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Abstract— Graspless manipulation is easily interfered by ex-
ternal disturbances because the manipulated object is not com-
pletely held by a robot hand and supported by an environment
such as a floor. Thus it is important to ensure the manipulation
is executed robustly against some disturbances. In our works,
we have proposed a rigid-body-based analysis of indeterminate
contact forces for quasi-static graspless manipulation, and also
joint torque optimization for robotic hands. The joint torques
of the robot is determined in consideration of some robustness
of manipulation against disturbances, which include changes
or estimation errors of friction. In the analysis of contact
forces in quasi-statics, we consider a kinematic constraint on
static friction to exclude infeasible sets of frictional force, with
considering treatment of kinetic friction. We also propose new
objective functions for computing optimal joint torques in both
static and quasi-static graspless manipulation. Some numerical
samples of both applications are shown to verify our proposed
methods.

I. Introduction

In graspless manipulation [1] (or nonprehensile manipu-
lation [2]) such as pushing, pivoting and tumbling (Fig. 1),
the manipulated object is not only held by a robot hand, but
also supported by the environment. These manipulations have
some advantages over typical grasping and pick-and-place.
The robot has not support all the weight of the object while it
is manipulating, and can deal with heavier objects than what
the robot can pick up. Thus required joint torque of robots
can be decreased in graspless manipulation over conventional
grasping, for example, comparing pick-and-place and sliding
manipulation in Fig. 1.

We have studied the analysis of contact forces in grasp-
less manipulation for robustness measure and joint torque
optimization [3], [4]. In the analysis, a constraint on static
friction is considered, which is formulated by Omata et
al. for power grasps [5], [6]. The constraint is based on
the kinematics of contact points under rigid-body mecha-
nism. We modified the formulation to apply it to graspless
manipulation with consideration of kinetic friction caused
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Fig. 1. Examples of graspless manipulation

by the manipulated object’s motion at some contact points
(or area). The consideration is, however, not sufficient and
causes some unreasonable solutions that contact forces in
quasi-static manipulation reach infinity. Thus we rectify the
consideration of kinetic friction to apply the constraint on
static friction to quasi-statics to calculate contact forces
in graspless manipulation in this paper. Also we derive
algorithms for optimal joint torques in quasi-static graspless
manipulation with the new analysis.

Joint torques in static grasping has been studied in many
researches. In enveloping grasping [7] or power grasps [8],
the contact forces on multiple contact points are inde-
terminate under rigid-body mechanics, and they can vary
depending on the mechanism of the robot hand even with
constant joint torques. Thus the robot hand can keep some
robustness against external disturbances without changing
its joint torques [9]. Yong et al. defined optimal power
grasps as grasps that can resist against external disturbances
and minimize the maximum joint torque, and computed
them [10] Omata et al. proposed two objective functions:
maximizing joint torques to resist against as large changes
of disturbances as possible; minimizing joint torques that
equilibrates contact forces with given disturbances as [10].
These objective functions are based on margins between
every friction cone and contact force within it. The margin is,
however, directly applied to graspless manipulation because
the margin between the friction cone and kinetic friction
force is always zero. Thus we propose a new objective
function to compute optimal joint torques in graspless ma-
nipulation in this paper.

II. MechanicalModel

A. Assumptions

We make the following assumptions for graspless manip-
ulation by multiple robot fingers as [3].

• All the manipulated objects, the robot fingers and the
environments are rigid.

• All the contacts including surface contacts can be rep-
resented by finite point contacts.

• Coulomb friction among the object, the robot fingers
and the environments has occur at every contact points.

• Every friction cone at a contact point is approximated
by a polyhedral convex cone [11].

• Each finger is in one of the following control modes:
position-control, force-control and hybrid force/position
control.

1) The servo stiffness of position-control can reach
infinity. Thus each robot finger in position-control



mode can be regarded as an environment and apply
arbitrary force within its friction cone.

2) Each robot finger in force control mode can apply
contact force determined by the corresponding
joint torques and a Jacobian matrix.

3) Each robot finger in hybrid force/position control
can be regarded as a prismatic joint whose fin-
gertip has contact with the object, and apply a
commanded normal force actively and an arbitrary
tangential force within its friction cone passively.

