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Abstract— This paper proposes a motion discrimination with
electromyogram for twist manipulation, which is composed of
flexion/expansion and pronation/supination. Instead of attach-
ing a set of electrodes at the surfaces on each target muscle,
we adopt a commercial arm-band-type electrodes array with
focusing on wearability. A typical signal processing, IEMG, and
a classifier, SVM, are employed to analyze eight channels of elec-
tromyogram for six hand actions. We experimentally investigate
the accuracy of discrimination in real-time and interference of
muscle fatigue. Since each pattern of electromyogram for a
particular motion is changed by posture of upper limb, the
interference of its noises are also investigated.

I. Introduction
Electromyogram (EMG) is a set of electrical signals which

is activated by contraction of muscles. It can be observed not
only inside of muscles but also on the surface skin, and the
latter is called as surface EMG (SEMG). Since SEMG is
easily measured with attaching electrodes to the skin, it is
widely used to estimate preliminary motion of human body
and to control myoelectric prostheses and orthoses, as [1].
As for arrangement of electrodes, each of them is generally
attached near the target muscle as [2], [3], in order to reduce
noises on measurement. On the other hand, some commercial
devices of electrodes often focus on wearability on the fore-
arm rather than precise measurement. For example, an arm-
band-type product has electrodes arranged in a line [4] and
another previous study [5]. In these cases, electromyogram
retrieved by all the electrodes is statistically analyzed to
classify several forearm and hand actions. Although precision
and responsibility of electromyography is low, its easiness to
use the device is a quite advantage for non-professional users.

Multiple DOF (Degrees of freedoms) prosthetic hands
controlled with electromyogram have been thoroughly inves-
tigated and developed based on the analyses of EMG pro-
cessing to discriminate intention to make hand actions. Each
target action is, however, often composed of SINGLE motion
such as opening and closing fingers, twisting wrist called
pronation/supination/flexion/extension [6], and gestures with
finger(s) pointing [5]. On the other hand, our daily activities
using arms and hands are more complicated and flexible.
For example, when we try to unlock a door, it is needed
grasping a key, inserting it into the lock, and turning it. This
task requires not only multiple actions but also combination
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(a) PG: Pronation and
grasp

(b) NG: Neutral and
grasp

(c) SG: Supination
and grasp

(d) PO: Pronation and
open

(e) NO: Neutral and
open

(f) SO: Supination
and open

Fig. 1. Target six actions: Grasp means flextion of all fingers; Open means
the hand is relaxed, not concentrated

of single motions such as grasping and twisting. Hence
those twisting manipulation by EMG prosthetic hands can
be performed by EMG-based discrimination for combined
actions.

In this paper, we adopt the arm-band with eight electrodes
in a line in order to easily retrieve datasets of electromyogram
and hand state. Each hand state is a combination of fingers
closing and wrist twisting. Our discriminator of hand state
with electromyogram is built with Support Vector Machine
(SVM), a widely-used statistical method. The datasets for
learning of the SVM include two components. One is elec-
tromyogram during hand motion, which is retrieved by the
arm-band-type electrodes array. Another is the corresponding
hand motion, which are automatically recognized by a device
for Motion Capture, Leap Motion [7]. The trained SVM
discriminator can perform high accuracy of recognition for
six hand states, which is not lower than 80%. In addition,
interference from fatigue of muscles and also from upper-
limb motion are investigated.

II. Signal Processing and Classification of
Electromyogram

Fig. 1 shows our target hand states, each of which is
a combination of flexion/extension of fingers and prona-



Fig. 2. Measurement setup: a subject lays their forearm on the table

tion/supination/neutral. In these cases, each corresponding
pattern of electromyogram may be different from its com-
ponents as SINGLE motions. To discriminate these signals,
we adopt conventional processing methods: rectification,
integral, normalization, and Support Vector Machine (SVM).

A. Pre-processing of Retrieved Electromyogram
In this paper, we use only magnitude of electromyogram

because of low sampling rate of EMG sensors. Since fre-
quency of electromyogram usually distributes from 5 to 500
Hz, more than 1 kHz sampling rate of EMG is required to
reconstruct and analyze. Nevertheless the employed commer-
cial SEMG sensor has a sampling rate of 200 Hz, and it is
insufficient to retrieve whole specification of frequency of
electromyogram.

