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Abstract:
Caging is a method to capture an object geometrically by robots. Position-controlled robots can

make the object inescapable from the robot formation. Moreover less number of mobile robots or
a robot hand with low degree of freedom can constrain the object with considering concavity of
the object. In this paper, we propose two types of caging: ring-type and waist-type, which both
can be accomplished by a two-fingered hand. We derive sufficient conditions for caging of the two
types and construct RRT-based motion planner for caging by a robotic arm/hand system. In motion
planning, we find one of final configurations that satisfy the sufficient conditions and produce a path
of robot configuration to the goal. With object recognition using AR picture markers, we can acquire
geometrical information of objects and plan robot motion for caging. We show some experimental
results of planning and execution of planned caging motion for four objects.
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1 Introduction

Robotic manipulation by a multifingered hand has been
studied in a long term (Bicchi and Kumar; 2000; Shimoga;
1996). The basic method of it is grasping, and one of the
simplest hands is a parallel jaw gripper (Smith et al.; 1999;
Yamanobe and Nagata; 2010). A parallel jaw gripper has
generally two fingers with one degree of freedom (DOF)
and pinches an object. In addition, there are also studies
on pinching grasping by higher DOF fingers (Ozawa et al.;
2005) and more fingers (Borst et al.; 2002). Pinching by a
multifingered hand, especially a two-fingered hand (or dual-
finger hand) is one of basic issues of robotic manipulation,
because controlling lower DOF hands as end effectors of
robotic arm (or manipulator) can be comparatively easy. A
common approach for pinching an object by a multifingered

hand is to address force equilibrium of the object and force
control of the fingers.

On the other hand, caging, in which an object is just
surrounded by robots and is geometrically inescapable from
the robot formation, has been studied as a geometrical
confinement and preshaping of the robots for grasping
(Rimon and Blake; 1996). Rimon and Blake studied caging
a concave object by two circle fingertips in a 2D scene
(Rimon and Blake; 1999). This method can be regarded
as pinching an object on the plane by a parallel jaw
gripper. Caging by two or more fingertips approximated by
circles or points in the plane has been variously studied
(Pipattanasomporn and Sudsang; 2006; Erickson et al.;
2007; Vahedi and van der Stappen; 2008; Rodriguez and
Mason; 2008). Caging in a 3D scene, however, has not
been investigated enough. Pipattanasomporn and Sudsang
presented an algorithm to obtain caging sets for a polyhedron
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by two fingers (Pipattanasomporn and Sudsang; 2011). The
algorithm is applied only to caging by point fingers since
practical robot hands were not taken into account. Some 3D
caging by a practical multifingered hand were independently
studied. Makita and Maeda derived sufficient conditions for
caging of some simple objects by an articulated symmetric
hand (Makita and Maeda; 2008). They proposed a method to
produce final configuration of the robot hand for 3D caging,
but approaching to the final configuration was not considered.
Diankov et al. planned caging grasps and manipulation by a
robotic arm/hand system and a humanoid robot, respectively
(Diankov et al.; 2008). In (Diankov et al.; 2008), caging grasp
set, which determines location of the hand for the object, was
obtained by an experimental approach. Maeda et al. proposed
caging-based grasping, in which rigid limbs of robots confine
an object as caging and soft parts around the rigid bodies
grip the object (Maeda et al.; 2012). They derived a sufficient
condition for caging of a sphere with a symmetric hand.

In this paper, we focus on caging by a two-fingered
hand in a 3D scene. We derive sufficient conditions for
caging of two types of objects, and with the conditions,
we plan motions of a robotic arm/hand system for caging.
Geometrical information of objects such as shape, size and
position and orientation is obtained by using AR picture
markers attached to the objects.

