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Abstract: This paper presents a homogeneous evaluation of difficulty of moving attributed to both geometrical and
mechanical constraints. Although caging grasp usually considers to confine an object geometrically by surrounding
robots, it is not always feasible due to limitation of robots such as few number of robots or fingers. Such incomplete
caging is often called as partial caging, and in which the object can escape from the cage of robots. And then the object
is prevented from moving by both geometrical constraints and mechanical effects. The former can be discussed with
arrangements of robots and environments, and the latter is investigated with static/dynamic analyses of contact forces.
This paper addresses both different indexes homogeneously based on robustness measure for grasping and contact tasks.
We introduce a novel interpretation for evaluation of complete/partial caging quality, and show some numerical examples.
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1. INTRODUCTION

Caging grasp considering geometrical constraints has
been an attractive research field in a couple of decades,
which is substitute for or complement to conventional
grasping and manipulation based on mechanical analy-
ses [1]. Position-controlled robots usually surround an
object to avoid it from escaping the cage, and transport
it by keeping the robots’ formation. A caging problem
in robotics was firstly introduced by Rimon and Blake
[2], [3] for immobilizing grasps by a two-fingered hand.
Later various types of caging have been widely studies
such as three-fingered caging [4], caging by multiple mo-
bile robots [5]. On the other hand, complete caging en-
suring geometrical constraint for the captured object is
not sometimes accomplished due to limitation of robots,
such as few robots. Thus partial caging where the object
has escape paths through gaps between robots should be
contemplated to benefit geometrical constraints in grasp-
ing. Makapunyo et al. measure partial cage quality as
difficulty of motion planning of objects to escape from
the incomplete cage [6], by using probabilistic search al-
gorithms [7]. This approach focuses on fully geometri-
cal problems and is applicable even to complicated situ-
ations in higher dimensional space. On the other hand,
under gravitational fields, an object needs some potential
energy to escape from the cage with opposing the gravi-
tational forces [8]. It can be applied to placing objects at
partially fenced place [9].

Our approach to evaluate partial cage quality depend-
ing on both geometrical and mechanical constraints is
based on the static analysis of contact forces in grasping
and manipulation [10]. The mechanical analysis derives
a robustness index against external wrenches applied to
the object during manipulation. Our proposed index of
caging quality is expressed as difficulty to move in the
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Fig. 1 Grasping by three-fingered hand in two-
dimensional space. Gravitational force is applied to-
ward −y direction.

cage. When some obstacles such as position-controlled
robots exist, the object never move toward the obstacles
due to geometrical constraints. When the object has fea-
sible motion but some external wrenches such as grav-
itational force prevent it from beginning of the motion,
the object seems to be restricted to move by mechanical
constraints. In this manner, we homogeneously evaluate
quality of both partial and complete caging.

Note that motion of objects in this paper is only Eu-
clidean motion [11], each of which is regarded as a sin-
gle rotational motion around an arbitrary point. Hence
complicated and winding motion are often out of scope.

Let consider three-fingered grasp as Fig. 1, where the
gravitational force is applied toward −y direction. Our
proposed algorithm evaluates each robustness of grasp-
ing, and then arrangement of fingers in Fig. 1(a) has
higher robustness. The grasped object in Fig. 1(b) tends
to naturally go out from the hand. In contrast, the ob-
ject in Fig. 1(a) requires necessary potential energy to
escape from the hand through the gap above the object.
Both objects never move horizontally because of pres-
ence of fingers unless excessive external wrenches defeat
joint torques. If the fingers are in position control and are
equivalent to rigid environments, we need infinite exter-



nal wrenches.

2. MECHANICAL MODEL

The mechanical model in this paper refers to the pre-
vious studies [10], [12], and is briefly summarized with
principal formulas. The following formulation is dis-
cussed as problems in three-dimensional space, and it is
easily applied to those in two-dimensional space.