As general, measured SEMG from electrodes is processed
with rectification, integral, and normalization. In this paper,
rectified electromyogram, Remg(t), is calculate with Root
Mean Square:

Remg(t) =

√√√√ 1

n

n−1∑
i=0

E2
emg(t− i), (1)

where Eemg(t) represents electromyogram measured at the
time of t.

As a magnitude index of electromyogram, IEMG is widely
adopted for motion classification.

Iemg =

∫ t

t−τ

Remgdt, (2)

where τ represents time constant, and here τ = 0.5 [s]. The
IEMG of each channel is normalized where its average and
variance are equal to 0 and 1 respectively.

B. Classification of Hand State with Depth Images
In order to discriminate hand actions, datasets for SVM

learning are required, which are composed of IEMG and
motion (state) label of hand. Additionally, in order to evaluate
accuracy of real-time classification, an estimated label has
to be checked with its corresponding true label. Although
it can be manually added, a motion capturing device gives
the labels automatically. In this paper, we use Leap Motion
(Leap Motion, inc. [7]), a depth sensor for hand tracking. The
device can recognize hand shapes with estimating each joint
of fingers and points on the palm. Every pointing vector, pi of

the twenty vectors is corrected, with taking relative posture
between the device and the hand into consideration:

pit =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

cosϕ 0 − sinϕ
0 1 0

sinϕ 0 cosϕ

pi (3)

piu =
pit

||pit||
, (4)

where || · || means Euclidean norm. These corrected twenty
vectors as 60 dimensional datasets are used as input of SVM
(Support Vector Machine) learning to classify hand states. In
our preliminary experiments, the classification of hand states
shown in Fig. 1 has no errors.

III. Experiments and Results
A. Measurement setup

Fig. 2 shows our experimental setup. A subject sit down
on the chair and lays their forearm down on the stage with
15 [cm] height from the table. A band of EMG sensors
array, Myo band (Thermic inc.) is attached to an appropriate
position on their forearm following its instruction. A infrared
depth sensor, Leap Motion, on the table watches the subject’s
hand action and estimate its posture to retrieve datasets.
Our proposed system uses SVM (Support Vector Machine)
and Neural Network built with scikit-learn [8], a machine
learning library for Python. The kernel of SVM is Radial
Based Function with default hyper parameters.

We retrieve datasets of both hand actions and correspond-
ing EMG for SVM learning with the following procedure:
Step 1. Lay down their forearm on the stage and relax.
Step 2. Form either of six motions shown in Fig. 1.
Step 3. Start to measure EMG and calculate IEMG after
the value of EMG is in constant and keep the posture in
10 seconds.

Step 4. Repeat the above processes for every motion.
Since the sampling rate of the EMG measurement is 10 Hz,
we can retrieve 100 datasets per a motion.

B. Experimental results
1) Offline discrimination: To verify our proposed system

to discriminate the six combined motions, we examined for
three non-amputee 20-years-old people in offline. As Sec. III-
A, we retrieved three amounts of datasets, and merge them.
Then 10 percent of the datasets, thus 180 datasets are used
for SVM learning and the rest are to be classified by the
discriminator.

Table I shows a confusion matrix that represents each
motion to be classified by the SVM discriminator with
measured IEMG and its result. To evaluate discriminators, we
usually use F-measure, which is harmonic mean calculated
with classification precision and recall rate as (5). Precision
means a rate which each classification result matches that
of true class. Recall means a rate which the discriminator
successfully detects cases in target true class.

(F −measure) =
2(Precision)(Recall)

(Precision) + (Recall)
(5)
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Fig. 3. A classification diagram for the six hand states

TABLE I
A resultant confusion matrix

Estimated class
PG NG SG PO NO SO F-measure

Actual PG .978 .004 0 0 0 0 0.978
class NG 0 .996 0 0 0 0 0.996

SG .003 .003 .996 .998 0 0 0.994
PO .004 0 0 .998 0 0 0.998
NO .032 0 0 0 .932 .012 0.931
SO 0 0 0 0 .096 .944 0.942

Mean 0.973

Fig. 4. Offset of sensors alignment

The confusion matrix (Table I) shows that the average of
F-measure is 97.3 % and the worst case is for NO motion
with 93.1 % rate. This may be caused by the errors in SO
classification where 10 % of datasets are wrongly classified
as NO motion. Our results of classification rate for combined
motion are sufficient since a similar score for single motions
is reported in a previous study [3].

