
Motion Planning for 3D Multifingered Caging
with Object Recognition using AR Picture Markers

Satoshi Makita, Kensuke Okita and Yusuke Maeda

Abstract— Caging is a method to capture an object geo-
metrically by position-controlled robots without any force and
tactile sensors. Many previous researches focused on caging
constraints of objects, and those on planning are few. In
this paper, we present a motion planner for caging by a
multifingered hand and a manipulator to produce whole motion
which includes approaching to a target object and capturing it
without any collisions. We derive sufficient conditions required
for the caging tasks about three caging patterns. Since the
planner requires the object properties including the position
and orientation of the object, we adopt an object recognition
using AR picture markers. We apply the proposed method to
caging about four target objects: a cylinder, a ring, a mug and
a dumbbell. Some experimental results shows that each motion
are successfully planned, and executed by the arm/hand system.

I. Introduction

Robotic manipulations are ofter achieved with grasping,
which is typically performed by a force-controlled robot
hand, and then contact points between the robot and a target
object, and contact forces applied to the object have to be
determined [1]. Thus force sensors and/or tactile sensors are
often necessary, and force or torque control of robots are
also required.

On the other hand, Caging can be performed by a position-
controlled robot hand, and then an object is geometrically
constrained in the cage composed of the hand [2]. Since we
only determine the configuration of the hand to constrain the
object, any force sensors and force control are not required.

Moreover, there is room for object to move in the cage.
The room plays as margins of caging constraint to allow
some errors caused in position control, modeling and esti-
mation of link parameters. These advantages contribute to
facilitate execution of manipulation with actual robots. For
example, caging grasps, which are called in [3] as grasp sets
without constraints through contact forces, were presented to
open a door by a humanoid robot. Caging could provide the
robot more reachability to accomplish the manipulation task.

We derived sufficient conditions for caging about three
objects (Fig. 1, 2, 3) [4]. The sufficient conditions ensure that
the robot hand can form a cage to make a target object not
be able to escape from it. In addition, we obtain the required
configuration of the robot hand for caging by using a path
planner based on RRT (Rapidly exploring Random Trees)

S. Makita is with Dept. of Control Engineering, Sasebo Na-
tional College of Technology, 1-1 Okishinmachi, Sasebo, Japan.
makita@sasebo.ac.jp

K. Okita is with Canon Inc. b0541033@yahoo.co.jp
Y. Maeda is with Dept. of Systems Design, Div. of Systems Research,

Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai,
Hodogaya-ku, Yokohama, Japan. maeda@ynu.ac.jp

[5]. However, it can produce only required joint angles of
the hand.

Many of studies on caging focuses on the formation of
robots: caging a concave object by two fingertips in 2D
scenes [2], [6]; caging a convex polygon by more than
three disks in 2D [7], [8]; caging a polyhedra by pointed
fingers in n-dimension [9]; caging by a multifingered hand
in 3D [4]. Motion planning for caging is, however, important
for execution. Wang et al. proposed 2D caging by multiple
mobile robots including approaching phase [10]. Diankov et
al. demonstrated manipulating the door with caging grasps
by a multifingered hand [3], but mathematical conditions of
caging constraints are not declared.

In this paper, we improve the path planner presented
in our previous work [4], which can produce only finger
locations for caging, to produce motions for caging by a
robotic hand and a manipulator. The motions include both
the hand approaching to a target object from an initial
state and capturing the object. Thus we additionally derive
sufficient conditions to examine whether the hand approaches
enough to capture. Moreover, we propose a method of object
recognition with AR picture markers and ARToolKitPlus
[11], [12], because the planner requires object properties: the
shape, the size and the position and orientation of the object,
to plan a path of robot motion. The markers are useful to
identify each object, and the posture of the marker can be
measured with the libraries in ARToolKitPlus.