In some previous works, motion planning of robots for
caging has been mainly studied on final configuration of
robots that satisfies the conditions for caging (Rimon and
Blake; 1999; Erickson et al.; 2007; Vahedi and van der
Stappen; 2008). Wang and Kumar studied planar caging
manipulation with multiple mobile robots, in which the robots
approach to the object and achieve caging formation (Wang
and Kumar; 2002). Diankov et al. planned caging grasps
and manipulation by an arm/hand robot and a humanoid
robot, with an RRT-based algorithm (Diankov et al.; 2008).
RRT (Rapidly-exploring Random Trees) (Lavalle; 1998) is
a path planning algorithm with using random sampling in a
configuration space.

Caging can be regarded as preshaping motion of grasping
(Rimon and Blake; 1999). Motion planners of graping have
been variously proposed. Goal configuration of robots for
grasping can be determined one of possible candidates
with some kind of objective functions. Miller et al.
developed a grasping planning software “GraspIt!” (Miller
et al.; 2003; Miller and Allen; 2004). They defined set of
grasping strategies for some primitive shapes and tested the
grasping patterns with evaluating grasp quality. Yamanobe
and Nagata proposed grasp planning with a parallel jaw
gripper (Yamanobe and Nagata; 2010). They also used shape
primitives of objects, which have proper basic grasping
configurations.

Our proposed motion planning is similar to the above
methods in point of using shape primitives. Since we do
not have any objective functions to evaluate appropriate
caging configurations, we just obtain one of candidate
configurations that satisfies sufficient conditions for caging.
The sufficient conditions for caging are derived for two
shape primitives (Sec. 2). Moreover we also produce a path
in the robot configuration from an initial state to one of

Figure 1 Caging a ring-like
object (Ring-type
caging)

Figure 2 Caging a concave
object (Ring-type
caging)

goal configuration. It means the planned motion includes
hand approaching to the object and accomplishing caging.
Considering that the robot configuration is in high dimension,
we adopt RRT (Lavalle; 1998), which uses random sampling
efficiently in the high dimensional configuration (Sec. 3).
Required geometrical specification of objects can be obtained
by using AR picture markers attached to the objects
(Sec. 4.2). Finally, we verify our proposed caging procedure
with a practical robotic arm/hand system for four objects
(Sec. 4). To avoid any collisions due to errors between the
computational planning environment and the actual one, we
also test planning algorithm with considering margins.

This paper is a revised and expanded version of (Makita
et al.; 2012).

2 Caging Conditions

2.1 Classification

We classify patterns of caging by a multifingered hand with
depending on both the shapes of objects and the methods
of constraint. In this paper, we focus on caging that can be
achieved by two-fingered hand, and name the patterns as
follows:

Ring-type Caging In cases of caging a ring-like object such
as a torus, a robot hand constrains the object inserting
its fingers into a hollow of the object (Figure1). In
addition, ring-type caging can be also achieved even
when the object do not have any through holes but
any dimples (Figure2). Ring-type caging can be applied
to objects that has ring-like parts such as mugs. An
advantage of this caging is that even a low DOF robot
hand can constrain objects without any force control.

Waist-type Caging In cases of caging an object that has
a constricted part such as Figure3, 4, a robot hand
constrains the object winding its fingers around the
constricted part of the object.

2.2 Sufficient Conditions

It is difficult to derive necessary and sufficient conditions
of multifingered caging because there are various patterns
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Figure 3 Caging a bottle
(Waist-type caging)

Figure 4 Caging a wineglass
(Waist-type caging)

of caging and objects, and the conditions are probably
complicated. Thus, for the facilitation of both derivation
and application of caging conditions, we derive sufficient
conditions for the above two types of caging in this paper.
First, we present a general series of sufficient conditions for
multifingered caging. Next we derive each detailed conditions
for the patterns of caging.

If all the following conditions are satisfied, caging an
object by a robot hand can be accomplished.

1. Cage-formed conditions: The robot hand constructs
the caged region from which the object cannot escape.

2. In-cage conditions: The object is present in the caged
region formed by the robot.

3. Collision-free conditions: The robot hand has no
collision with the object and any obstacles.

2.3 Assumptions and Notations

We assume a symmetric robot hand as follows:

• The hand has 2 fingers, and each finger has L̄ joints.