In addition, we define some notations as follows:

• N : the number of fingers,
• Mi : the number of contact points on the i-th finger,
• M :=

∑N
i=1 Mi : the total of contact points,

• Li : the number of joints of the i-th finger,
• L :=

∑N
i=1 Li : the total of joints,

• Pik : the k-th contact point on the i-th finger,
• Pl : the l-th contact point where l =

∑i−1
n=1 Ln+ k,

• pl ∈ R3 : the position vector of Pl.

As a matter of formulation, all the contact points on the
environment and the palm of the hand are included in those
on the 1st finger.

B. Contact forces

When the manipulated object is moving quasi-statically
such as in pushing, there are some sliding contact points
corresponding to the object’s motion. To distinguish contact
points in actual sliding, we define the following matrix:

D := diag(d1I3, . . . ,dM I3) ∈ R3M×3M (1)

dl :=

⎧⎪⎪⎨⎪⎪⎩
1 when the l-th contact point is actually sliding,

0 otherwise.
(2)

At a contact point in actual sliding (then dl = 1), kinetic
frictional force is applied in the opposite direction to its
sliding direction. On the other hand, contact forces including
static frictional forces at stationary contact points can be
applied within each friction cone. The contact force f l ∈ R3

applied to the object at Pl can be represented as:

f l = Cl kl, (3)

where

Cl :=

⎧⎪⎪⎨⎪⎪⎩
[cl1] ∈ R3×rl , rl = 1 when dl = 1,[
cl1, . . . , clrl

]
∈ R3×rl when dl = 0.

(4)

clm ∈ R3 is a unit edge vector of a polyhedral con-
vex cone that approximates the friction cone at Pl; rl

is the number of edges of a polyhedral convex cone;

kl :=
[
kl1, . . . ,klrl

]T ∈ Rrl , klm ≥ 0 (m = 1, . . . ,rl).
The relationship between the contact force applied on Pik:

f ik and joint torques of the i-th finger can be expressed by

JT
ik f ik = τi, (5)

τi :=
[
τi1, . . . , τiLi

]
∈ RLi , (6)

where J ik ∈ R3×Li denotes the Jacobian matrix corresponding
to the k-th contact point of the i-th finger; τi j ∈ R1 denotes
the joint torque of the j-th joint of the the i-th finger.

We determine Jacobian matrices and joint torques of each
finger as follows.

fingers in position-controlled
Since a position-controlled finger is equivalent
to the environment, Li = 0; J i = [ ] ∈ R3×0; and
τi = [ ] ∈ R0. As a matter of formulation, J i and
τi is empty matrices [12].

fingers in force-controlled
Jacobian matrices and joint torques of force-
controlled fingers are determined based on the
fingers configuration.

fingers in hybrid control
Since a finger in hybrid force/position
control is equivalent to a prismatic joint,
Mi = 1; Li = 1; J i = J i1 = ni1; τi = τi1 = fcom,i1,
where, nik ∈ R3 denotes a unit normal vector toward
the object at Pik; fcom,i1 (≥ 0) is a commanded
force of the i-th finger along ni1.

Here we define the following matrices:

W :=

[
I3 . . . I3,

p1× I3 . . . pM × I3

]
∈ R6×3M , (7)

C := diag(C1, . . . ,CM) ∈ R3M×r, (8)

k :=
[
kT

1 , . . . , k
T
M

]T ∈ Rr, (9)

T := diag(T1, . . . ,TM) ∈ R3M×2M , (10)

Tl := [tl1 tl2] ∈ R3×2, (11)

J := diag(J1, . . . , JN) ∈ R3M×L, (12)

J i :=
[
JT

i1, . . . , JT
iMi

]T ∈ R3Mi×Li , (13)

f :=
[
fT

1 , . . . , f
T
M

]T ∈ R3M , (14)

τ :=
[
τT

1 , . . . ,τ
T
N

]
∈ RL, (15)

where In is an n×n identity matrix; pl× I3 ∈ R3×3 denotes a
skew-symmetric matrix defined such that (pl× I3)x ≡ pl× x;
tl1, tl2 ∈R3 are unit tangential vectors at Pl defined such that
tT
l1 tl2 = 0; diag(. . . ) represents a block diagonal matrix.