With the sufficient conditions and the improved planner,
we produce robot motions for caging about two objects: a
ring-like object and a dumbbell-like object. These caging can
be achieved by two-fingered hand. Although we presented
caging for both a sphere and a disk [4], we do not deal
with them in this paper. It is because a robot hand cannot
surround these objects without contacts with the obstacles
such as floors, and we cannot produce robot motions for
these caging by using our current planner.

II. Conditions for 3D Multifingered Caging

A. Classification of 3D Multifingered Caging

First, we name 3D multifingered caging to classify various
caging into three types by focusing on characters of objects’
shapes and constraint states.

1) Envelope-type Caging: In such cases of caging a
sphere (Fig. 1) or a disk (Fig. 2), finger bodies and a palm
of a robot hand surround the object and make it inescapable.

2) Ring-type Caging: In such cases of caging a ring-like
object, a robot hand constrains the object inserting its fingers

pi1

pij

pi,L+1

pi+1,1

Pi+1,j

pi+1,L+1
pobj

Fig. 1. Envelope-type caging (Cag-
ing a sphere)

Fig. 2. Envelope-type caging (Cag-
ing a disk)

p11

p1j

p1,L+1

p2j

p2,L+1

Sobj

p21

Fig. 3. Ring-type caging
Fig. 4. Waist-type caging (Caging a
wineglass)

into a hollow of the object (Fig. 3). Ring-type caging can be
considered for objects that has ring parts such as mugs.

3) Waist-type Caging: In such cases of caging an object
that has a constricted part such as a dumbbell (Fig. 4, 5), a
robot hand constrains the object winding its fingers around
the constricted part of the object.

B. Sufficient Conditions for Caging

If all the following conditions are satisfied, caging an
object by a robot hand can be accomplished.

1) Cage-formed conditions The robot hand constructs
the caged region from which the object cannot escape.

2) In-cage conditions The object is present in the caged
region formed by the robot.

3) Collision-free conditions The robot hand has no col-
lision with the object and any obstacles.

In this paper, we discuss cage-formed conditions and in-
cage conditions. Especially, in-cage conditions are necessary
for planning robot motion of approaching to the target object.
We derive in-cage conditions of each caging types classified
above, and one series of cage-formed conditions for caging
a dumbbell-like object, which is not appeared in [4].

As [4], collision-free tests among the hand, the object and
any obstacles can be checked with PQP — a Proximity Query
Package [13].

C. Assumptions and Notations

As [4], we assume a symmetric robot hand as follows:
• The hand has N fingers, and each finger has L̄ joints.
• All the joints are revolute, and their bodies have no

volume, that is, they can be approximated by points.
• The j-th body of the i-th finger can be approximated by

a line segments with length l j.
• The palm of the robot hand is a regular plane with N

vertices. When N = 2, it is assumed to be a square.
• Each finger is attached to each vertex of the palm.

2r
disc

d
waist

l
waist

p1,L+1

p2,L+1

p11

p21

t
disc

Fig. 5. Caging a dumbbell-like object (Waist-type caging)

• Each finger can move only in the plane passing through
both the vertical center axis of the palm and each vertex
of the palm.

The movements of the fingers have rotational symmetries
through 360/N degrees about the vertical center axis of the
palm. Then, we define a vector of joint variables of every
finger as follows:

θ̄ := [θ1, θ2, . . . , θL̄]T , (1)

where θ j is a joint variable of the j-th joint of each finger.

D. Cage-formed Conditions

In this section, we derive cage-formed conditions, which
ensures that a robot hand constructed a caged region and
makes an object inescapable from it, for caging a dumbbell-
like object. Caging a dumbbell-like object is a kind of Waist-
type caging (Sec. II-A.3). Note that the cage-formed condi-
tions for some other classified types of caging: envelope-type
caging and ring-type caging have already been derived in [4].

1) Caging a dumbbell-like object: Let us consider caging
a dumbbell-like object by a robot hand with two fingers
(N = 2) as Fig. 5. The object is composed of a cylinder
with two circular plates (disks) attached on each base, and
their parameters are denoted as follows: dwaist: the diameter
of the cylinder; lwaist: the length of the cylinder; rdisk: the
radius of the disk; tdisk: the thickness of the disk.

