
 - 1/8 - 

     

     
     

     
     

ＪａｖａプログラミングⅠ 

 

１１回目 多次元配列 

 

 

 今日の講義で学ぶ内容  

・２次元配列とその使い方 

・丌規則な２次元配列 

・.length 修飾子 

 

２次元配列 

 

１次元配列 配列要素が直線的に並ぶ配列です 

 次のように考えると分かりやすいでしょう 

 

 

 

２次元配列 配列要素が平面的に並ぶ配列です 

 次のように考えると分かりやすいでしょう 

 

 

  

 

   ２次元以上の配列のことを多次元配列といいます 

 

２次元配列の利用 

 

２次元配列の利用手順 配列変数の宣言  配列要素の確保  配列要素の参照 

 

   利用手順は１次元配列の場合と同様です 

配列変数の宣言 

型と識別子を指定して次のように行います 

 

型 識別子[ ][ ]; 

 

または 

 

型[ ][ ] 識別子;   // Java での標準のスタイル 

 

コード例 ｜ int[ ][ ] ary; 

 

  括弧[ ]の数が配列の次元を表します 

たとえば、int[ ][ ][ ] ary; は int 型の３次元配列型の変数（配列変数）ary を宣言します 



 - 2/8 - 

     
     

     
     

   
   

   
   

配列要素の確保 

型と配列要素の個数を指定して次のように行います 

 

識別子 = new 型 [ 行の配列要素の個数 ][ 列の配列要素の個数 ]; 

 

コード例 ｜ int[ ][ ] ary; 

 ｜ ary = new  int[2][3]; 

 

 

配列要素の参照 

各配列要素の参照は配列変数の識別子と添え字を用いて次のようにします 

 識別子 [  ] [行の添え字   ] 列の添え字

 

添え字には個々の配列要素の位置（行方向と列方向）を表す０以上の整数を指定します 

・ には  までの整数を指定します 行の添え字 0 ～ 行の配列要素の個数－1

・ には  までの整数を指定します 列の添え字 0 ～ 列の配列要素の個数－1

 

  添え字は、１次元の配列と同様に０から始まることに注意しましょう 

 

 

例えば、４行５列の配列要素をもつ２次元配列の場合は次のようにして添え字を指定します 

 

 

 

 

 

 

 

 

 

 

 

 

 

配列要素への値の代入は、各配列要素を参照して次のように行います 

 

識別子 [ 行の添え字 ][ 列の添え字 ] = 値; 

 

コード例 ｜ int[ ][ ] ary; 

  ｜ ary = new  int[2][3]; 

 ｜ ary[0][1] = 1; 

 

対応する 

行の添え字 

対応する 

列の添え字 
０ １ ２ ３ ４ 

０ 
１ 

２ 
３ 

２次元配列 

配列要素 

行の添え字：2 

列の添え字：3 



 - 3/8 - 

ソースコード例 

ソースファイル名：Sample11_1.java 

 

// 配列を用いて３人の学生（３行）の２科目の点数（２列）を管理する 

class Sample11_1 

{ 

 public static void main(String[] args) 

 { 

  // 配列変数の宣言 

  int[][] test; // int test[][]; とも記述可能 

 

  // 配列要素の確保 

  test = new int[3][2]; 

 

  // 配列変数の宣言と配列要素の確保は同時に記述可能 

  // int test[][] = new int[3][2]; 

  // int[][] test = new int[3][2]; 

 

  // 各配列要素へ値を代入 

  // 添え字は０から（要素数）－１まで！！ 

  test[0][0]=80;  test[0][1]=50;   

  test[1][0]=60;  test[1][1]=75; 

  test[2][0]=22;  test[2][1]=90; 

 

  // 各配列要素を順番に出力 

  for(int i=0; i<3; i++) 

  { 

   System.out.println(i+"番目の学生の得点："); 

   System.out.println("科目１："+test[i][0]+"\t 科目２："+test[i][1]); 

  } 

 } 

} 

 

 

実行画面 

 

>java Sample11_1 

0 番目の学生の得点： 

科目１：80      科目２：50 

1 番目の学生の得点： 

科目１：60      科目２：75 

2 番目の学生の得点： 

科目１：22      科目２：90 

 

 



 - 4/8 - 

２次元配列の初期化 

 

２次元配列の初期化は、配列変数の宣言時に次のように行います 

指定する値が指定する行と列に代入された配列要素をもつ配列変数が宣言されます 

 

型 識別子[ ][ ] = { { ０行０列, ０行１列, … }, { １行０列, １行１列, … }, … { … } }; 

 

または 

 

型[ ][ ] 識別子 = { { ０行０列, ０行１列, … }, { １行０列, １行１列, … }, … { … } }; 

 

  括弧{ }が入れ子になっていることに注意しましょう 

 

ソースコード例 

ソースファイル名：Sample11_2.java 

 

// ２次元配列の初期化 

class Sample11_2 

{ 

 public static void main(String[] args) 

 { 

  // ２次元配列の初期化 

  int[][] test={{80, 50}, {60, 75}, {22, 90}}; 

  // int test[][]={{80, 50}, {60, 75}, {22, 90}}; とも記述可能 

 

  // 各配列要素を順番に出力 

  for(int i=0; i<3; i++) 

  { 

   System.out.println(i+"番目の学生："); 