In addition, our datasets for SVM learning are retrieved
from three people and they are merged. Thus individual
differences from each other are successfully absorbed.

C. Interference by offset of sensors alignment

When the band of EMG sensor array used in this paper is
attached to a subject’s forearm, it is difficult to align the sen-
sor precisely at same location in every time. Thus differences
of sensors alignment may occur in iterated measurement and
interfere the values of measured EMG. In this section, we
investigate the interference of sensors alignment as follows.

The band is usually attached to a subject’s forearm at 7 cm
far from their elbow toward the wrist. And an LED embedded
in the band determines the angle of the attached band.
With this standard position, we shift the band alignment
with 5 mm for each direction as Fig. 4. Datasets for SVM
learning are retrieved when the band is located at the standard
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Fig. 5. Location changing interfere with classification accuracy

position. After that datasets from misaligned sensors are
examined whether they can be appropriately classified by
the discriminator leaning on the standard position.

As a result shown in Fig. 5, each classification rate by
the misaligned sensors is decreased up to about 15 % at the
worst cases. Considering that 5 mm misalignment is actually
too large in usual uses with suitable attachment, decrease of
classification rate will become smaller.

D. Real-time classification

To consider daily uses to operate electromyographic pros-
theses, real-time classification is essential and is expected to
be with high success rate. Then we have to avoid a response
time lag from actual motion (or willingness to move) to
the end of classification. Additionally wrong classification
caused by impulse EMGs may occur during a shift from a
certain motion to another motion.

In this section, we examine a real-time classification for a
continuous shift of motion: PG -> NG -> SG -> SO -> NO



TABLE II
Accuracy of real-time classification

PG NG SG PO NO SO Mean
Trained User 0.99 0.94 0.94 0.99 0.95 0.94 0.96

Inexperienced User 0.91 0.57 0.72 0.99 0.84 0.95 0.83
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(a) Performed by a trained subject
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Fig. 6. Real-time classification of six hand postures (Fig. 1): (a) a person
who has trained for EMG measurement many times, (b) a person who is a
beginner for EMG measurement.

-> PO, with three subjects. Each motion is kept 10 seconds.
Judgment of classification depends on the estimation by Leap
Motion, a hand tracking system with infra-red depth sensor,
and its accuracy of classification of the target motions is al-
most 100% in our pre-experiments. Each SVM discriminator
has been built and learned with 100 datasets per a motion
(totally 600 datasets) retrieved from each single person.

Experimental results are shown in Fig. 6 and Table II.
Performances of a trained person are well discriminated with
high classification accuracy of 95.9%, and the result by a
non-experienced person is quite smaller with the rate of
83.0%. Classification delay appeared with 0.17 seconds in
average and up to 0.9 sec. Our presented classification system
can be used in real time although its accuracy depends on
the user’s experiences on measuring electromyography.

Fig. 7. Classification accuracy during a continuous motion

E. Interference of Muscular Fatigue

Continuous muscular contraction causes reduction of both
length and contraction of muscles, and the resultant muscular
strength will become smaller. And then measured IEMG will
be also smaller even if the subject acts the same motion. In
this section, we investigate the effect of muscular fatigue
for measuring electromyogram and its classification. The
following results are executed by the above trained person.

1) Muscular Fatigue by a Continuous Motion: Consider-
ing iteration of routine motion for a long time, we investigate
variance of classification accuracy in an experiment where
the real-time classification presented in Sec. III-D is executed
in 30 minutes. Fig. 7 shows the experimental results, in which
each plot represents classification rate in each divided time
period of 2 minutes. For every period, each classification
rate is higher than 90% with some variance. Hence mus-
cular fatigue by a continuous motion has few influence to
classification accuracy in our experimental system.