2.1 Assumptions and Notations
Firstly we assume that all the objects and robots are

in static, thus quasi-static and dynamic movement are not
considered. In addition, all the objects, robots, and envi-
ronments are composed of rigid bodies. Then Coulomb
friction at all the contact points between those bodies are
applied, and each friction cone can be approximated by a
convex n-polygonal pyramid. As for the static frictional
forces, combinations of those directions are limited due
to feasible motion of rigid bodies [10] (See (7)). In the
studies on robotic caging, all the robots or robotic fingers
are assumed to be in position-controlled because caging
is a problem how to surround objects by robots to pre-
vent the object from escaping from “the cage”. How-
ever position-controlled robots often cause excessive in-
ternal forces in tasks with contacts such as grasping. In
order to avoid that unacceptable results, we adopt posi-
tion/force hybrid control to all the fingers for CONVE-
NIENCE. Each hybrid-controlled finger with a prismatic
joint can actively control the force in a certain direction,
and it can be regarded as a finger of parallel jaw gripper.

The following notations are defined.
• N : the number of fingers.
• Mi : the number of contact points on the i-th finger.
• M =

∑N
i=1 Mi : the amount of contact points.

• Li = 1 : the number of joints in the i-th finger.
• L :=

∑N
i=1 Li = N : the amount of joints.

• Pik : the k-th contact point on the i-th finger. Every
contact point is numbered in order from the base of each
finger.
• Pl : the l-th contact points in all the contact points.
Then l =

∑i−1
n=1 Ln + k.

• pl ∈ R3 : the position vector of the contact point, Pl.
• ti1, ti2 ∈ R3 : the tangential vectors that are orthogonal
vectors spanning a corresponding tangential plane at the
l-th contact point.
• nl ∈ R3 : the unit normal vector at the l-th contact point
toward inside of the object.
Additionally the following mathematical expressions are
used.
• Diagonal matrix or block diagonal matrix:

diag (A1, . . . , An) :=

 A1 O
. . .

O An


• Inequality between two vectors: a := [a1, . . . , an]T ,
b := [b1, . . . , bn]T are defined. If a > b,
then ai > bi (i = 1, . . . , n).

2.2 Contact Forces
The contact force, f l ∈ R3, which is applied to the

object at the contact point, Pl is expressed as:

f l = Cl kl, (1)

where Cl :=
[
cl1 . . . clrl

] ∈ R3×rl . clm denotes the m-
th unit edge vector of the convex n-gonal pyramid
approximating the friction cone at the contact point,
Pl. kl :=

[
kk1, . . . , klrl

]T ∈ Rrl is a vector correspond-
ing the magnitude of the contact force, f l, and
kl ≥ 0 = [0, . . . , 0]T .

The contact force, f ik, applied at the contact point, Pik
is related to the joint torques of i-th finger as:

JT
ik f ik = τi =

[
τi1 . . . , τiLi

]T ∈ RLi , (2)

where J ik ∈ R3×Li denotes the Jacobian matrix for the
contact point, Pik, and τi j ∈ R1 denotes the j-th joint’s
torque of the i-th finger. From the assumption in this
chapter, every finger is in hybrid control, and it is equal
to a prismatic joint with 1 degree of freedom. Thus,

J ik = mi ∈ R3, (3)

τi = τi1 ∈ R1, (4)

where mi denotes a unit vector along the direction of joint
motion of the i-th finger. Additionally a finger can be in
position-controlled if τi1 = +∞.

The following matrices are defined.

W :=
[

I3 . . . I3
p1 × I3 . . . p1 × I3

]
∈ R6×3M ,

C := diag (C1, . . . ,CM) ∈ R3M×r,

k :=
[
kT

1 , . . . , k
T
M

]T ∈ Rr,

T := diag (T1, . . . ,TM) ∈ R3M×2M ,

Tl :=
[
tl1 tl2

]
∈ R3×2,

J := diag (J1, . . . , JN) ∈ R3M×L,

J i :=
[
JT

i1, . . . , J
T
iMi

]T ∈ R3Mi×Li ,

f :=
[
f T

1 , . . . , f T
M

]T ∈ R3M ,

τ :=
[
τT

1 , . . . , τ
T
N

]T ∈ RL,

where In denotes an identity matrix with dimension of
n×n. p× I3 denotes a skew matrix, and then