• All the joints are revolute, and their bodies have no
volume, that is, they can be approximated by points.

• The j-th body of the i-th finger can be approximated by
a line segments with length l j.

• The palm of the robot hand is a line segment with
length lpalm

• Each finger is attached to each end of the palm in
opposite and moves with same vector of joint variables:

θ̄ := [θ1, θ2, . . . , θL̄]T , (1)

where θ j is a joint variable of the j-th joint of each
finger.

As mentioned above, we assume every limb of the robot
hand has no volume, and then derive sufficient conditions for
multifingered caging. Note that the derived conditions can be
applied to the hand whose limbs have volume, with taking
collisions into account.

p11
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p2j

p2,L+1

Sobj

p21

Figure 5 Caging a ring-like object (Ring-type caging)

2r
disc

d
waist

l
waist

p1,L+1

p2,L+1

p11

p21

t
disc

Figure 6 Caging a dumbbell-like object (Waist-type caging)

2.4 Cage-formed Conditions

2.4.1 Ring-type Caging

Let us consider caging a ring-like object by a robot hand
with two fingers (Figure5) as (Makita and Maeda; 2008). For
an example of ring-like objects, we define a swept volume
when a circle moves along a closed curve while keeping itself
vertical to the closed curve. The diameter of the circle is dring.
Thus it is a torus when the closed curve is a circle with a
larger diameter than dring.

When the two fingertips of the hand approach to each
other in the hollow part of the object, and the distance
between both fingertips: dL+1(θ̄)

(
= ‖p2,L̄+1(θ̄) − p1,L̄+1(θ̄)‖

)

is shorter than dring, the hand can capture the object. In other
words, caging a ring-like object is achieved when dL+1(θ̄)
satisfies the following condition:

dL+1(θ̄) < dring. (2)

2.4.2 Waist-type Caging

Let us consider caging a dumbbell-like object by a robot hand
with two fingers as Figure6. The object is composed of a
cylinder with two identical circular plates (disks) attached on
each base, and their parameters are denoted as follows: dwaist:
the diameter of the cylinder; lwaist: the length of the cylinder;
rdisk: the radius of the disk; tdisk: the thickness of the disk.

We derive a sufficient condition to constrain each part
of the object: the cylinder and the disk, respectively. The
cylinder part cannot escape from the gap between both
fingertips when its distance, dL̄+1(θ̄), is less than the diameter
of the cylinder:

dL̄+1(θ̄) < dwaist. (3)
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Figure 7 Hopf link Figure 8 Hopf link is not
constructed

The disk part cannot escape from the gap between both
fingertips when dL̄+1(θ̄) is less than the thickness of the disk:

dL̄+1(θ̄) < tdisk. (4)

In addition, the disk cannot escape between finger bodies
when every distance between joints or the fingertips is less
than the diameter of the disk:

di jik(θ̄) < 2rdisk (k � j) (5)

di j(i+1)k(θ̄) < 2rdisk, (6)
(i = 1, . . . ,N) ( j = 1, . . . , L̄) (k = 1, . . . , L̄ + 1)

where di jik = ‖pi j(θ̄) − pik(θ̄)‖.
Consequently, a series of cage-formed conditions for

caging a dumbbell-like object is that (3), (4), (5) and (6) are
satisfied.

2.5 In-cage Conditions

2.5.1 Ring-type Caging

A ring-like object is present in the region caged by a robot
hand in cases of ring-type caging when a hopf link (Figure7)
is constructed by two closed curves: one goes through inside
the object, and another is composed of a curve inside the hand
and a line segment connecting both fingertips.

We assume that a closed curve inside an object is on a
plane, and the closed region and the closed planer region
inside the curve is denoted by Sobj (Figure5). When a hopf
link is constructed, a robot hand or a line segment connecting
both fingertips passes through Sobj odd times. If they pass
through even times, a hopf link cannot be constructed such as
Figure8.

