
 - 1/11 -

2 5 8 6 3 7

ＪａｖａプログラミングⅠ

１０回目 配 列

 今日の講義で学ぶ内容

・配列とその使い方

・基本型変数と参照型変数

・拡張 for 文

配 列

配 列 同じ型である複数の変数を一括して管理する機能です

 直観的には、

配列の利用

配列の利用手順 配列変数の宣言  配列要素の確保  配列要素の参照

配列変数の宣言 配列変数とは配列を扱う（代入する）変数です

 配列変数は通常の変数と同様に型と識別子をもちます

型と識別子を指定して次のように行います

型 識別子[];

または

型[] 識別子; // Java での標準のスタイル

コード例 ｜ int[] ary;

配列

1 2 5

個々の変数

1

配列変数 通常の変数

 - 2/11 -

配列要素の確保 配列要素とは値を格納するための一連の領域です

 各配列要素は一つの変数としての機能をもちます

型と配列要素の個数を指定して次のように行います

識別子 = new 型 [配列要素の個数];

コード例 ｜ int[] ary;

 ｜ ary = new int[5];

 new 演算子は指定された個数の配列要素をコンピュータのメモリ上に確保します

 配列要素は確保されたとき予め以下の値が代入されます

（型） （デフォルト値）

boolean false

char 0（\u0000）

byte、short、int、long 0

float、double、 0.0

配列要素の参照 配列要素を参照（指定）して値を代入します

各配列要素の参照は配列変数の識別子と添え字を用いて次のようにします

 識別子 [添え字]

添え字には個々の配列要素の位置を表す０以上の整数を指定します

・最初の配列要素を参照するには、添え字に 0 を指定します

・最後の配列要素を参照するには、添え字に 配列要素の個数‐1 を指定します

例えば、５個の配列要素を持つ配列の場合は次のように０から４までの添え字を指定します

0 1

2

3

4

対応する

添え字

配列
配列要素

配列変数

配列要素

 - 3/11 -

配列要素への値の代入は、各配列要素を参照して次のように行います

識別子 [添え字] = 値;

コード例 ｜ int[] ary;

 ｜ ary = new int[5];

 ｜ ary[0] = 1;

 添え字に指定する値は int 型である必要があります

ソースコード例

ソースファイル名：Sample10_1.java

// 配列を用いて５人の学生の点数を管理する

class Sample10_1

{

 public static void main(String[] args)

 {

 int i;

 // 配列変数の宣言

 int test[];

 // int[] test; とも記述可能

 // 配列要素の確保

 test = new int[5];

 // 配列変数の宣言と配列要素の確保は同時に記述可能

 // int test[] = new int[5];

 // int[] test = new int[5];

 //各配列要素へ値を代入

 test[0]=80;

 test[1]=60;

 test[2]=22;

 test[3]=50;

 test[4]=75;

 // 各配列要素（添え字は 0 から 4 まで）を順番に出力

 for(i=0; i<5; i++)

 System.out.println(i+"番目の学生の点数は"+test[i]+"です。");

 }

}

 - 4/11 -

実行画面

>java Sample10_1

0 番目の学生の点数は 80 です。

1 番目の学生の点数は 60 です。

2 番目の学生の点数は 22 です。

3 番目の学生の点数は 50 です。

4 番目の学生の点数は 75 です。

ソースコード例

ソースファイル名：Sample10_2.java

// 配列要素の動的な確保

import java.io.*;

class Sample10_2

{

 public static void main(String[] args) throws IOException

 {

 int num; // 学生数

 int[] test; // 学生の点数を保存する配列変数

 // キーボード入力の準備

 BufferedReader br;

 br = new BufferedReader(new InputStreamReader(System.in));

 // キーボード入力

 System.out.println("学生の人数を入力してください。");

 num=Integer.parseInt(br.readLine());

 // 学生数分の配列要素を確保

 test = new int[num];

 // キーボードから点数を配列要素へ順番に入力する

 for(int i=0;i<num;i++)

 test[i]= Integer.parseInt(br.readLine());

 // 配列要素に入力されている点数を順番に出力する

 for(int i=0;i<num;i++)

 System.out.println(i+"番目の学生の点数は"+test[i]+"です。");

 }

}

 - 5/11 -

実行画面

>java Sample10_2

学生の人数を入力してください。

3

89

75

95

0 番目の学生の点数は 89 です。

1 番目の学生の点数は 75 です。

2 番目の学生の点数は 95 です。

配列要素の確保されていない領域へアクセスしたら？

ソースファイル名：Ext10_1.java

// 添え字の範囲のミス

class Ext10_1

{

 public static void main(String[] args)

 {

 int i;

 // 配列変数の宣言と 5 個の配列要素の確保

 int[] test = new int[5];

 // test[4]より上の配列要素へアクセス

 for(i=0; i<10; i++)

 System.out.println(i+"番目の配列要素は"+test[i]+"です。");

 }

}

実行画面

>java Ext10_1

0 番目の配列要素は 0 です。

1 番目の配列要素は 0 です。

2 番目の配列要素は 0 です。

3 番目の配列要素は 0 です。

4 番目の配列要素は 0 です。

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 5

 at Ext10_1.main(Ext10_1.java:13)

