
 - 1/10 -

ＪａｖａプログラミングⅠ

９回目 while、do while 文

 今日の講義で学ぶ内容

・while 文

・do while 文

・break 文と continue 文

繰り返し文２ while 文

while 文 条件を処理します

 条件が true の場合、文を実行して繰り返します

 条件が false の場合、while 文を終了します

 条件は boolean 型で、関係演算子で表現される式などを記述します

while(条件) 文

コード例 ｜ while(a<5) a++;

 条件は常に文を実行する前に処理され

ます（前判定ループといいます）

 前判定ループでは１度も文が実行され

ない場合があることに注意してください（for 文についても同じです）

while 文はブロックを用いて次にように記述することもできます

while(条件) { 文１ 文２ … }

または、if 文や for 文の書き方と合せて次のように書くと読みやすく分かりやすいでしょう

while(条件)

{

 文１

 文 2

 ⋮

}

false

true
条件 文

 - 2/10 -

ソースコード例

ソースファイル名：Sample9_1.java

// while 文の実行

class Sample9_1

{

 public static void main(String[] args)

 {

 int i = 1;

 // 変数 i が 5 以下なら繰り返す

 while(i<=5)

 {

 System.out.println(i+"回目を繰り返しています。");

 i++; // 変数 i を１増やす（ここがなければ無限に繰り返す）

 }

 System.out.println("繰り返しが終わりました。");

 }

}

実行画面

>java Sample9_1

1 回目を繰り返しています。

2 回目を繰り返しています。

3 回目を繰り返しています。

4 回目を繰り返しています。

5 回目を繰り返しています。

繰り返しが終わりました。

 - 3/10 -

ソースコード例

ソースファイル名：Sample9_2.java

// １、２、・・と総計を計算したとき、５０を超えるのは？

class Sample9_2

{

 public static void main(String[] args)

 {

 int i = 1; // １、２、・・と数え上げ用

 int sum=0; // 総計用

 // 総計が 50 以下なら繰り返します

 while(sum<=50)

 {

 System.out.println(i+"を加算します");

 sum += i; // sum = sum + i; と同じです

 System.out.println("現在の総計は"+sum+"です");

 i++; // 変数 i を１増やす

 }

 System.out.println("総計が 50 を超えました");

 }

}

実行画面

>java Sample9_2

1 を加算します

現在の総計は 1 です

2 を加算します

現在の総計は 3 です

3 を加算します

現在の総計は 6 です

4 を加算します

現在の総計は 10 です

 ⋮

9 を加算します

現在の総計は 45 です

10 を加算します

現在の総計は 55 です

総計が 50 を超えました

 - 4/10 -

for 文と while 文はどのように使い分ければいいの？

for 文 「○○から△△まで □□を繰り返す」

 というように繰り返し回数が予め分かる場合に適しています

while 文 「○○を満たす間はずっと □□を繰り返す」

 というように繰り返し回数が予め分からない場合に適しています

 たとえば、Sample9_2.java では

 「総数が５０以下の値はずっと…」

 となります

 この場合、繰り返し回数は予め分からないので while 文を使うと便利です

 一般に、for 文で書ける繰り返し文は while 文で書けますし、

 その逆もできますので、使い分けにそんなに悩む必要はありません

次のように while 文を記述するとどうなるでしょうか？

// while 文のよくあるミス

class Ext9_1

{

 public static void main(String[] args)

 {

 int i=1;

 // while 文のブロック { } を忘れたら？

 while(i<=5)

 System.out.println(i+"回目を繰り返しています。");

 i++;

 System.out.println("繰り返しが終わりました。");

 // while 文ブロック前に ;（セミコロン）を入れてしまったら？

 while(i<=5);

 {

 System.out.println(i+"回目を繰り返しています。");

 i++;

 }

 System.out.println("繰り返しが終わりました。");

 }

}

while 文のブロック{ }がない場合

次の１文がwhile文の繰り返しで実

行する文と解釈されます

繰り返しで実行する文

が空の while 文と解釈

されます

次に続くブロックは

while 文の繰り返しに

は含まれず、常に実行さ

れる通常の文です

単独のセミコロン

文はセミコロンでおわ

る処理です

単独のセミコロンは処

理のない空の文です

 - 5/10 -

繰り返し文３ do while 文

do while 文 文を実行し、条件を処理します

 条件が true の場合、繰り返します

 条件が false の場合、do while 文を終了します

 条件は boolean 型で、関係演算子で表現される式などを記述します

do 文 while(条件);

コード例 ｜ do a++; while(a<5);

 条件は常に文を実行した後に処理されます

（後判定ループといいます）

 後判定ループでは少なくとも１度は文が実行さ

れることに注意してください

do while 文はブロックを用いて次のように記述することができます

do { 文１ 文２ … } while(条件);

または、つぎのように書くと読みやすく分かりやすいでしょう

do {

 文１

 文２

 ⋮

} while(条件);

false

true
条件

文

条件の括弧の後ろに

；セミコロンが必要です

 - 6/10 -

ソースコード例

ソースファイル名：Sample9_3.java

// do while 文の実行

class Sample9_3

{

 public static void main(String[] args)