(
pl × I3

)
x =

pl × x.
With the notations, all the contact forces, f can be ex-

pressed as follows:

f = Ck. (5)

Thus frictional forces at contact points are expressed as:

TT f = TT Ck ∈ R2M . (6)

It is reported in [10] that the static frictional forces occur
under the limitation of their combination. The constraint
on static friction has been originally derived by Omata et
al. [13], [14], taking feasible motion of rigid bodies into



consideration. With the constraint, every feasible combi-
nation of static frictional forces must satisfy the following
conditions:

STT Ck ≤ 0, (7)

TT (I3M − B) Ck = 0. (8)

S := diag (s11, s12, s21, s22, . . . , sM1, sM2) ∈ R2M×2M denotes
signs for direction of infinitesimal displacement, which
is equivalent to shear strain of contact point, and slm =

{±1, 0}. As Coulomb’s friction law, the infinitesi-
mal displacement seems to cause static friction [15].
B := diag (b1I3, . . . , bM I3) ∈ R3M×3M is a selection ma-
trix that determines whether each infinitesimal displace-
ment occurs at the corresponding contact points. In anal-
ysis of indeterminate forces in grasping and contact tasks,
direction of external wrench as disturbances can be arbi-
trarily considered. When the external wrench causes in-
finitesimal motion of the target object, each resultant in-
finitesimal displacement occurs at the contact point. If the
displacement occurs at the contact point, Pl, then bl = 1.
Otherwise bl = 0. Thus slm = 0 whenever bl = 0. (7)
expresses that the direction of the infinitesimal displace-
ment at the contact point is opposite to the corresponding
tangential force. (8) expresses that there are no frictional
forces at the contact points without any infinitesimal dis-
placement. The following linear programming problem
judges whether the combination of the infinitesimal dis-
placement is feasible or not:

maximize
q,V,θ̇

1T q

subject to


B
[
WT J

]  V
−θ̇

 = TSq

q ≥ 1
, (9)

where V ∈ R6 denotes the velocity of the object with rigid
body, θ̇ ∈ RL denotes the joint angular velocity of robots,
and 1 = [1, . . . , 1]. If q (> 0) satisfying (9), the objective
function diverges to infinity.

The relationship between contact forces and joint
torques can be expressed as:

JT f = JT Ck = τ. (10)

Force equilibrium for the object can be expressed as:

W f =WCk = − (Qknown + Qdist
)
, (11)

where Qknown ∈ R6 denotes known external wrenches
such as the gravitational force, and Qdist ∈ R6 denotes
unknown external disturbances.

2.3 Robustness Measure
Maeda et al. presented a measurement method of ro-

bustness for grasping and contact tasks [16]. The objec-
tive value is equal to the minimum external wrench that
precludes manipulation, and it can be calculated for ar-
bitrary direction of disturbances. In this paper, the value

of robustness, z is calculated by the following series of
minimax problems.

z = min
i

zi, (12)

zi = max
ζ,k,B,S,τ

ζ, (13)

subject to



ζ
(
R

1
2

)−1
li + Qknown +WCk = 0

JT Ck − τ = 0
TT (I3M − B) Ck = 0
STT Ck ≤ 0
0 ≤ τ ≤ τmax1
k ≥ 0
ζ ≥ 0

,

where τmax denotes the maximum value of joint torque.
R

1
2 ∈ R6×6 is the Cholesky decomposition of R. We de-

fine a scaling matrix R :=
[
I3 O
O M0 J−1

0

]
with the mass of

the object, M0 and the inertia tensor of the object for the
center of mass, J0, in order to have a coordinate-invariant
norm.

li ∈ R6 denotes the direction of external wrench, Qdist.
With (13), we evaluate the robustness of the manipulated
object against a certain external disturbance whose direc-
tion is determined by li.