Let us consider a case of caging a torus whose Sobj is a
circle with robj radius. In the case, a closed curve of a robot
hand goes through Sobj when the intersection of the closed
curve and a plane including Sobj is within robj from the center
of Sobj.

2.5.2 Waist-type Caging

A dumbbell-like object is present in the region caged by a
robot hand in cases of waist-type caging when the cylinder
part of the object passes through a polygon whose vertices
are on the joints and the fingertips of the hand. We assume
that Srob denotes the polygon inside the robot hand, and twaist

denotes the unit direction vector of the center line of the

cylinder part. Then we can expressed the center line of the
cylinder part, pcline waist as follows:

pcline waist = ucline waisttwaist + pcm waist, (7)
−lwaist/2 < ucline waist < lwaist/2, (8)

where ucline waist is an arbitrary value, and pcm waist denotes
the center of mass of the cylinder part. When an intersection
between Srob and the center line of the cylinder part exist,

pcline waist ∈ Srob. (9)

2.6 Collision-free Conditions

The sufficient conditions for caging addressed in Sec. 2.2
is that two conditions presented in Sec. 2.4 and Sec. 2.5
are satisfied, and the robot hand must collide with neither
the target objects nor any obstacles. Then we can adopt
extensively-used programming libraries of collision detection
such as “A Proximity Query Package” (PQP (Larsen et al.;
1999)). In PQP, tested objects are approximated by polygon
models composed of triangles, and each triangle is examined
whether it occupies any other triangles of other objects.

When we approximate tested objects by larger polygon
models, we can set margins to avoid collisions in experiments
with actual equipments. The collisions may arise due to
positioning errors of robots, errors in modeling and errors in
posture measurement of objects.

2.7 Application to More Complex Objects

We derived the sufficient conditions of caging for two simple
objects. Additionally, we show the applications of these
conditions to more complex objects with using the simple
objects as shape primitives.

When an object includes either of the above two objects in
its body, the corresponding conditions presented in Sec. 2.4
and Sec. 2.5 and the collision-free condition for whole body
of the target object are a series of sufficient condition for
caging the object. For example, let us consider a case such as
Figure3, and the bottle includes an approximated dumbbell-
like object (Figure6) in its body. When the robot hand satisfies
the sufficient condition for the dumbbell-like object, and does
not collide with the whole body of the bottle, the hand can
achieve caging the bottle.

The above application can be considered in cases that
a target object is not enough approximated by the simple
objects but includes them in the part of the object. Let us
consider a case such as Figure9, and the handle of the cup
includes a closed curve in its body. When the sufficient
condition for caging the included ring is satisfied and the
robot hand does not collide with the whole body of the cup,
the hand can achieve caging the cup.

3 Motion Planning

3.1 Assumptions and Notations

In this paper, we study motion planning for caging to produce
a path from an initial state to a goal in configuration space
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Figure 9 An example of caging conditions for more complex
objects

of robots. The goal configuration satisfies the sufficient
condition derived in Sec. 2. We use a symmetric hand
mentioned in 2.3 and a manipulator with Lman joints. We
define a vector of joint variables of the manipulator as
follows:

Θ := [Θ1, . . . ,ΘLman ]T , ∈ RLman , (10)

where Θi denotes the joint variable of the i-th joint. With
(1) and (10), we define a vector of robot configuration, z, as
follows:

z := [θ̄T ,ΘT ]T ∈ RL̄+Lman . (11)

3.2 RRT-based Planning

The robot configurations in our caging problems, z has
relatively high DOF. In addition, there are multiple goal
configurations because the sufficient conditions are described
by some inequalities with the joint variables. Thus, we
develop our planning algorithm based on RRT (Rapidly
exploring Random Trees) (Lavalle; 1998), which is a path
planning method using random sampling. RRT is specially
designed to handle high DOF. The algorithm in (Lavalle;
1998) is a very basic of RRT, and we can easily adopt it to our
planning problem, although more developed algorithms have
been presented (Yershova and LaValle; 2007, 2009).