All the contact forces can be expressed from (3) as:

f = Ck. (16)

All the frictional components of contact forces are:

TT f = TT Ck ∈ R2M . (17)

The relationship between the contact forces and the joint
torques, (5) can be unified as follows:

hJT f = JT Ck = τ. (18)

The equilibrium equation of the object in quasi-static
manipulation can be expressed as follows:

W f =WCk = −wext, (19)

where wext ∈ R6 is an external force and moment applied to
the object such as gravity.



III. Constraint on Static Friction

A. Kinematic Constraint of Contact Points

Static friction is, in physical phenomena, caused by shear
strain on microscopic partially-adhered contact points [13].
In general, static friction in rigid-body model is expressed
with normal component of reaction on the contact points and
Coulomb’s friction law such as (17). Although modeling of
static friction is variously studied, not only with rigid-body
and Coulomb’s law but also with elastic contacts [14], [15],
[16], rigid-body model is often used in the viewpoint of a
facility for analysis with less parameters.

We note that static frictional forces can be applied only in
the opposite direction of microscopic tangential movements
of contact points, which correspond to the shear strain men-
tioned above. Although the movements do not actually occur
in static analysis, the movements has to satisfy the constraint
on kinematics of the rigid-body object [5], [6]. Omata et al.
study static indeterminate contact forces in power grasps and
formulate the constraint of tangential movements of contact
points. We modified them from the original formulations to
apply the constraint to quasi-static graspless manipulation
[3], and also applied the modified one to static grasping
problems [17]. Our modified constraint on static friction in
quasi-static problems does not work well, however, in some
cases in which actual sliding and kinetic friction occur. Thus
we modify the constraint again to apply it to quasi-static
manipulation appropriately in this paper.

B. Introduction of Virtual Sliding

Let us suppose that a object is on the floor and the surface
contact can be approximated by finite contact points. As
mentioned above, static friction is actually caused by shear
strain of adhered contact points, and it can be expressed as
Coulomb’s friction in rigid-body model as (17). Because
static friction in physical phenomena is applied only to
the opposite direction of the shear strain, the direction of
the Coulomb’s friction is also constrained. Let us suppose
“virtual” infinitesimal tangential displacements of contact
points to represent the opposite direction of Coulomb’s
friction in rigid-body model. In other words, the virtual
tangential displacements in rigid-body model correspond to
the shear strain of the contact points, which causes static
friction in physical phenomena. We call the displacement
virtual sliding. Note that virtual sliding, which causes static
frictional force, must be distinguished from actual sliding,
which causes kinetic frictional force.

We define a selection matrix [3], [17]:

B := diag(b1I3, . . . ,bM I3) ∈ R3M×3M (20)

bl :=

⎧⎪⎪⎨⎪⎪⎩
1 (when a virtual sliding exists at Pl,)

0 (otherwise.)
(21)

At every contact point selected by B, only virtual sliding is
led by a virtual motion of the object, and then it must satisfy
the following constraint [3]:

B
[
WT J

] [ V
−θ̇
]
= TẎ, (22)

where

Ẏ :=
[
ẎT

1 , . . . , Ẏ
T
M

]T ∈ R2M , (23)

Ẏl :=
[
Ẏl1, Ẏl2

]T ∈ R2, (24)

V := [vT
0 ,ω

T
0 ]T ∈ R6, (25)

θ̇ :=
[
θ̇11, θ̇12, . . . , θ̇NLN

]T ∈ RL; (26)

Ẏl1, Ẏl2 are virtual sliding velocity toward basis vectors:tl1, tl2

at a contact point, Pl, respectively; v0 ∈ R3 is the virtual
velocity of the object; ω0 ∈R3 is the virtual angular velocity
of the object; θ̇i j is the virtual joint velocity of the j-th
joint of the i-th finger. Accordingly only virtual sliding that
satisfies (22) is feasible. In other words, Ẏ is feasible when a
series of V, θ̇ and B that satisfies (22) is present. Since static
friction can occur only in the opposite direction to feasible
Ẏ, it is constrained by (22).

C. Treatment of Actual Sliding

Let us apply the kinematic constraint on static friction
expressed as (22) to quasi-static graspless manipulation. In
graspless manipulation such as pushing, the manipulated
object moves quasi-statically, and there are some contact
points in actual sliding, which causes kinetic friction force.
Thus it is important to apply (22) appropriately depending
on each sliding mode of contact point. How is the constraint
applied to contact points in actual sliding?