3. MEASUREMENT OF CAGING
QUALITY BASED ON ROBUSTNESS

ANALYSIS
With the robustness of the manipulated object derived

by (12) and (13), we quantitatively evaluate quality of
both complete and partial caging grasps. The robust-
ness means the difficulty of movement for the object,
and also it leads the difficulty of escaping from the com-
plete/partial cage for the captured object. Note that po-
sition and force hybrid control is adopted for all the fin-
gers instead of position-control in order to avoid exces-
sive internal forces applied to the object. In general, po-
sition control for robot fingers is firstly considered be-
cause geometrical arrangements of the fingers to cap-
ture the object is an essential problem of caging grasps.
On the other hand, as for static analyses, contacts with
position-controlled fingers often cause excessive internal
forces. For convenience to avoid such undesirable results,
hybrid-controlled fingers have bounded joint torques.

When an external disturbance as six-dimensional
wrench is applied to a grasped object, the object remains
its manipulation state to some extent thanks to contact
forces applied by robots and the gravitational force. If the
maximum external wrench, which is equal to the evalu-
ated robustness, is applied to the object, the object will
begin to move because force equilibrium for the object
breaks. Therefore the robustness for grasping and ma-
nipulation for a certain direction represents difficulty of
moving toward the direction. Note that the motion of the
object at that time can be regarded as Euclidean motion,
that is, be approximated by a single rotational motion.



For example as Fig. 1, the grasped object cannot move
toward the direction where any robotic fingers exist such
as +x-direction unless an external wrench applied to the
object breaks force equilibrium. Thus toward position-
controlled robots, which can be equivalent to rigid envi-
ronments, the object cannot move. In this manner, we
can judge a captured object is geometrically constrained
by surrounding robots when the calculated robustness for
the corresponding direction reaches its upper bound.

As for direction toward which the captured object can
escape, known external forces such as the gravitational
force and contact forces applied by robots interfere with
the object to move. Thus the calculated robustness repre-
sents difficulty to move toward the direction.

4. NUMERICAL EXAMPLES
Some numerical simulations verify our proposed

method to evaluate quantitatively quality of com-
plete/partial caging grasps. Homogeneous measure for
both geometrical and mechanical constraints can be cal-
culated based on the robustness analysis for grasping and
contact tasks. Both two and three dimensional situations
appear in this section.

It is assumed that the mass of target object is 1 (M0 =

1), and mass distribution is uniform. The coefficient of
static friction is 0.3. The upper bound of torque for hybrid
fingers τmax = 40.0.

4.1 Caging Grasp in Two Dimensional Space
We set the vector li, which denotes the direction

of external wrench, as following 14 patterns: li =

[±1, 0, 0]T , [0,±1, 0]T , [0, 0,±1]T , 1√
3

[±1,±1,±1]T . A
known wrench including the gravitational force is
Qknown = [0,−9.8, 0]T .

4.1.1 For a Square Object with Multiple Fingers
Considering cases that multiple pointed fingers grasp a

square object as shown in Fig. 1 and 2, we compare each
robustness of grasping. Firstly four fingers are arranged
one by one for every edge as Fig. 2(e), and numbered as
P1, . . . , P4. Thus each finger has a contact point with an
edge. This case seems to be Complete caging (or form
closure), where the captured object cannot escape from
the cage of fingers. After that we reduce contact points
and evaluate robustness for each grasp. The parameters
for calculation are as follows:

p1 =
[

0.0
−1.0

]
, p2 =

[
−1.0
0.0

]
, p3 =

[
0.0
1.0

]
, p4 =

[
1.0
0.0

]
,

T1 =
[

1
0

]
, T2 =

[
0
1

]
, T3 =

[
1
0

]
, T4 =

[
0
1

]
,

N1 =
[

0
1

]
, N2 =

[
1
0

]
, N3 =

[
0
−1

]
, N4 =

[
−1
0

]
,

J1 = N1, J2 = N2, J3 = N3, J4 = N4.

Every calculated robustness is shown in Table 1. Com-
paring two pinching grasps (Fig. 2(a) and 2(b)), the
case of pinching vertically marks higher robustness than
pinching horizontally. This result seems to be intuitive
because the finger arranged on the bottom of the object
opposes to the gravitational force.