Our planning procedure is almost based on the original
RRT and described as follows:

Step 1. Set an initial configuration, zini, as a seed of a
configuration path branches.

Step 2. Generate a random configuration, zrand.
Step 3. Find the nearest configuration, znear in the current

configuration path branches.
Step 4. Put a candidate of new configuration,zcand, between
zrand and znear.

Step 5. Examine whether the robot collides with the target
object or any obstacles at zcand. When no collisions
are detected, the candidate configuration is added to the
branches as a new configuration, znew.

Step 6. Repeat from Step 2 to Step 5 until znew satisfies both
cage-formed conditions and in-cage conditions.

In Step 3, in order to determine the nearest configuration
in the current path branches from a randomly-sampled
configuration, zrand, we calculate a norm between a
configuration in the branches, z and zrand, dcfg defined with
the following equation:

dcfg(z, zrand) :=
L̄∑

j=1

⎛⎜⎜⎜⎜⎜⎝
(θ̄ j − θ̄rand)2

θ̇2max, j

⎞⎟⎟⎟⎟⎟⎠ +
Lman∑

j=1

⎛⎜⎜⎜⎜⎜⎝
(Θ j − Θrand)2

Θ̇2
max, j

⎞⎟⎟⎟⎟⎟⎠ , (12)

where, θ̇max, j and Θ̇max, j is maximum joint velocity of j-th
joint of the finger and the manipulator, respectively. This
normalization depends on the potential of each actuators, and
the norm, dcfg(z, zrand), means the square sum of the time
to move from z to zrand with each maximum joint velocity.
When a configuration in the current branches, z, gives the
minimum dcfg, the z becomes znear.

In Step 4, a candidate configuration of the branches, zcand,
is arranged between zrand and znear with Linear Interpolation
Method as follows:

zcand := znear + abr
zrand − znear

‖zrand − znear‖ , (13)

where abr is a positive number restricted in the following
condition:

0 < abr ≤ ‖zrand − znear‖. (14)

In Step 5, we use PQP (Larsen et al.; 1999) to inspect
presence or absence of collision among the robot, the object
and any obstacles at zcand. Unless any collisions are detected,
we increase abr in (13) and examine collision tests about new
zcand. A certain zcand in which no collision exist can be added
as a new configuration path branches, znew.

Finally we can find a goal configuration that satisfies the
sufficient condition of caging, and obtain a path of the robot
motion.

3.3 Biased Sampling with Solving Inverse Kinematics

Random sampling is useful for path planning in a complex
environment and high-dimensional configuration space,
particularly cases of difficulty to find a goal configuration.
However, it requires large computational cost to search
wide area in configuration space, which includes obviously-
distant points from a goal configuration. Thus, we adopt a
method of biased sampling to our planner. The objective of
biased sampling is to move the robot hand toward a target
object more efficiently, and to reduce wasteful sampling of
configuration.

Our biased sampling is based on solving inverse
kinematics of manipulator. A standard inverse kinematics
problems are solved with a determined posture, but in
caging, a particular posture is not set because of multiple
solutions in sufficient conditions of caging. Thus, we give a
desired position of the tool center point of the manipulator
that is enough close to a target object to capture it.
Next we give a desired orientation by using an algorithm
to generate uniformly-distributed random unit quaternions
(Kuffner; 2004). If we cannot acquire a solution for the
position and orientation of the manipulator, we have to repeat
the above trial until a solution is found.

Once we obtain a set of joint variables of the arm, Θ,
solving an inverse kinematics problem, we utilize the joint
variables (IKV) instead of a randomly-sampled values (RSV)
with a fixed probability, pbiased, in Step 2 of our planning
procedure (See in Sec. 3.2). We note that the joint variables of
wrist rolling joint of the arm, ΘL̄man

, and those of the fingers,
θ̄ are always randomly-sampled (Table1).
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Table 1 Probabilistic utilization of random sampling and biased
sampling

Θ1, . . . ,ΘL̄man−1 ΘL̄man
θ̄

pbiased IKV RSV RSV
1 − pbiased RSV RSV RSV

4 Experiments

We show some experimental results of our caging planning
and execution. The intended objects for caging in this paper
are four.

