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1 Introduction
In caging grasps, an object captured by the robot hand never escapes

from the geometric constraint structured by the robot bodies. From
the viewpoint of practical robotic manipulation, as in some previous
studies, each series of sufficient conditions should be derived for the
combination of an object and a robot hand. On the other hand, the
necessary conditions expressed mathematically have attracted some
researchers. Caging by multiple isolated robots in two- and three-
dimensional spaces has been studied [1, 2]. Additionally, caging by
a realistic robot hand with linkages in the three-dimensional space is
still an open problem [3, 4].

A difficulty of such caging grasps lies in the complexity of ex-
ploring closed free space for the object confined to the robotic hand.
Since the robotic hand can have various postures with various joint
variables, it makes the mathematical descriptions of the closed free
space intricate. Therefore, we proposed an approach to assess cag-
ing constraints in the three-dimensional scenes with a multifingered
hand. Since mathematically describing the volume of obstacles in the
configuration space of the object is complicated, we divide the con-
figuration space with finite voxels and classify all the voxels into two
patterns: occupied by the robot bodies or accessible for the object.

2 Examination of Conditions for Caging Grasps
When a robotic hand completes caging grasps for a target object, the

object never escapes from the cage structured by the hand. Thus, the
problem of caging in the three-dimensional space is to prove the non-
existence of escape paths for the caged object in the six-dimensional
configuration space for the object’s position and orientation [4].

On the other hand, the robot bodies in this configuration space
play as obstacles surrounding the object, and their occupying region
changes according to the robot configuration with the joint variables.
Let us consider a multifingered hand with L joints, and then, the
robot configuration is composed of the joint variables, θ ∈ RL,
and the generalized coordinate (position and orientation) of the hand,
qrob ∈ R6. Therefore, obtaining the necessary conditions for caging
by the multifingered hand is to examine the non-existence of escape
paths for the caged object in the (L + 6)-dimensional configuration
space. The joint angles determines the hand posture and change the
corresponding C-obstract regions.

2.1 Definition of Multifingered Caging based on Object Closure
Object Closure represents a situation where an object is confined

by surrounding robots and is movable only in the bounded space. We
consider C-obstacle (or C-Closure Object in [1]), where robot bodies
interfere with the object (Figure1a) and express it as follows:

Crob(qrob,θ) :=
{
qobj ∈ C | Aobj

(
qobj

)
∩ Arob (qrob,θ) ̸= ∅

}
,

(1)
where C denotes the configuration space (C-space) of the object. Aobj

and Arob denote the regions of the object and the robot bodies in the
real space, respectively. qobj ∈ R6 and qrob ∈ R6 denote positions
and orientations of the object and the robot, respectively. θ ∈ RL

denotes all the joint variables of the robot, and L is the number of
joints of the robot hand.
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(a) C-obstacle around
robot bodies.

(b) Approximation with a
set of representation points.
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(c) Object Closure (Caging) (d) Voxelization and labeling
process (Red cells: Crob).

Fig. 1: Object closure and its discretization.

Cfree denotes free configuration spaces for the object so that the
object can move freely without any interference with the robot bodies.
Thus, it is written as a complementary set of the C-obstacles:

Cfree(qrob,θ) = C \ Crob(qrob,θ). (2)

Then, we divide Cfree into two subsets: Cfree_obj and Cfree_inf . The
object is in Cfree_obj: qobj ∈ Cfree_obj. Cfree_inf contains a point at
infinity: qinf ∈ Cfree_inf .

When Cfree_obj is not an empty set and is surrounded by Crob,
Cfree_obj does not connect with Cfree_inf , and caging the object by
the robot bodies is achieved. Therefore, the necessary and sufficient
conditions for three-dimensional caging grasps are written as follows:

Cfree_obj ̸= ∅, (3)
Cfree_obj ∩ Cfree_inf = ∅. (4)

2.2 Closing Test of Bounded Space for the Object using Dis-
cretization of Configuration Space

We can discretely explore the configuration space for the object’s
position and orientation. The problem of planar caging is defined with
three parameters of the objects as [1], and their three-dimensional
configuration space can be simply divided by voxels. On the other
hand, three-dimensional caging is defined with six parameters and the
corresponding six-dimensional configuration space cannot be divided
by hypervoxels as the above because orientation expression with three
parameters is not consistent. Thus we discretize the configuration
space separately for position and orientation. For the latter case, we
use a four-dimensional hypersphere to express each set of quaternions.
2.2.1 Voxelization of Configuration Space for Position

Instead of a mathematical formulation for the six-dimensional con-
figuration space, we propose a discrete exploring approach. We ap-
proximate the three-dimensional configuration space for the position
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Fig. 2: Graph connection between sets of the accessible regions
for the object in the configuration space.