 - 6/11 -

配列の初期化

配列の初期化 指定された値の列が代入された配列要素を

 もつ配列変数を宣言します

配列の初期化は、配列変数の宣言時に次のように行います

型 識別子[] = { 値１, 値２, 値３,…, 値ｎ };

または

型[] 識別子 = { 値１, 値２, 値３,…, 値ｎ }; // Java での標準のスタイル

 配列の初期化により、配列要素の確保や個々の値の代入を省くことができます

ソースコード例

ソースファイル名：Sample10_3.java

// 配列の初期化

class Sample10_3

{

 public static void main(String[] args)

 {

 // 配列の初期化

 int test[]={80,60,22,50,75};

 // int[] test={80,60,22,50,75}; とも記述可能

 // 配列要素を出力

 for(int i=0;i<5;i++)

 System.out.println(i+"番目の学生の点数は"+test[i]+"です。");

 }

}

実行画面

>java Sample10_3

0 番目の学生の点数は 80 です。

1 番目の学生の点数は 60 です。

2 番目の学生の点数は 22 です。

3 番目の学生の点数は 50 です。

4 番目の学生の点数は 75 です。

 - 7/11 -

 配列の初期化では配列要素の数を指定しません

配列要素の数は値の列より自動的に計算されます

 匿名配列 配列変数を用いない配列のことです

通常、配列は配列要素を配列変数に代入して用いますが

匿名配列は配列要素をそのまま用います

匿名配列は、次のようにして作成します

 new 型[] { 値１, 値２, 値３,…, 値ｎ }

指定された値の列が代入された配列要素が確保されます

匿名配列は、次のように配列変数に代入してこれまでと同じように使用できます

int[] ary;

ary = new int[]{1,2,3,4,5};

また、メソッド（Java プログラミング 2 で解説）に引数として渡すときよく利用されます

obj.method1(new int[]{1,2,3,4,5});

 - 8/11 -

配列変数と参照型変数

変数の種類 基本型変数と参照型変数の２種類があります

基本型変数 値として"値"そのものをもつ

 boolean 型、char 型、byte 型、short 型、

 int 型、long 型、float 型、double 型の８種類の変数

参照型変数 値として"値のある場所"をもつ

 配列変数、クラス型変数のみ

 例題 Sample10_1 での配列変数の宣言と配列要素の確保は次のように理解できます

2

3

test

①配列変数の宣言

int[] test;

③配列要素を配列変数へ代入

test = new int[5];

②配列要素の確保

new int[5];

基本型変数

参照型変数

参照といいます

変数と値を関係

付ける紐のことです

 - 9/11 -

ソースコード例

ソースファイル名：Sample10_4.java

// 配列変数へ代入するということは？
class Sample10_4
{
 public static void main(String[] args)
 {
 int i;
 int n1=1, n2;
 int[] ary1={1,2,3}, ary2;

 // int 型変数へ代入
 n2=n1;
 // 配列変数へ代入
 ary2=ary1;

 // 変数と配列要素を出力
 System.out.println("n1="+n1+", n2="+n2);
 System.out.print("ary1={");
 for(i=0;i<3;i++)
 System.out.print(ary1[i]+" ");
 System.out.println("}");
 System.out.print("ary2={");
 for(i=0;i<3;i++)
 System.out.print(ary2[i]+" ");
 System.out.println("}");

 // 一方の int 型変数の値を変更
 System.out.println("n2 := 2;");
 n2=2;
 // 一方の配列要素の値を変更
 System.out.println("ary2[1] := 4;");
 ary2[1]=4;

 // 変数と配列要素を出力
 System.out.println("n1="+n1+", n2="+n2);
 System.out.print("ary1={");
 for(i=0;i<3;i++)
 System.out.print(ary1[i]+" ");
 System.out.println("}");
 System.out.print("ary2={");
 for(i=0;i<3;i++)
 System.out.print(ary2[i]+" ");
 System.out.println("}");
 }
}

 - 10/11 -

実行画面

>java Sample10_4

n1=1, n2=1

ary1={1 2 3 }

ary2={1 2 3 }

n2 := 2;

ary2[1] := 4;

n1=1, n2=2

ary1={1 4 3 }

ary2={1 4 3 }

 例題 Sample10_4 の変数の振る舞いは次のように図的に理解できます

（変数の宣言時）

（変数へ代入後）

（値の変更後）

1

1 2 3

n1 n2 ary2

1

1

1 2 3

1

2

1 4

0

3

n1 n2 ary1
ary2

n1 n2 ary1 ary2

ary1

 - 11/11 -

拡張 for 文

Java では配列を処理するための特別な for 文が準備されています

拡張 for 文 配列に格納されている値が順番に取り出されます

 取り出された値が変数に代入され文が処理されて、繰り返します

for(型 変数名 : 配列変数名) 文

 配列の終端に到達するまで for 文は繰り返されます

１回目の繰り返し：添え字０の配列要素の値が変数に代入されます

２回目の繰り返し：添え字１の配列要素の値が変数に代入されます

３回目の繰り返し：添え字２の配列要素の値が変数に代入されます

 ⋮

ソースコード例

ソースファイル名：Ext10_2.java

// エンハンスド for 文

class Ext10_2

{

 public static void main(String[] args)

 {

 // 配列の初期化

 int[] test={80,60,22,50,75};

 // 配列要素を出力

 for(int num:test)

 System.out.println(num);

 }

}

実行画面

>java Ext10_2

80

60

22

50

75