4.1 Experimental Settings

Our robotic arm/hand system to perform caging experiments
consists of a 6-DOF manipulator (MOTOMAN-HP3J) and a
robot hand that comprises two fingers with two joints each.
In motion planning, the arm/hand robot are represented as
follows (Figure10): .

• Each limb of the fingers is represented by a cuboid with
width: 0.03 [m], thickness: 0.01 [m], length: 0.05 [m].

• Each actuator is represented by a cylinder with radius:
0.015 [m], length: 0.03 [m].

• The palm is represented by a plate with 0.07 × 0.07 ×
0.01[m].

Each range of the joints are

−Θl,max < Θl < Θl,max, −θ̄l,max < θ̄l < θ̄l,max,

where, θ̄2,max = 0.5π, θ̄3,max = π,

Θ1,max = 0.5π, Θ2,max = 0.472π, Θ3,max = 0.806π
Θ4,max = 0.944π, Θ5,max = 0.667π, Θ6,max = 0.5π,

where the angle of θ̄1 is fixed to 0.5π (every unit of the
above parameters is [rad]). Parameters of the manipulator are
described in Table2 and 3. The joints of both the arm and the
hand are position-controlled. In addition, there are no force
sensors and/or tactile sensors to execute caging constraint.

There are four target objects: a cylinder (with a hollow), a
thin ring, a mug-like object (Figure11) for ring-type caging,
and a dumbbell for waist-type caging, which is with rdisk =

45, tdisk = 1, dwaist = 26 and rwaist = 222 ([mm]). In collision
tests, curved surfaces are not dealt with, and every model

t
man,l

s
man,l

Object

Palm

Actuator

Limb

Manipulator

Floor

l
man,l

Figure 10 Models of a robot and an object in motion planning

Table 2 Link parameters of MOTOMAN-HP3J

i αi−1[rad] ai−1[m] di[m] θ̄i[rad]
1 0 0 0 θ̄1
2 − π2 0.26 0 θ̄2
3 0 0 0 θ̄3
4 − π2 0.03 0.27 θ̄4
5 π

2 0 0 θ̄5
6 − π2 0 0 θ̄6

Table 3 Link size of the manipulator in collision check and
visualization

i lman,l[m] sman,l[m] tman,l[m]
1 0.29 0.104 0.104
2 0.26 0.0995 0.199
3 0.00 0.094 0.136
4 0.27 0.094 0.136
5 0.09 0.095 0.095
6 0.01 0.095 0.095

50
38

50

124

φ16

50
124

150
φ8

cylinder ring mug

Figure 11 Objects for caging experiments

must be a polyhedron. Thus we approximate every curve by
line segments, for example, a circle is approximated by a
polygon.

We test two changed postures of each object. We change
only its position for the cylinder, the thin ring and the
mug-like object, and both position and orientation for the
dumbbell-like object.

Motion planning is performed on a Linux PC whose
CPU is Intel Core i7 running at 2.8 GHz with multithread
processing.

4.2 Object Recognition

To plan a robot path for caging a target object, the
specifications of the object: shape, size and posture are
required. In this paper, we use AR picture markers to
recognize the object on which a marker is attached, and
retrieve the information of the object from a database with
an identification number embedded in the marker (Figure12).
AR picture markers can be recognized with ARToolKitPlus
(Schmalstieg; n.d.; Wagner and Schmalstieg; 2007), which
is a software library for building AR applications. The
information on the database includes the ID number
embedded in the marker, the possible patterns to cage the
object, the size of the object and the relative posture of
the marker on the object. Thus, measuring position and
orientation of the marker, we can estimate those of the object.
Additionally, the obtained possible pattern of caging for the
object helps us to determine a particular strategy of caging to
plan a path of robot motion.
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Figure 12 Linking an AR picture marker on the object and
information of the object on the database

Figure 13 AR picture markers on the objects

Our procedure of object recognition with AR markers is
as following steps:

Step 1. Recognize the AR marker attached to the target
object, and read the embedded ID number. At the same
time, measure posture of the marker.