2) Muscular Fatigue by a Large Load in Short Time
Period: Considering applying a large load to muscles, for
example when a user bring up a heavy baggage. As a large
load to muscles in short time period, push-up exercise and
continuous opening and closing of hand are performed. Ta-
ble III shows our experimental setup and results. The row of
A represents that classification rate of 85.6% was performed
after 20 times push-up. And the row of C represents 88.8%
rate of performance after 40 times push-up and next 100
times opening and closing of hand. This experimental results
implies that heavy loads applied to muscles cause reduction
of classification rate, comparing with the fatigue by a con-
tinuous motion reported in Sec. III-E.1. Note that the results
does not validate a correlation between load magnitude and
accuracy rate because the most highest accuracy rate of



TABLE III
Classification accuracy after applying a large load

Number of loading [times] Accuracy rate
push-up opening and closing

A 20 0 0.856
B 40 0 0.902
C 40 100 0.888
D 40 200 0.933
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Fig. 8. Dynamic motion of upper limb interferes motion classification

motion classification is performed under the condition D with
largest muscular load. It can be assumed that the subject has
been experienced at the latter of experiments.

F. Interference of Upper Limb Posture

The above experiments were executed under the condition
that the subject lays their upper limb on the table with
keeping a particular posture shown in Fig. 2. On contrast in
daily life, people often use their hands and fingers with upper
limb motion, which is actuated by corresponding muscles’
electromyography (EMG). The EMG for upper limb’s motion
interferes as noises above classification of hand’s motion, and
decreases classification accuracy as Fig. 8.

Hence we propose an improved classification diagram with
correction, shown in Fig. 9. The EMG arm band used in this
paper has internal gyro sensors and obtains its orientation.
When a upper limb and a hand move together, obtained
EMGs are as integrated EMGs for both the upper limb’s
motion and the hand’s. Thus we remove the components of
EMG for the upper limb’s motion from the integrated EMGs
with using a single Neural Network. The spatial range for the
upper limb’s motion, which can be observed, is limited to
400× 300× 400[mm] from the hand tracker, Leap Motion.

Orientation of object is expressed with quaternion
(q0, q1, q2, q3), and the input layer of the neural network has
12 dimensions: qi, dqi

dt ,
d2qi
dt2 (i = 0, 1, 2, 3). The output layer

of the network has 8 dimensions corresponding the number
of channels of the EMG sensor. Measuring EMG signals and
the quaternion for only upper limb’s motion without hand
actions, the output of the neural network is tuned as IEMGs
of the motion.

The neural network is built as follows. We retrieve sets
of IEMG and quaternion during the upper limb’s motion
without hand action as flexion, pronation and supination.

Note that we remove error values which are out of the
range for 1σ. The number of datasets for neural network
learning is about 30,000. Each of two mid layers has 500
nodes and other parameters are set as default. To compare the
modified classifier (Fig. 9) with the previous method without
correction (Fig. 3), the following classification experiments
for the hand’s motion with upper limb’s motion are verified.
Step 1. 500 datasets of each of six motions in Fig. 1, which
are with random motion of upper limb, are retrieved. Each
dataset is composed of IEMGs from 8 channels of the arm
band, quaternion representing orientation of the arm band,
and motion label recognized by the hand tracker.

Step 2. each 50 datasets for learning are randomly selected
(amount of 300 datasets), and the rest are used for classi-
fication tests.

Step 3. The classifier built with SVM learns with the
selected datasets and classify the rest datasets.

Step 4. Comparing each result of classification with the
recognized motion label, accuracy rate of the experiment
is calculated.

The above procedure is iterated 5 times to obtain average
and standard deviation of accuracy rate.

The experimental results are shown in Fig. 10. Except NG
and SG motion, every classification rate can be improved by
correction attributed to upper limb’s motion (Fig. 10(a)). On
the other hand, we let the SVM classifier learn with each 100
datasets per motion (amount of 600 datasets), and obtained
improved classification accuracy, particularly classification
without correction. The results imply that increase learning
datasets of six hand actions with upper limb movement
facilitates to classify the motions, though correction consid-
ering EMG noises attributed to upper limb movement also
contributes to classification accuracy.

IV. Conclusion

In this paper, we study on motion estimation using Surface
electromyogram (SEMG), where combination of finger clos-
ing and wrist twisting. Our proposed discriminator is built
with Support Vector Machine for recognition of electromyo-
gram. The datasets for learning are retrieved by using a
arm-band-type electrodes array and a motion capture device.
The discriminator can perform high accuracy of recogni-
tion of electromyogram during combination state of single
motions. In addition, we also investigated whether muscular
fatigue and and upper limb motion interfere in measuring
electromyogram and its discrimination. As a result, muscular
fatigue seldom interferes the accuracy of classification in our
experiments. As for upper limb motion, its effect cannot be
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