Table 1 Robustness of each grasp patterns

Fig. 1(a): Without contacts on the top 24.23
Fig. 1(b): Without contacts on the bottom 10.17
Fig. 2(a): Pinching the object horizontally 10.17
Fig. 2(b): Pinching the object vertically 12.99
Fig. 2(c): Without contacts on the left side 12.99
Fig. 2(d): Without contacts on the right side 12.99
Fig. 2(e): Complete caging 52.16

As for grasping by three fingers, the arrangement
of fingers without contacts on the top of the object
(Fig. 1(a)) marks highest robustness, comparing with
other cases (Fig. 2(c) and Fig. 2(d)). The reason of these
results is similar to the above.

Naturally, the case of Fig. 2(e) where the object is
completely surrounded with contacts on all the edges
marks the highest robustness in these simulation results.
Since this arrangement of fingers satisfy the conditions
of complete caging, the measured robustness diverges to
infinity if all the fingers are in position-controlled.

Although the robustness reflects the quality of caging
grasps that depends on difficulty of movement attributed
to both geometrical and mechanical constraints, the min-
imum value of the objective function is not sufficient. As
for Fig. 1(b) and 2(a), these two cases have the same min-
imum value of robustness. Nevertheless it is intuitively
seemed the difficulty of movement for the grasped object
is higher in the case of Fig. 1(b). To investigate these de-
tails, we add up robustness values for every direction of
external wrench, li. The amount of robustness values in
Fig. 1(b) is 404.6, and that of Fig. 2(a) is 290.5. Thus the
quality of geometrical constraint depending on arrange-
ment of fingers can be evaluated by the amount of robust-
ness for every direction. Note that more direction of li
obviously enable more precise analyses. In this paper, it
is assumed that fourteen directions of external wrench is
enough to analyze such characteristic trend of robustness.

4.1.2 Pinching a T-shaped Object

Consider pinching grasp for a T-shaped object by a
parallel jaw gripper. Numbering of contact points are
shown in Fig. 3, and common parameters for calculation
are as follows: τmax = 40.0,

J11 =
[
−1.0
0.0

]
, J12 =

[
−1.0
0.0

]
, J21 =

[
1.0
0.0

]
, J22 =

[
1.0
0.0

]
.

As for the case of Fig. 3(a),

p11 = p1 =
[

1.0
0.075

]
, p12 = p2 =

[
1.075
0.0

]
,

p21 = p3 =
[
−1.0
0.075

]
, p22 = p4 =

[
−1.075

0.0

]
,

T1 =
[

0
1

]
, T2 =

[
1
0

]
, T3 =

[
0
1

]
, T4 =

[
1
0

]
,

N1 =
[
−1
0

]
, N2 =

[
0
−1

]
, N3 =

[
1
0

]
, N4 =

[
0
−1

]
.
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Fig. 2 Grasping a square object
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Fig. 3 Grasping a t-shaped object

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Fig. 3(a) 20.54 20.83 1E+06 14.2 4.883 5.005 5.443 6.444 9.765 13.54 6.55 5.347 14.01 9.461
Fig. 3(b) 40 40 33.8 1E+06 11.62 11.62 32.96 22.52 15.34 12.73 22.52 32.96 12.73 15.34
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Fig. 4 Simulation result of calculated robustness for
pinching a t-shaped object in 2D

As for the case of Fig. 3(b),

p11 = p1 =
[

1.0
−0.075

]
, p12 = p2 =

[
1.075
0.0

]
,

p21 = p3 =
[
−1.0
−0.075

]
, p22 = p4 =

[
−1.075

0.0

]
,

T1 =
[

0
1

]
, T2 =

[
1
0

]
, T3 =

[
0
1

]
, T4 =

[
1
0

]
,

N1 =
[
−1
0

]
, N2 =

[
0
1

]
, N3 =

[
1
0

]
, N4 =

[
0
1

]
.