Step 2. Load the object properties from the database using
the ID number (Figure12). They include the attachment
location of the marker on the object, the shape and the
size of the object and the objective pattern of caging. The
posture of the object can be easily calculated.

Using AR picture markers to recognize objects facilitates
measurement of the shape and the size of the objects. We
tested the accuracy of our position measurement with AR
picture markers. The markers are 30 × 30 mm and located in
several points to face to the camera almost oppositely such
as Figure13. In our experiments, estimated errors in position
measurement using ARToolKitPlus are within 5 mm.

Note that the information of obstacles around the objects
are given in this paper.

4.3 Ring-type Caging

In each scene, we could plan the motion of caging that is
composed of approaching the hand to the object from an
initial configuration (Figure14) and capturing it. The planned

Figure 14 Initial position and
orientation of the
robot for every trial

Figure 15 A planned goal
configuration of
caging the cylinder

motion of the robot was not smoothed in this paper, and
applied to practical execution directly.

The cylinder can be self-standing so that the robot fingers
access to the hollow region easily (Figure15). Thus, in the
caging a cylinder, the planner simply produces a caging
motion with the sufficient condition mentioned in Sec. 2.2.
The variation of computation time for planning in ten trials
was from 1 to 142 CPU seconds.

In caging a thin ring, we require some pedestals to put the
target object on there because the ring cannot be self-standing
and the robot finger cannot go through the hollow of the ring.
Thus we put the ring on the box so that half of the ring are
outside of the box in the experiments (Figure16). The box
is dealt with as an obstacle in motion planning and checked
collision with the robot. The variation of computation time
for planning in ten trials was from 1 to 12 CPU seconds.

In caging a mug-like object, the sufficient condition for
ring-like object addressed in Sec. 2.4.1 and 2.5.1 are used to
examine caging achievement that the hand capture a handle
part of the target object. In addition, collision tests are
inspected between the whole body of the object and the robot
as Figure9. The robot could track the planned motion and
insert its fingers into the handle part of the mug-like object
successfully (Figure17, 18). The variation of computation
time for planning in ten trials was from 1 to 177 CPU seconds.

4.4 Waist-type Caging

We could also plan the robot motion for caging a dumbbell-
like object in two patterns of posture (Figure19, 20). The
variation of computation time for planning in ten trials is from
3 to 483 CPU seconds about caging of the lying dumbbell-
like object; 2 to 73 CPU seconds about caging of the standing
one.

4.5 Collision Avoidance

In the planned motion of simulation, the robot did not at
all touch the object and any obstacles because the motion
planning is performed with the collision-free condition (See
Sec. 2.6). In the practical experiments, however, it sometimes
collided with the objects. The collision is seems to be mainly
due to some errors in position estimation with AR picture
marker, which are 5mm in position at a maximum.

In some scenes, caging tasks could be accomplished
even when the robot touched an object and moved it from
its correct position and orientation (Figure21). In Figure21,
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 16 A planned motion for caging the thin ring

Figure 17 A planned goal
configuration of
caging the mug-like
object

Figure 18 Another planned
goal configuration of
caging the mug-like
object

although the posture of the dumbbell was changed between
the initial state (Figure21(a)) and the goal state (Figure21(b)),
The hand could capture the handle of the object. It is because
some margins are included in the sufficient conditions
expressed with a series of inequalities. In other words, even
if some unexpected actual errors exist, a goal configuration
planned without the errors can also satisfy all the sufficient
conditions in successful cases.