We derive sufficient conditions to constrain each part of the
object: the cylinder and the disk, respectively. The cylinder
part cannot escape from the gap between both fingertips
when its distance, dL̄+1(θ̄)

(
= ‖p2,L̄+1(θ̄) − p1,L̄+1(θ̄)‖

)
, is less

than the diameter of the cylinder:

dL̄+1(θ̄) < dwaist. (2)

The disk part cannot escape from the gap between both
fingertips when dL̄+1(θ̄) is less than the thickness of the disk:

dL̄+1(θ̄) < tdisk. (3)

In addition, the disk cannot escape between finger bodies
when every distance between joints or the fingertips is less
than the diameter of the disk:

di jik(θ̄) < 2rdisk (k � j) (4)
di j(i+1)k(θ̄) < 2rdisk, (5)

(i = 1, . . . ,N) (j = 1, . . . , L̄) (k = 1, . . . , L̄ + 1)

Fig. 6. Hopf link
Fig. 7. Hopf link is not constructed

where di jik denotes the distance between the j-th joint of the
i-th finger and the k-th joint of the i-th finger. The conditions
to constrain the disk have been derived in [4].

Consequently, a series of cage-formed conditions for cag-
ing a dumbbell-like object is that (2), (3), (4) and (5) are
satisfied.

E. In-cage Conditions

We derive in-cage conditions, which ensure that a target
object is present in the region caged by a robot hand. Each
series of in-cage conditions about three types of caging are
derived.

1) Envelope-type Caging: An object is present in the re-
gion caged by a robot hand in cases of envelope-type caging
when the center of the object is present inside a polyhedron
whose vertices are joints and fingertips of the hand. Thus,
extensively-used point-in-polyhedron tests can be utilize to
examine whether the sufficient conditions are satisfied or not.
Note that the polyhedron can be always formed because the
robot hand is assumed to be a symmetrical hand (Sec. II-C).

2) Ring-type Caging: A ring-like object is present in the
region caged by a robot hand in cases of ring-type caging
when a hopf link (Fig. 6) is constructed by two closed curves:
one goes through inside the object, and another is composed
of a curve inside the hand and a line segment connecting
both fingertips.

We assume that a closed curve inside an object is on a
plane, and the closed region can be represented by Sobj.
When a hopf link is constructed, a robot hand or a line
segment connecting both fingertips passes through Sobj odd
times. If they pass through even times, a hopf link cannot
be constructed such as Fig. 7.

Let us consider a case of caging a torus whose Sobj is a
circle with robj radius. In the case, a closed curve of a robot
hand goes through Sobj when the intersection of the closed
curve and a plane including Sobj is within robj from the center
of Sobj.

3) Waist-type Caging: A dumbbell-like object is present
in the region caged by a robot hand in cases of waist-type
caging when a cylinder part of the object passes through
a polygon whose vertices are joints and fingertips of the
hand. The condition is satisfied when the center line of the
cylinder goes through the polygon, and the distance between
the intersection and the center of the cylinder is less than
lwaist/2.

III. Motion Planning of Caging with a Robotic Arm/Hand
In this section, we show an algorithm for motion planning

of 3D multifingered caging by a robotic arm/hand system.

The algorithm is based on RRT (Rapidly exploring Random
Trees) [5], which is a path planning method using random
sampling. In the algorithm, it continue to connect randomly-
sampled configuration points one after another until a goal
configuration that satisfies the sufficient conditions for caging
is found in many solutions.

A robotic arm (a manipulator) has Lman joints, and a vector
of joint variables of the arm, Θ, can be expressed as follows:

Θ := [Θ1, . . . ,ΘLman]T , ∈ �Lman , (6)

where Θi denotes the joint variable of the i-th joint. With
(1) and (6), we define a vector of robot configuration, z, as
follows:

z := [θ̄T
,ΘT]T ∈ �L̄+Lman . (7)

The robot configurations in our caging problems have
relatively high degrees of freedom (DOF). In addition, there
are multiple goal configurations because of the sufficient
conditions described as some inequalities with the joint
variables. RRT, which we adopt to planning, is specially
designed to handle nonholonomic constraints and high DOF.