In [3], (22) is not applied to the contact points in actual
sliding, that is, bl = 0, when dl = 1. The ignorance brings,
however, unreasonable results in some cases. Let us consider
a pushing operation such as Fig. 2, where the contact points
between the object and the floor are in actual sliding, and
kinetic frictional force is present in the direction of +x. If
(22) is applied to only the contact points between the robot
and object, it will allows virtual slidings in the same direction
at the contact points, according to a virtual motion of the
both rigid bodies (Fig. 2 (a)). Thus, virtual slidings in the
direction of +z are also allowed to occur and cause static
frictional forces in the direction of −z (Fig. 2 (b)). In this
case, the resultant force of the static friction and the kinetic
friction may reach an infinity value. If we replace the actual
sliding with virtual sliding in the case, the combination of
virtual sliding will not satisfy (22). Unreasonable resultant
frictional forces like this are reported in [17], where both are
static friction.

To avoid the unreasonable results, we assume that virtual
sliding occurs at every contact point in actual sliding, that is,
bl = 1, when dl = 1, to apply the kinematic constraint on static
friction expressed as (22) to the contact points. It means the
infinitesimal tangential displacements on the contact points
in actual sliding always occur because the kinetic friction
that prevent the displacements is applied at same time. Note
that virtual sliding at an actually sliding contact point does
not cause static friction. Consequently, existence of virtual
sliding on the contact points means that the infinitesimal
tangential displacement at the contact point is present, and
then static or kinetic friction occurs there.
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When virtual slidings at actually sliding contact points are
considered, invalid combinations of virtual slidings such as
Fig. 3 (b) is excluded by the kinematic constraint of (22).
On the other hand, combinations such as Fig. 3 (a) satisfies
(22).

IV. Analysis of Quasi-static Contact Forces

As mentioned above, frictional forces cannot exist at the
contact points that are not selected by B (and D). The
constraint can be written as:

TT (I3M −B)Ck = 0. (27)

Let us consider the constraint on static friction that static
frictional forces occur to prevent virtual slidings that satisfies
(22). As [3], [17], we define the following matrix to represent
the combination of the signs of virtual sliding velocity, Ẏ:

S := diag(s11, s12, s21, s22, . . . , sM1, sM2) ∈ R2M×2M , (28)

slm :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
+1 (bl = 1 and Ẏlm > 0)

−1 (bl = 1 and Ẏlm < 0)

0 (bl = 0).

(29)

Thus,
Ẏ = Sq. (30)

where q
(
∈ R2M

)
> 0. When S and q satisfy (22) and (30),

the constraint on static friction can be expressed as:

STT (B− D)Ck ≤ 0 (31)

From (18), (19), (27) and (31), we can calculate a set
of possible contact forces for a subcase specified by S by
solving the following equations and inequalities:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WCk = −wext

JT Ck = τ

TT (I3M −B)Ck = 0
STT (B− D)Ck ≤ 0
k ≥ 0,

(32)

Consequently, we can consider various patterns of the
directions of reaction forces caused by various external
wrenches, wext, by changing S, which satisfies (22) and (30).

V. Joint Torque Optimization

Algorithms of joint torque optimization for power grasps
are studied based on maximizing the margin between a fric-
tion cone and contact force in it [18]. The margin contributes
the robustness against changes of disturbances because a
contact breaks when the corresponding margin becomes zero.
There are two algorithms: Algorithm 1 is maximizing joint
torques to resist against as large changes of disturbances
as possible; Algorithm 2 is minimizing joint torques that
equilibrates contact forces with given disturbances as [10].

On the fact that indeterminate contact forces in manip-
ulation are bounded even when the constraint on static
friction is not considered, the minimum margin between the
vertex of the range of the indeterminate contact forces and
its corresponding friction cone is maximized [18]. On the
other hand, our proposed analysis of indeterminate contact
forces with the modified constraint on static friction shows
unboundedness of the contact forces in some cases [17],
and then, the minimum margin is always zero. Thus, our
proposed optimization of joint torques maximizes the margin
between each friction cone and contact force [4]. Note that
the proposed algorithms expect the best selection in the
indeterminate contact forces, and it is not always applied.

