実行

class Sample8_1

{

 public static void main(String[] args)

 {

 int i;

 // 変数 i を１つずつ増やし、1 から 5 になるまで繰り返す

 for(i=1; i<=5; i++)

 System.out.println(i+"回目を繰り返しています。");

 System.out.println("繰り返しが終わりました。");

 }

}

実行画面

>java Sample8_1

1 回目を繰り返しています。

2 回目を繰り返しています。

3 回目を繰り返しています。

4 回目を繰り返しています。

5 回目を繰り返しています。

繰り返しが終わりました。

 - 3/9 -

ソースコード例

ソースファイル名：Sample8_2.java

// 1.0 から 3.0 まで 0.5 刻みでの合計を求める

class Sample8_2

{

 public static void main(String[] args)

 {

 double di;

 double sum=0; // 合計の計算用

 // 変数 di を 1.0 から 0.5 ずつ増やし 3.0 になるまで繰り返す

 for(di=1.0; di<=3.0; di+=0.5)

 sum += di; // sum = sum + di; と同じ

 System.out.println("1.0 から 3.0 まで 0.5 刻みでの合計は"+sum+"です。");

 }

}

実行画面

>java Sample8_2

1.0 から 3.0 まで 0.5 刻みでの合計は 10.0 です。

 for 文の初期化の式、条件、更新の式は省略可能です

省略した場合、それぞれ次のような動作をします

・初期化の式  初期化ではなにも実行されません

・条件  常に true になります

・更新の式  更新ではなにも実行されません

たとえば、

for(; ;)

{

 ⋮

}

は無限ループです

 for 文の初期化の式と更新の式には式文という分類の式を書きます

式文とはセミコロンをその後につけて文とできる式であり、代入演算子、インクリメント・

デクリメント演算子を用いた式があります

たとえば、

a++;

b = 5;

 - 4/9 -

 for 文の初期化の式と更新の式では“ , ”カンマで区切り２つ以上の式を記述できます

カンマで区切られた式は、左から右へ順番に処理されます

// 複数の変数の初期化・更新をおこなう

class Ext8_1

{

 public static void main(String[] args)

 {

 int i, j;

 // 変数の宣言と初期化

 for(i=1,j=1; i<=5; i++,j+=2) // カンマで区切る

 System.out.println(i+"+"+j+"="+(i+j));

 System.out.println("終わり");

 }

}

 for 文の初期化の式に変数の宣言を含めることもできます

変数を宣言するのと同じ要領で、１つまたは複数の変数を宣言、初期化することができます

// 変数の宣言と初期化を行う

class Ext8_2

{

 public static void main(String[] args)

 {

 // 変数の宣言と初期化

 for(int i=1; i<=5; i++)

 System.out.println(i+"回目を繰り返しています。");

 // 同一の型で複数の変数の宣言と初期化を行う

 for(int i=1, j=2; i+j<=5; i++, j++)

 System.out.println(i+"回目を繰り返しています。");

 // 複数の型の変数の宣言と初期化を行う（エラー）

// for(int i=1, double dj=2; i+j<=5; i++, j++)

// System.out.println(i+"回目を繰り返しています。");

 }

}

カンマで区切り複数の

式を記述できます

初期化の式

変数の宣言と

初期化ができます

初期化の式

同一の型の変数の

宣言と初期化がで

きます

異なる型の変数の

宣言と初期化はで

きません

この場合は for 文

に入る前に宣言す

るとよいでしょう
変数のスコープ

宣言された変数のスコープ（次ページで説明）は

・初期化の式（その変数以降（右側））

・条件

・更新の式

・for 文のブロック

です

 - 5/9 -

変数のスコープとは その変数を参照可能なコードの上の領域のことです

 スコープの開始は、変数の宣言の位置です

 スコープの終了は、それが属するブロックの終わりです

// 変数のスコープ

class Ext8_3

{

 public static void main(String[] args)

 {

 int i=10; // main メソッドブロックの最後までがスコープ

 if(true)