A. Motion Planning Based on RRT

1) Procedure: Our planning procedure is almost based on
the original RRT [5] and described as follows:

Step 1. Set an initial configuration: zini as a seed of a
configuration path branches.

Step 2. Generate a random configuration, zrand.
Step 3. Find the nearest configuration, znear in the current
configuration path branches.

Step 4. Generate a candidate of new configuration, zcand,
which is located between zrand and znear.

Step 5. Examine whether the robot collides with the target
object and any obstacles at zcand.

Step 6. When no collisions are detected, the candidate
configuration becomes a new configuration, znew.

Step 7. Generate a next candidate of new configuration
between zrand and znew (Expand the branch).

Step 8. Repeat from Step 5 to Step 7 until any collisions
are detected in Step 5, or until above repetition is done
predetermined finite times, nrep.

Step 9. Repeat from Step 2 to Step 8 until znew satisfies
both cage-formed conditions and in-cage conditions.
In Step 3, in order to determine the nearest configuration

in the current path branches from a randomly-sampled con-
figuration, zrand, we calculate a norm between a configuration
in the branches, z and zrand, dcfg defined with the following
equation:

dcfg(z, zrand) :=
L̄∑

j=1

⎛⎜⎜⎜⎜⎜⎝
(θ̄ j − θ̄rand)2

θ̇2max, j

⎞⎟⎟⎟⎟⎟⎠+
Lman∑

j=1

⎛⎜⎜⎜⎜⎜⎝
(Θ j − Θrand)2

Θ̇2
max, j

⎞⎟⎟⎟⎟⎟⎠ , (8)

where, θ̇max, j and Θ̇max, j is maximum joint velocity of j-
th joint of the finger and the manipulator, respectively. This
normalization depends on the potential of each actuators and
the norm, dcfg(z, zrand), means the square sum of the time
to move from z to zrand with each maximum joint velocity.

When a configuration in the current branches, z, gives the
minimum dcfg, the z becomes znear.

In Step 4, a candidate configuration of the branches, zcand,
is arranged between zrand and znear with Linear Interpolation
Method as follows:

zcand := znear + abr
zrand − znear

‖zrand − znear‖ , (9)

where abr is an arbitrary positive constant number that
determines the length of expanded branch.

In Step 5, we use PQP [13] to examine whether the
robot has collision with the object and any obstacles or not.
Because of difficulty from computation cost, we just examine
a collision test about zcand.

If no collision are detected, the candidate configuration,
zcand, can be added as a new configuration in the path
branches, znew, in Step 6.

To expand the branch longer, we set a next candidate
configuration of the path branches, zcand, that is located
between zrand and znew, and process the procedure from
Step 5 to Step 7. The extension of a branch may continue
until any collisions are detected, or the number of repetition
times reaches a predetermined number, nrep.

When we find a goal configuration that satisfies sufficient
conditions of caging, we can obtain a path of the robot
motion for caging.

2) Biased Sampling with solving Inverse Kinematics:
A method of random sampling is useful for path planning
in a complex environment and high-dimensional configu-
ration space, particularly cases of difficulty finding a goal
configuration. It requires, however, large computational cost
to search wide area in configuration space, which includes
obviously-distant points from a goal configuration. Thus,
we adopt a method of biased sampling to our planner.
The objective of biased sampling is to move a robot hand
toward a target object more efficiently, and to reduce wasteful
sampling of configuration.

Our biased sampling is based on solving inverse kine-
matics (IK) of manipulator. A standard IK problems are
solved with a determined posture, but in caging, a particular
posture is not set because of multiple solutions in sufficient
conditions of caging. Then, we give a desired position of the
tool center point of the manipulator that is enough close to a
target object to capture it, and give a desired orientation by
using an algorithm to generate uniformly-distributed random
unit quaternions is presented in [14].