We improve our previous algorithms [4] to apply them to
quasi-static graspless manipulation with the proposed analy-
sis in this paper. Our previous method can be applied only
to static non-grasping scenes because of the overestimation
of static friction mentioned in Sec. III-C.

We define e (≥ 0) as a margin between a friction cone
and contact force within it (Fig. 4). When a friction cone
is approximated by a polyhedral convex cone (4), e can be
considered as the following two:
• a margin between contact force and each side face,
• a margin between contact force and the base face,

and it must satisfy:

e+ nT
l Cl kl ≤ fn,max, (33)

e ≤ nT
l Cl kl, (34)

e− hT
lmCl kl ≤ 0, (35)
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Fig. 4. Margins between a friction cone and contact force

where nl ∈ R3 is a unit normal vector toward inside of the
object at Pl; hlm ∈ R3 is a unit normal vector toward outside
of the m-th side face of the polyhedral cone at Pl; fn,max

denotes the height of friction cones, that is, the limitation
of the normal component of contact forces. Here we rewrite
(33), (34) and (35) as:

e1M ≤ NT Ck ≤ fn,max1M − e1M , (36)

e1rM −HT Ck ≤ 0, (37)

where,

Hl :=
[
hl1 . . . hlrl

]
∈ R3×rl , (38)

H := diag(H1, . . . ,HM) ∈ R3M×rM , (39)

N := diag(n1, . . . ,nM) ∈ R3M×M , (40)

1n := [1,1, . . . ,1] ∈ Rn. (41)

We cannot define margins at the contact points in actual
sliding (dl = 1) because each contact force there always
occurs along the edge of polyhedral friction cone. Thus, the
contact points are excluded as follows:

(
IrM − D∗

) (
e1rM −HT Ck

)
≤ 0, (42)

D∗ := diag
(
d1Ir1 , . . . ,dM IrM

)
∈ RrM×rM . (43)

With the modified constraint on static friction (Sec. III),
Algorithm 1 can be written as:

maxe

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WCk = −wext,

JT Ck = τ,

TT (I3M −B)Ck = 0,
STT (B− D)Ck ≤ 0,
e1M ≤ NT Ck ≤ fn,max1M − e1M ,

(IrM − D∗)
(
e1rM −HT Ck

)
≤ 0,

k ≥ 0,
τmin ≤ τ ≤ τmax,

(44)

where τmin and τmax denote the minimum and maximum
bounds of joint torques respectively. Algorithm 1 tends to
calculate excessive joint torques for robust contacts against
as large changes of disturbances as possible.

When we require a margin, e0, Algorithm 2 can be written
as:

minτmax

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WCk = −wext,

JT Ck = τ,

TT (I3M −B)Ck = 0,
STT (B− D)Ck ≤ 0,
e01M ≤ NT Ck ≤ fn,max1M − e01M ,

(IrM − D∗)
(
e01rM −HT Ck

)
≤ 0,

k ≥ 0,
−τmax1L ≤ τ ≤ −τmax1L.

(45)

VI. Numerical Examples

We assume that the manipulated object is a polyhedron
whose mass is 1.0 and mass distribution is uniform; the
gravitational acceleration is 9.8; The coefficients of both
static and kinetic friction are equal; each friction cone is
approximated by a regular polyhedral convex cone with 32
edges; The limitation of each joint torque, τl, is −10.0 ≤ τl ≤
10.0; the given robustness in Algorithm 2, e0 = 0.1; the
height of each friction cone, fn,max = 50. The known external
wrench, wext, applies only gravitational force; the origin of
the coordinate is the center of the object. The computation
times in this paper are measured on a Linux PC with Core2
Quad–2.66 GHz.