   System.out.println("科目１："+test[i][0]+"\t 科目２："+test[i][1]); 

  } 

 } 

} 

 

実行画面 

 

>java Sample11_2 

0 番目の学生： 

科目１：80      科目２：50 

1 番目の学生： 

科目１：60      科目２：75 

2 番目の学生： 

科目１：22      科目２：90 

 



 - 5/8 - 

  ¥

¥

  
    

   
    

  配列の初期化では配列要素の数を指定しません 

配列要素の数は{ }の入れ子や値の列より自動的に計算されます 

 

 

丌規則な２次元配列 

 

丌規則な２次元配列 各行の配列要素の数がそれぞれ異なる２次元配列です 

 

 

 

 

 

 

丌規則な２次元配列の作り方 

丌規則な２次元配列は次の２通りの方法で作成することができます 

・配列の初期化を利用して作成する方法 

・配列変数の宣言と配列要素の確保の利用手順にしたがい作成する方法 

 

 

配列の初期化を利用して作成する方法 

ソースコード例 

ソースファイル名：Sample11_3.java 

 

// 丌規則な２次元配列で初期化する 
class Sample11_3 
{ 
 public static void main(String[] args)  
 { 
  int i, j; 

 

  // ２次元配列の初期化 

  Int[][] test={{80, 60, 22}, {50, 75}, {72, 33, 75, 63}}; 

 

  // 各行の列数と要素を順番に出力します 

  // .length は指定行の列数を値としてもちます（.length の詳細は次節） 

  for(i=0; i<3; i++) 

  { 

   System.out.print(i+"行目の要素数は"+test[i].length+"で、"); 

   for(j=0; j<test[i].length; j++) 

    System.out.print(test[i][j]+" "); 

   System.out.println("です"); 

  } 

 } 

} 

 

配列の初期化による丌規則な配列 

配列の列方向の配列要素を指定す

る内側の括弧{ }内で列挙する値の

個数を変えてやればよいです 

test[i].length 

test[i].length は行方向の添え字 i

で指定される行の列数を表します 

（.length 修飾子の詳細は次節で） 



 - 6/8 - 

実行画面 

 

>java Sample11_3 

0 行目の要素数は 3 で、80 60 22 です 

1 行目の要素数は 2 で、50 75 です 

2 行目の要素数は 4 で、72 33 75 63 です 

 

 

 

  .length 修飾子とその利用 

 

.length 修飾子 配列要素の数を得るための修飾子 

 

１次元配列の場合： ① 配列変数.length 配列要素の数 

 

２次元配列の場合： ① 配列変数.length 行数 

 ② 配列変数[i].length 第 i 行の列数 

 

３次元配列の場合： ① 配列変数.length 行数 

 ② 配列変数[i].length 第 i 行の列数 

 ③ 配列変数[i][j].length 第 i 行 j 列の高さ 

 

  ４次元以降も同様です 

 

ソースコード例 

ソースファイル名：Sample11_4.java 

 

// .length 修飾子 
class Sample11_4 
{ 
 public static void main(String[] args)  
 { 

  // 配列の初期化 

  int test[]={72, 33, 75, 63}; 

  System.out.println("配列要素の数は"+test.length+"です。"); 

 } 

} 

 

 

実行画面 

 

>java Sample11_4 

配列要素の数は 4 です。 

 

① 

① 

② 

① 

② 

③ 



 - 7/8 - 

配列変数の宣言と配列要素の確保の利用手順にしたがい作成する方法 

 

ソースコード例 

ソースファイル名：Sample11_5.java 

 

// 丌規則な 2 次元配列を宣言する 

class Sample11_5 

{ 

 public static void main(String[] args)  

 { 

  // (ポイント) 

  // ２次元配列は、１次元配列の配列 である 

   

  // int 型の配列型の配列型の変数 

  int[] test[];  

   

  // 下記と同じ意味である 

  // int test[][]; 

  // int[][] test; 

   

  // 行数のみで部分的に２次元配列を作成 

  test = new int[3][];  // 配列は３行からなる 

   

  // 各行に列を作成して２次元配列は完成 

  test[0] = new int[3]; // ０行目の配列要素は３つ 

  test[1] = new int[2]; // １行目の配列要素は２つ 

  test[2] = new int[4]; // ２行目の配列要素は４つ 

 

  // 各行の列数（.length の詳細は前節）と要素を順番に出力 

  System.out.println("配列の行数は"+test.length+"であり、"); 

  for(int i=0; i<test.length; i++) 

   System.out.println(i+"行目の配列要素は"+test[i].length+"です"); 

 } 

} 

 

 

実行画面 

 

>java Sample11_5 

配列の行数は 3 であり、 

0 行目の配列要素は 3 です 

1 行目の配列要素は 2 です 

2 行目の配列要素は 4 です 

 

 

int[][] ary; 

ary=new int[3][4]; 

実際は、 int[][] 

int[] 

int 



 - 8/8 - 

参考：例題 Sample11_5 の変数の振る舞いは図的に次のように理解できます 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

int[] test[]; // int 型の配列型の配列型の配列変数 

test = new int[3][]; // int 型の配列型の配列要素を３つ確保 

test[0] = new int[3]; // int 型の配列要素を３つ確保 

test[1] = new int[2]; // int 型の配列要素を２つ確保 

 

test[2] = new int[4]; // int 型の配列要素を４つ確保 

 