 {

 int j=10; // if 文ブロックの最後までがスコープ

 System.out.println(i); // ＯＫ

 System.out.println(j); // ＯＫ

 }

 System.out.println(i); // ＯＫ

 System.out.println(j); // コンパイルエラー

 }

}

 同じスコープ（ネストも含む）内で同名の変数は宣言できません

 同じスコープ内に同名の変数が宣言されていると、

「変数○○は△△で定義されています。」

というコンパイルエラーがでます

変数 i のスコープ

変数 j のスコープ

 - 6/9 -

次のように for 文を記述するとどうなるでしょうか？

// for 文のよくあるミス

class Ext8_4

{

 public static void main(String[] args)

 {

 int i=0;

 // for 文のブロック { } を忘れたら？

 for(i=1; i<=5; i++)

 System.out.println(i+"回目を繰り返しています。");

 System.out.println("次の繰り返しに進みます。");

 System.out.println("処理を終了します。\n");

 // for 文ブロック前に ;（セミコロン）を入れてしまったら？

 for(i=1; i<=5; i++);

 {

 System.out.println(i+"回目を繰り返しています。");

 System.out.println("次の繰り返しに進みます。");

 }

 System.out.println("処理を終了します。");

 }

}

実行画面

>java Ext8_4

1 回目を繰り返しています。

2 回目を繰り返しています。

3 回目を繰り返しています。

4 回目を繰り返しています。

5 回目を繰り返しています。

次の繰り返しに進みます。

処理を終了します。

6 回目を繰り返しています。

次の繰り返しに進みます。

処理を終了します。

for 文のブロック { } がない場合

次の１文が for 文の繰り返しで実

行する文と解釈されます

繰り返しで実行する

文が空の for 文と解釈

されます

次に続くブロックは

for 文の繰り返しに含

まれず、常に実行され

る通常の文です

単独のセミコロン

文はセミコロンでおわ

る処理です

単独のセミコロンは処

理のない空の文です

 - 7/9 -

for 文の入れ子

for 文は、１つの文です

for 文を他の for 文に入れることができ、多重の繰り返しを処理できます

for(初期化の式 ; 条件 ; 更新の式) for 文

または、次のように書くと多重の繰り返しが分かりやすいでしょう

for(初期化の式１ ; 条件２ ; 更新の式３)

{

 for(初期化の式Ａ ; 条件Ｂ ; 更新の式Ｃ)

 {

 文

 ⋮

 }

}

 ２～３重の for 文の入れ子はよく使われますので慣れておくとよいでしょう

ソースコード例

ソースファイル名：Sample8_3.java

// for 文のネスト構造

class Sample8_3

{

 public static void main(String[] args)

 {

 int i, j;

 // ２重の繰り返し

 for(i=0;i<5;i++) // 変数 i を 0 から 4 まで繰り返す。

 {

 for(j=0;j<3;j++) // 変数 i を繰り返す度に変数 j を 0 から 2 まで繰り返す。

 {

 System.out.println("i は"+i+"：j は"+j);

 }

 }

 }

}

多重 for 文の動作

外側の for 文が一回

繰り返される毎に内

側の for 文が処理さ

れます

 - 8/9 -

実行画面

>java Sample8_3

i は 0：j は 0

i は 0：j は 1

i は 0：j は 2

i は 1：j は 0

i は 1：j は 1

i は 1：j は 2

i は 2：j は 0

i は 2：j は 1

i は 2：j は 2

i は 3：j は 0

i は 3：j は 1

i は 3：j は 2

i は 4：j は 0

i は 4：j は 1

i は 4：j は 2

ソースコード例

ソースファイル名：Sample8_4.java

// 九九の表

class Sample8_4

{

 public static void main(String[] args)

 {

 int i, j;

 // 九九を計算して表として出力する

 for(i=1; i<=9; i++) // 変数 i を 1 から 9 まで繰り返す。

 {

 for(j=1; j<=9; j++) // 変数 j を 1 から 9 まで繰り返す。

 {

 // i 段 j 列目の九九を計算

 System.out.print(i*j+"\t");

 }

 // 1 段毎に改行を入れる

 System.out.println();

 }

 }

}

 - 9/9 -

実行画面

>java Sample8_4

1 2 3 4 5 6 7 8 9

2 4 6 8 10 12 14 16 18

3 6 9 12 15 18 21 24 27

4 8 12 16 20 24 28 32 36

5 10 15 20 25 30 35 40 45

6 12 18 24 30 36 42 48 54

7 14 21 28 35 42 49 56 63

8 16 24 32 40 48 56 64 72

9 18 27 36 45 54 63 72 81