Once we obtain a set of joint variables of the arm solving
IK, the joint variables are utilized instead of a randomly-
sampled configuration, zrand, except the wrist rolling joint of
the arm, ΘL̄man

. Note that sampling about joint variables of
the robot finger and ΘL̄man

are always given by using random
sampling.

IV. Object Recognition using AR PictureMarkers

To plan a robot path for caging a target object, the
specifications of the object: the shape, the size, the position
and orientation, are required. We propose a method for object

Fig. 8. AR picture mark-
ers on the objects

...:

,,:

:

001:

w
m

21

T

ddwsize

ringname

ID

2d1d

w

w
m
Τ

database

ID Matching

Fig. 9. Object properties

recognition using AR picture markers, and ARToolKitPlus
[11], [12].

An AR picture marker, which is often used for Augmented
Reality (AR), is described as a dotted pattern with square
shape, and has 4096 patterns. We can embed a ID number
in it to identify each object.

ARToolKitPlus is a successor to the popular ARToolKit
[15], which is a software library for building AR applications
including pose tracking libraries. ARToolKitPlus library has
two valuable functions: recognizing AR markers and mea-
suring the posture of the marker.

Our proposed procedure of object recognition with AR
markers is as following steps.

Step 1. Recognize the AR marker attached to the target
object (Fig. 8), and read the embedded ID number. At the
same time, measure the posture of the marker.

Step 2. Load the the object properties from the database
using the ID number (Fig. 9). They include the attachment
location of the marker on the object, the shape and the
size of the object and the objective pattern of caging. The
posture of the object can be easily calculated.

Using AR markers has some advantages in object recogni-
tion. A robot does not have to measure the shape specification
with a camera because they can be loaded from the database.
Moreover, measuring the posture of the AR marker with
ARToolKitPlus is easier than that of the object directly with a
camera. These advantages make our proposed method useful
in disordered scenes where objects tend to be hidden by any
obstacles.

A. Object properties on the Database

Linking the ID numbers with each object listed on the
database, we can easily recognize the object (Fig. 9). The
database has the properties of each object: the attachment
location of the marker on the object, the shape and the size
of the object. Then the robot can recognize the details of the
object, just reading the AR marker attached to the object

The object properties includes also patterns of objective
caging for each object, Thus we can determine a particular
pattern of caging for a target object from the database to plan
a path of robot motion. Each pattern, which is classified in
Sec. II-A, is with each series of sufficient conditions derived
in Sec. II-B and [4].

（a） （b） （c）

（d） （e） （f）

Fig. 10. Position measurement using ARToolKitPlus

TABLE I
Estimated errors in position measurement

(a) (b) (c) (d) (e) (f)
Marker x 400 400 400 200 200 200
location y −200 0 200 −200 0 200
[mm] z 50 50 50 50 50 50

Estimated x 4 1 5 5 5 5
errors y 2 3 2 1 1 5
[mm] z 1 2 1 1 1 1

B. Posture Measurement

We can measure the relative posture between a camera
and a marker attached on the target object with a particular
function of ARToolKitPlus [11]. After that, the relative
posture between the object and the robot can be calculated
with homogeneous transformation matrices immediately. It
is because the location of the marker on the object can be
known on the database.

We tested the accuracy of our proposed position mea-
surement with AR markers and ARToolKitPlus. The mark-
ers located in several points in the robot coordinate are
30 × 30 mm, and face to the camera almost oppositely
(Fig. 10, Table I). The camera is FL2G-50S5M (Flea2),
which has 2448 × 2048 pixels with a lens: JHF8M-5MP. In
our experiments, estimated errors in position measurement
using ARToolKitPlus are within 5 mm (Table I).

V. Caging Experiments
In this section, we show some experimental results of our

caging procedure among object recognition, planning and
execution. The intended patterns of caging in this paper are
only ring-type and waist-type, which can be achieved by a
two-fingered hand. It is because some collisions between the
fingers and obstacles such as a floor often occur in cases of
envelope-type caging, and our proposed method cannot deal
with such problems.