The calculated results of robustness against each di-
rection of external wrench are shown in Fig. 4. The mini-
mum robustness values of Fig. 3(a) and Fig. 3(b) are 6.42
and 15.08 respectively. Moreover Fig. 4 illustrates that
robustness values for each direction of external wrench.
The robustness for the direction of +y (l3) in Fig. 3(a)
and that for the direction of −y (l4) in Fig. 3(b) diverge
to infinity because the fingers are in position control for
each corresponding direction, where the contact points,
P12 and P22, exist. Hence we exclude these diverged val-
ues when amount of robustness values is calculated. Each
calculated amount for Fig. 3(a) and Fig. 3(b) is 181.7
and 402.4 respectively. These results also suggest that ar-
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Fig. 5 Grasping a t-shaped object

rangement of position-controlled fingers to support such
as gravitational force contributes to more robust grasps,
even regardless of conventional force/form closure.

4.2 Caging Grasp in Three Dimensional Space
Consider pinching grasp for a T-shaped object by

a parallel jaw gripper in three dimensional space as
Fig. 5. We set the vector li, which denotes the direc-
tion of external wrench, as following 76 patterns: li =

[±1, 0, 0, 0, 0, 0]T , [0,±1, 0, 0, 0, 0]T , [0, 0,±1, 0, 0, 0]T ,
[0, 0, 0,±1, 0, 0]T , [0, 0, 0, 0,±1, 0]T , [0, 0, 0, 0, 0,±1]T ,

1√
6

[±1,±1,±1,±1,±1,±1]T . A known wrench includ-

ing the gravitational force is Qknown = [0,−9.8, 0, 0, 0, 0]T .
Each position of contact point and its normal vector are
set similarly to Sec. 4.1.2 , where each finger has four
contact points.

The calculated results of robustness against each di-
rection of external wrench are shown in Fig. 6. The mini-
mum robustness values of Fig. 5(a) and Fig. 5(b) are 4.57
and 10.87 respectively. These results are naturally similar
to the results shown in Sec. 4.1.2.

5. DISCUSSION
In this paper, we propose a homogeneous quantitative

measure of caging grasps that depend on geometrical and
mechanical constraints, and demonstrate numerical sim-
ulations in both two and three dimensional spaces.

As for a square object in 2D scene, the results shown in
Table 1 address that minimum robustness values are same
between pinching a square object(Fig. 2(a)) and pinch-
ing a square object with additional contact point on the
top of the object (Fig. 1(b)). In contrast, the additional
contact point contributes to higher robustness for exter-
nal disturbances in the direction of +y. Thus arrangement
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Fig. 6 Simulation result of calculated robustness for
pinching a t-shaped object in 3D

of fingers on the top of the object has low priority. Sim-
ilarly with comparing cases of Fig. 2(b), Fig. 2(c), and
Fig. 2(d), every minimum robustness value is same. Thus
prior arrangement of fingers for robust grasps is to locate
a finger (or fingers) on the bottom of the object to op-
pose to gravitational force. This result is quite intuitive,
and the located fingers can be even in position-controlled,
which is then equivalent to rigid environments. The cases
as Fig. 1(a) can be called as “gravity caging” [9].

As for pinching T-shaped object shown in Fig. 3, a dif-
ference of robustness values depends only on posture of
the grasped object. In Fig. 3(b), the fingers support the
object passively to oppose the gravitational force in −y
direction. Even if the fingers slip and lose contact forces
applied to the object, the object remains under constraint
by fingers. Therefore arrangement of fingers for geomet-
rical constraint should be additionally taken into consid-
eration. It can contribute to reliable grasping and manip-
ulation regardless of force closure.

6. CONCLUSIONS

This paper presents a novel quantitative measure of
caging grasps, in which both geometrical and mechani-
cal constraints are homogeneously treated. In partial cag-
ing, surrounding an object by robots is not complete, and
then the object can escape from the surrounding cage, al-
though in contrast, complete caging can avoid rigorously
the object from escaping. Then arrangement of fingers
restricts the object’s motion geometrically, and also me-
chanical effects such as the gravitational force prevent the
object from moving toward its opposite direction. Our
proposed measurement based on analyses of robustness
in grasping and manipulation merges both these difficulty
of moving and fairly evaluates. Some numerical exam-
ples for two and three dimensional scenes are presented
as applications of our method.

In future works, the evaluation of partial cage quality
will be used in motion planning for grasping and manipu-
lation because such geometrical constraint can contribute
to reliable tasks even when force closure breaks.
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