A. Non-grasp Manipulation

Let us consider the scene where robotic fingers support
a spherical object with the radius of 0.1 on the slope of
45 [deg] (Fig. 5); The parameters for the calculation are as
follows:

p1 =

[
0.0612−0.0707−0.0354

]
, p2 =

[−0.0707
0.0−0.0707

]
, p3 =

[
0.0612−0.0707−0.0354

]

T1 =

[ −0.5 −0.612
0.0 −0.707−0.866 0.354

]
, T2 =

[−0.707 0.0
0.0 −1.0

0.707 0.0

]
,T3 =

[ −0.5 0.612
0.0 −0.707−0.866 −0.354

]

n1 =

[−0.612
0.707
0.354

]
, n2 =

[
0.707
0.0

0.707

]
, n3 =

[−0.612−0.707
0.354

]

J =
[

0.0919 −0.53 −0.106 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0919 −0.53 0.106

]T

We can obtain the following calculation results with Al-
gorithm 1: e = 1.45, τ = [−0.76,−0.76]T . and with Algorithm
2, e0 = 0.1 (constant), τ = [−0.52,−0.52]T The computation
times in the cases are 0.09 and 0.24 CPU seconds respec-
tively. Note that the calculated contact forces are not always
applied because they are the best selection of indeterminate
contact forces estimated with the variable combinations of
B and S.

B. Quasi-static Manipulation

Let us consider the case where a jaw with two robotic
fingers pinches a cuboid with the size of 0.2× 0.2× 0.2 on
the slope with 45 [deg] and slides it along the slope (Fig. 6).
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Fig. 6. Sliding a cuboid with pinching

The parameters for the calculation are as follows:

p1 =

[
0.035−0.1
0.035

]
, p2 =

[
0.0−0.1−0.014

]
, p3 =

[
0.0
0.1−0.014

]
,

p4 =

[−0.014
0.1
0.0

]
, p5 =

[−0.014−0.1
0.0

]
, p6 =

[
0.035
0.1

0.035

]
,

T1 =

[−√2/2 −√2/2
0.0 0.0√
2/2 −√2/2

]
, T2 =

[−√2/2 0.0√
2/2 0.0

0.0 −1.0

]
, T3 =

[−√2/2 0.0√
2/2 0.0

0.0 −1.0

]
,

T4 =

[−√2/2 0.0√
2/2 0.0

0.0 −1.0

]
, T5 =

[−√2/2 0.0√
2/2 0.0

0.0 −1.0

]
, T6 =

[−√2/2
√

2/2
0.0 0.0√
2/2

√
2/2

]
,

n1 =

[
0.0
0.0−1.0

]
, n2 = n3 = n4 = n5 =

[ √
2/2√
2/2

0.0

]
, n6 =

[
0.0
0.0
1.0

]
,

J11 =

[
0.0 0.0−0.1 0.0
0.0 0.0

]
, J21 =

[
0.0 0.0
0.0 −0.1
0.0 0.0

]

First, when the jaw keeps the object in stationary on the
slope, Algorithm 1 calculates the robustness of the object and
the joint torques in this case as: e = 1.65, τ = [−4.83,4.83]T .
Then Algorithm 2 calculates them as: e0 = 0.1 (const.), τ =
[−0.96,0.96]T . The calculation times are 1.2 and 1.4 CPU
seconds respectively.

Next, when the robot fingers slide the object up along
the slope, the values calculated by Algorithm 1 are
e = 2.30, τ = [−4.76,4.76]T , and those by Algorithm 2 are
e0 = 0.1 (const.), τ = [−1.56,1.56]T . The calculation times
are 0.07 and 0.11 CPU seconds respectively.

Third, when the robot fingers slide the object down
along the slope, the values calculated by Algorithm 1 are
e = 3.98, τ = [−4.60,4.60]T , and those by Algorithm 2 are
e0 = 0.1 (const.), τ = [−0.85,0.85]T . The calculation times
are 0.08 and 0.12 CPU seconds respectively.

VII. Conclusions and FutureWorks

In this paper, we modified the analysis of contact forces
in quasi-static graspless manipulation presented in [3], and

improved joint torque optimization for grasp/graspless ma-
nipulation presented in [4]. Overestimation of contact forces
caused by an inappropriate application of the constraint on
static friction was resolved by an appropriate treatment of
contact points where kinetic friction occurs. Additionally,
improved joint torque optimization based on the analysis
can deal with the cases of not only static grasp/graspless
manipulation but also quasi-static graspless manipulation.

As future works, reduction of computational cost should
be investigated as [17]. In addition, the joint torque optimiza-
tion can be applied to planning of graspless manipulation.
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