A. Experimental Settings

Our robotic arm/hand system to perform caging experi-
ments consists of a manipulator that has six DOF and a robot
hand that comprises two fingers with two joints each. The
joints of both the arm and the hand are position-controlled. In
addition, there are no force sensors and/or tactile sensors to
execute caging constraint. The camera as same as in Sec. IV-
B is utilized to recognize the target object using the AR
picture marker attached to the object.

Fig. 11. A planning result of caging
the cylinder

Fig. 12. Caging the cylinder by the
arm/hand system

There are four target objects: a cylinder (with a hollow), a
ring, a mug-like object (every above case is ring-type caging)
and a dumbbell (waist-type caging). The cylinder is with
inner radius: 38 mm, outer radius: 50 mm and height: 50
mm. The ring is a torus with the radius from the center of
the hole to the center of the ring: 124 mm; the diameter of
the ring: 16 mm. The mug-like object (a cylinder solid with
a handle) is with the radius from the center of the circular
handle to the center of the handle body: 124 mm; the radius
of the handle: 8 mm; the diameter of the cylinder: 100 mm
and the height of the cylinder: 150 mm. The dumbbell is
with rdisk = 45 [mm], tdisk = 1 [mm], dwaist = 26 [mm] and
rwaist = 222 [mm]. We test two different situations for each
object, where the position and orientation of the object are
changed.

Motion planning is performed on a Linux PC whose CPU
is Intel Core i7 running at 2.8 GHz.

B. Planning and Execution Results

In each scene, the robot can recognize the AR picture
marker attached to the object and access to the database to
load the object properties. Additionally, the posture of the
marker can be measured using the libraries of ARToolKit-
Plus, and then, that of the object can be easily calculated. The
planner can produce each path of robot motion for caging
the object with each series of sufficient conditions (Fig. 11).
The average computation time for each planning in ten trials
are shown in Table II.

The planned motions for caging are successfully executed
by the robotic arm/hand system (Fig. 12, 13, 14). In the
planned motions, the robot does not collide with the object,
however, in the experiments, the robot sometimes touched the
object because of some errors of position estimation (Sec. IV-
B). In some scenes, caging the object could be accomplished
even when the robot touched the object before caging. In
other cases, the execution failed because the object touched
by the robot moved from the correct position.

To avoid the practical collision, we test collision checks
with a certain amount of margins, that is, we use a little
larger model of the object to plan. The planner can also
produce each robot motion for caging, in which the robot
hand locates farther from the object than in previous cases
without margins. Furthermore, the actual robot can execute
the new planned caging motion without collision with the
object (Fig. 15). The average computation time for each

Fig. 13. Experiment: caging the ring Fig. 14. Experiment: Caging the
mug-like object

(a) (b)

(c) (d)

Fig. 15. Planned motion for caging the dumbbell (with object margins)

TABLE II
Average planning time [s] (ten trials each)

Cylinder Ring Mug Dumbbell

(w/o margins) Position 1 10 4 12 160
Position 2 41 3 45 21

(w/ margins) Position 1 330 32 77 456
Position 2 144 4 82 245

planning in ten trials are also shown in Table II. Every
computation time in the case with considering margins is
larger than those without it. It is because that enlarging the
model of the robot hand causes decreasing the space where
the hand can reach, and required path becomes less found.

C. Discussion

Our current planner has not been applied to envelope-
type caging (Sec. II-E.1) because it cannot deal with the
cases that the hand may contact with the object or obstacles.
It is difficult to execute envelope-type caging without any
collisions, for example, caging a sphere on the floor. If we
put the sphere on the pedestal, we can applied our planner
to the caging, although it is a little arbitrary. In the case
of caging the ring (Fig. 13), we use a pedestal to facilitate
approaching to the hollow part of the ring.