Fig. 3: Quaternions express the transition of object orientation.

of the objects with finite voxels and divide the whole configuration
space into two subsets: C-obstacles of robots, Crob, and freely ac-
cessible configuration space for objects: Cfree (Figure1d). This vox-
elization of configuration space allows us to adopt a labeling process,
often utilized for image processing to divide pixels into clusters.
2.2.2 Connection Check of Voxels between Different Orienta-

tions of the Object
In Figure2, we consider the voxelized configuration space for the

object with the orientation of (i, j, k). Then the voxel v(x, y, z, i, j, k)
denotes a single position and orientation of the object. When the voxel
v(x, y, z, i, j, k) is adjacent to v(x, y, z, i + 1, j, k), the object can
rotate from the orientation (i, j, k) to (i + 1, j, k) at the position of
(x, y, z). In addition, Cfree,l(i, j, k) denotes a free region for the
object with the orientation of (i, j, k). Thus, when at least one voxel
in Cfree,1(i, j, k) is adjacent to a voxel in Cfree,1(i+1, j, k), the object
can change its posture from Cfree,1(i, j, k) in the configuration space.
We continue the above process for all the connections between the
nodes of the object’s orientation shown in the next section.
2.2.3 Description of Discretized Orientation Space

To discretely explore the configuration space about orientation pa-
rameters changing as in the previous section, two constraint conditions
are needed. One-to-one correspondence is required to determine one
description for a particular orientation of the object with a set of
parameters. Continuity of orientation ensures that various parame-
ters describing the orientation of the object change continuously and
produce no singular points.

In order to satisfy the above two conditions in orientation expres-
sion for discretized configuration space, we adopt the unit quaternion
expression (Figure3) and its uniform sampling [5]. One-to-one cor-
respondence can be satisfied by omitting negative unit vectors of
quaternions. Since every uniformly sampled unit quaternion depends
on the four-dimensional hypersphere, we connect them with Delaunay
triangulation, which connects two sampled quaternions with the near-
est Euclidean distance. Finally, we can obtain a graph of quaternions.
High density of sampled points will ensure the connectivity between
adjacent quaternions.

3 Simulation Results
In this section, we present some simulation results to verify our

proposed test for the achievement of caging constraints by a multi-
fingered hand. For the simulations, we assume some conditions. To

Fig. 4: A symmetric eight-
fingered hand

Fig. 5: An example of caged
region for the cube inside
the robotic hand.

simplify its calculation of the C-obstacles, every limb and joint of the
robot hand has no volume. C-obstacles can be constructed on each
joint and some finite points placed on each limb. The Voxelization
resolution of configuration space for the position is 1 [mm]. The
number of sampling for unit quaternion is three. The size of bounded
three-dimensional C-space for the position is 100×100×100 [mm].
The robot hand is a symmetric hand, which has a palm of a regular
octagon inscribed in the circle with a radius of 14 [mm] and eight
fingers attached to every vertex of the palm as Figure4. Each finger
has four joints and moves only in the plane containing both the central
axis and each vertex of the palm. Each length of the limbs of the
finger is 12, 18, 12, and 12 [mm] respectively from its base. Each
joint variable of the finger is set 50, 40, 40, and 40 [deg] respectively.
The target objects are a 15 [mm] cube and a 20 [mm] cube.

Figure5 shows a set of three-dimensional accessible regions for the
object with a particular orientation, which is caged by the multifin-
gered hand with the above joint variables.

4 Conclusions
This paper studies achievement tests for three-dimensional caging,

where robot fingers entirely geometrically capture an object. Since
caging constraints can be accomplished when the accessible space
for the object is completely confined by the robot bodies in the six-
dimensional C-space, the procedure of the tests is constructing obsta-
cle regions and exploring the non-existence of escape paths from the
surrounded region for the object. To avoid the difficulty of describ-
ing caged regions mathematically, we discretize the six-dimensional
C-space. The connectivity of the voxelized configuration space is
explored with the labeling process and unit quaternions. Our sim-
ulation results show that our proposed algorithm can examine the
accomplishment of caging grasps by a multifingered hand.

In future works, mathematically ,proper description and explo-
ration of high dimensional configuration space should be considered
to derive the necessary conditions for caging constraints.
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