In other cases, execution of planned motion failed because
the object was moved by the robot, and the robot hand
could not reach the object (Figure22). In Figure22, the robot
touches the cylinder while moving along the planned motion

Figure 19 A planned goal
configuration of
caging the
dumbbell-like object
in lying position

Figure 20 A planned goal
configuration of
caging the
dumbbell-like object
in standing position

(a) (b)

Figure 21 A successful case of planned caging motion even some
collisions occur (the object moved)

(a) (b)

Figure 22 A failure case of planned caging motion caused by any
collisions (the object moved)

path, and the object moves away toward the base of the
manipulator. The failure tends to happen when the robot
bodies are located very close to the object in planned motion.
For example, when the planner make the robot bodies locate
within 5mm from the object, the error in position estimation
mentioned above often can cause any collisions.

To avoid collision in practical experiments, we tested
collision checks with a certain amount of margins, that is,
we adopted larger models of the objects for planning. Taking
the maximum errors of position estimation into account, we
added 7mm to each size of the objects defined in Sec. 4.1.

Our motion planner could also produce caging motion
for each enlarged model of objects, and no physical collision
between the actual robot and the objects occurred in practical
experiments. Since the modeled object is larger than its
real scale, the robot bodies were located farther point
from the object than in previous cases without considering
any margins. Every computation time for planning in the
cases with considering margins is larger than those without
margins. It is because enlarging the model of the object
causes decreasing the space where the robot hand can reach,
and required path becomes less found. The variation of
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Figure 23 Simulation
environment in
caging manipulation

Figure 24 Experimental
environment in
caging manipulation

computation time for caging in ten trials was from 2 to
1684 CPU seconds about caging the cylinder; from 1 to
103 CPU seconds about caging the thin ring; from 3 to
298 CPU seconds about caging the mug-like object; from 5
to 1352 CPU seconds about caging the lying dumbbell-like
object; from 1 to 579 CPU seconds about caging the standing
dumbbell-like object, respectively.

4.6 Caging Manipulation

After the robot hand caged one of the object, the robot hand
can transport the object without any object escaping from
the hand. In this section, we manipulate the robot system by
remote control after the robot accomplished a planned caging
motion, to let the robot transport the caged object to a trash
box. The experiment scheme is below.

Step 1. Capture an experimental scene by a camera and
recognize an AR picture marker attached to each object.
When some markers exist, the object with the marker at
the nearest position from the camera is selected to plan a
caging motion.

Step 2. Plan a caging (capturing) motion and perform the
planned motion.

Step 3. After the caging, we remotely control the robot
capturing the object to transport it to a trash box.

Step 4. Continue Step 1 to Step 3 until all the target objects
are in the trash box.

The simulation environment and the experiment one is as
Figure23 and Figure24 respectively. Margins of collision
detection mentioned in Sec. 4.5 are considered that each is
7mm.

Each caging motion of the robot could be produced and
performed by the actual robot system without any collisions
between the robot and anything else. After each caging (or
capturing) of the object, we remotely manipulate the robot
to transport the caged object to the trash box. At that time,
the object did not escape from the robot hand, and the
transportation could be performed successfully (Figure25).

5 Conclusions

In this paper, we proposed caging grasps by a two-fingered
robot hand for two types of objects. First, we classified

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 25 A case of planned caging motion and remote
controlled transportation

patterns of the caging into two types with depending on
both shapes of objects and strategies of constraint. Next,
we derived sufficient conditions for each pattern of caging.
With the sufficient conditions, we constructed an RRT-based
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motion planner for caging, and produced caging motions
of a robotic arm/hand system for four objects. We adopted
a biased-sampling method with solving inverse kinematics
problems of the robot arm for search efficiency. We attached
AR picture markers to the objects to recognize them, and
estimated the position and orientation of the marker with
ARToolKit libraries. Then the position and orientation of the
object can be easily calculated with those of the marker. The
planned motion of caging could be successfully accomplished
by the actual robotic arm/hand system. Since collisions
in experiments sometimes occurred due to the errors in
posture estimation of the objects, we introduced margins into
collision checks in motion planning. After caging the object,
we can transport it without its escaping from the hand.

In future works, more variety of caging should be
achieved by a multifingered hand, and combinations of
caging and other manipulation should be also addressed.
Additionally, reduction of computation time has to be
considered.
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