VI. Conclusions and FutureWorks
In this paper, we improved a motion planner for 3D mul-

tifingered caging with the actual robotic arm/hand system.
The parts of sufficient conditions for three caging patterns
including four objects were derived. An object recognition
using AR picture marker is presented to provide the set of
properties of the object, which is linked to the marker and
loaded from a database. The posture of the object can be
calculated with measuring that of the marker. Planning of
robot motions with the object recognition for four objects
and execution of the planned motions with the arm/hand
system were successfully performed. We also examined the
advantages of the margins considered in planning to avoid
collisions in practical execution caused by the errors of
posture estimation.

In future works, large planning time should be reduced.
Additionally, more various objects and scenes should be
investigated to adopt 3D multifingered caging to daily tasks.

VII. Acknowledgments
This work was partly supported by Japanese Ministry of

Education, Culture, Sports, Science and Technology, Grant-
in-Aid for Young Scientists (B), No. 22700200.

References
[1] A. Bicchi and V. Kumar, “Robotic grasping and contact: A review,” in

Proc. of IEEE Int. Conf. on Robotics and Automation, San Francisco,
CA, U.S.A., April 2000, pp. 348–353.

[2] E. Rimon and A. Blake, “Caging planar bodies by one-parameter two-
fingered gripping systems,” Int. J. of Robotics Research, vol. 18, no. 3,
pp. 299–318, March 1999.

[3] R. Diankov, S. S. Srinivasa, D. Ferguson, and J. Kuffner, “Manipula-
tion planning with caging grasps,” in Proc. of IEEE/RAS Int. Conf. on
Humanoid Robots, Daejeon, Korea, December 2008, pp. 285–292.

[4] S. Makita and Y. Maeda, “3d multifingered caging: Basic formulation
and planning,” in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots
and System, Nice, France, 2008, pp. 2697–2702.

[5] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Computer Science Dept., Iowa State University, Tech. Rep.
TR98-11, 1998.

[6] P. Pipattanasomporn and A. Sudsang, “Two-finger caging of concave
polygon,” in Proc. of IEEE Int. Conf. on Robotics and Automation,
Orlando, FL, U.S.A., May 2006, pp. 2137–2142.

[7] J. Erickson, S. Thite, F. Rothganger, and J. Ponce, “Capturing a convex
object with three discs,” IEEE Trans. on Robotics, vol. 23, no. 6, pp.
1133–1140, December 2007.

[8] M. Vahedi and A. F. van der Stappen, “Caging polygons with two
and three fingers,” Int. J. of Robotics Research, vol. 27, no. 11-12, pp.
1308–1324, November/December 2008.

[9] P. Pipattanasomporn, P. Vongmasa, and A. Sudsang, “Caging rigid
polytopes via finger dispersion control,” in Proc. of IEEE Int. Conf.
on Robotics and Automation, Pasadena, CA, U.S.A., May 2008, pp.
1181–1186.

[10] Z. Wang and V. Kumar, “Object closure and manipulation by multiple
cooperating mobile robots,” in Proc. of IEEE Int. Conf. on Robotics
and Automation, Washington D.C., U.S.A., May 2002, pp. 394–399.

[11] D. Schmalstieg, “ARToolKitPlus,” http://handheldar.icg.tugraz.at/
artoolkitplus.php.

[12] D. Wagner and D. Schmalstieg, “Artoolkitplus for pose tracking on
mobile devices,” in Computer Vision Winter Workshop, 2007.

[13] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, “Fast proximity
queries with swept sphere volumes,” Computer Science Dept., Univer-
sity of North Carolina, Chapel Hill, Tech. Rep. TR99-018, 1999.

[14] J. J. Kuffner, “Effective sampling and distance metrics for 3d rigid
body path planning,” in Proc. of IEEE Int. Conf. on Robotics and
Automation, New Orleans, LA, U.S.A., April 2004, pp. 3993–3998.

[15] P. R. Lamb, “ARToolKit,” http://www.hitl.washington.edu/artoolkit/
download/.