 {

 int i = 1;

 // 変数 i が 5 以下なら繰り返す

 do{

 // このブロックは最低でも１度は処理される。

 System.out.println(i+"回目を繰り返しています。");

 i++; // 変数 i を１増やす（ここがなければ無限に繰り返す）

 }while(i<=5);

 System.out.println("繰り返しが終わりました。");

 }

}

実行画面

>java Sample9_3

1 回目を繰り返しています。

2 回目を繰り返しています。

3 回目を繰り返しています。

4 回目を繰り返しています。

5 回目を繰り返しています。

繰り返しが終わりました。

while 文と do while 文の大きな違いは何でしょうか？

while 文  前判定ループ  文やブロックを１度も処理しない場合があります

 （条件を文の前に処理）

do while 文  後判定ループ  最低でも１回は文やブロックを処理します

 （条件を文の後で処理）

while 文と do while 文はともに「○○を満たす間はずっと □□を繰り返す」と

いうように繰り返し回数が予め分からない場合に適しています

 for 文と while 文、do while 文はお互いに書き換えることができますので、使い分けに

そんなに悩む必要はありませんが、それぞれの特徴を押さえておくとスマートなコードが書

けるになります

 - 7/10 -

Sample9_1.java で int 型の変数 i を 7 で初期化した場合の実行画面

>java Sample9_1

繰り返しが終わりました。

Sample9_3.java で int 型の変数 i を 7 で初期化した場合の実行画面

>java Sample9_3

7 回目を繰り返しています。

繰り返しが終わりました。

ソースコード例

ソースファイル名：Sample9_4.java

// キーボード判定付き入力

import java.io.*;

class Sample9_4

{

 public static void main(String[] args) throws IOException

 {

 // キーボード入力の準備

 BufferedReader br;

 br = new BufferedReader(new InputStreamReader(System.in));

 int num;

 // 正しい範囲の値が入力されるまで繰り返す

 do{

 System.out.println("１から１０までの整数を入力してください。");

 num = Integer.parseInt(br.readLine());

 }while(num<1 || num >10);

 System.out.println("あなたが入力した値は"+num+"です。");

 }

}

実行画面

>java Sample9_4

１から１０までの整数を入力してください。

-1

１から１０までの整数を入力してください。

7

あなたが入力した値は 7 です。

while 文

繰り返しが一度も実行さ

れない場合があります

do while 文

繰り返しは一度は実行さ

れます

 - 8/10 -

break 文と continue 文

break 文 switch 文または for、while、do while 文内の実行中の処理を

 終了し、その文から抜けます

for(…)

{

 ⋮

break;

 ⋮

}

 ⋮

ソースコード例

ソースファイル名：Sample9_5.java

// 無限ループから break 文により抜ける

class Sample9_5

{

 public static void main(String[] args)

 {

 int num=3; // 抜け出す繰り返しの回数番目

 int cnt=0; // 繰り返し回数のカウント

 // 指定された回数番目で break 文により抜ける

 while(true) // 無限ループ

 {

 cnt++;

 System.out.println(cnt+"回目を繰り返しています。");

 if(num==cnt)break;

 }

 }

}

実行画面

>java Sample9_5

1 回目を繰り返しています。

2 回目を繰り返しています。

3 回目を繰り返しています。

 - 9/10 -

continue 文 for、while、do while 文内の実行中の処理を終了し、

 繰り返し部分の終端にスキップします

for(…)

{

 ⋮

continue;

 ⋮

}

 ⋮

ソースコード例

ソースファイル名：Sample9_6.java

// continue 文により繰り返しをスキップ

class Sample9_6

{

 public static void main(String[] args)

 {

 int i;

 int num=3; // スキップする繰り返しの回数番目

 // 指定された回数番目は continue 文によりスキップ

 for(i=1;i<=6;i++)

 {

 if(num==i)continue;

 System.out.println(i+"回目を繰り返しています。");

 }

 }

}

実行画面

>java Sample9_6

1 回目を繰り返しています。

2 回目を繰り返しています。

4 回目を繰り返しています。

5 回目を繰り返しています。

6 回目を繰り返しています。

 - 10/10 -

繰返しの入れ子（ネスト）構造の中で break 文や continue 文を使うと？

break 文や continue 文からみて最も内側の繰返し文に対して有効になります

break 文  最も内側の switch 文や繰り返し文を抜けます

continue 文  最も内側の繰り返し文の繰り返し部分の終端にスキップします

ソースコード例

ソースファイル名：Sample9_7.java

// 入れ子の繰返しの中で break 文を使う

class Sample9_7

{

 public static void main(String[] args)

 {

 int i;

 // 内側のブロック内で break 文を使うと？

 for(i=0;i<3;i++)

 {

 System.out.println("i="+i);

 while(true)

 {

 break;

 }

 }

 }

}

実行画面

>java Sample9_7

i=0

i=1

i=2

 より外側の繰り返し文を break したい場合は

 ラベル付き break 文

より外側の繰り返し文に対して continue を行いたい場合は

 ラベル付き continue 文

