Joint Torque Optimization for Grasp/Graspless Manipulation

OMAKITA, Satoshi, NAKAMURA, Shinobu, MAEDA, Yusuke (Yokohama National University, JAPAN)

- 1. Introduction
- 2. Mechanics Model
- 3. Optimization Algorithm
- 4. Numerical Examples
- 5. Conclusions and Future Works

I SHF2007 Jun 14-16 Lisbon, PORTUGAL

Adapting various circumstances

June 14-16, 2007

ISHF2007

Our study

Optimization Method of Joint Torques of Robots for Grasp/Graspless Manipulation

(Algorithm applicable to both grasping and graspless manipulation)

Previous Work

Joint Torque Optimization for Power Grasps [Omata 2001, 2002] Omata's method is based on rigid-body statics (Considering a constraint on static friction) [Omata and Nagata 2000, Omata 2001] However...

We can obtain no solutions in some cases because the constraint is <u>too restrictive</u>.

We derived a modified constraint on static friction [Maeda and Makita 2006]

Objective

Constructing an improved procedure for joint torque optimization

- Based on the new constraint on static friction
- Applicable to both grasping and graspless manipulation

<u>Approach</u>

- Apply the new constraint to Omata's method
- Modify the objective function of the optimization

2. Mechanical Model

- <u>Assumptions</u>
 - Rigid bodies
 - Approximation of all the contacts by finite point contacts
 - Approximation of friction cone by polyhedral convex cone
 - Coulomb friction

Indeterminacy of contact forces

Constraint on static friction [Omata and Nagata 2000, Omata 2001]

Virtual sliding causes static frictional force

Exclude infeasible combinations of virtual sliding

Estimate possible indeterminate contact force

Paradoxical Result

All the combinations of virtual sliding are excluded by Omata's constraint

Too restrictive!!

Modified Constraint on Virtual Sliding [Maeda and Makita 2006]

Apply the constraint on virtual sliding to only selected contact points

Estimating contact forces -> Optimal Joint Torques

3. Optimization Algorithm

The margin between contact force and friction cone

Maximizing the margin for contact firmness

ISHF2007

Objective Function

Maximizing the minimum margin in the WORST case [Omata 2001, 2002]

The margin might be always zero in not a few cases (Because of unbounded indeterminate contact forces)

We modified the objective function -> maximizing the margin in BEST case

Maximizing the minimum margin *e* in the best case

max e

$$\text{ubject to} \begin{cases} A^T f = \boldsymbol{\omega} \\ T^T (I_3 - B) f = \mathbf{0} \\ ST^T f \leq \mathbf{0} \\ e\mathbf{1} - N_f^T f \leq \mathbf{0} \\ e\mathbf{1} - N_b^T f \leq \mathbf{1} \\ \tau_{\min} \leq \tau \leq \tau_{\max} \end{cases} \begin{array}{l} \text{Equilibrium of the object} \\ \text{No friction on un-selected} \\ \text{No friction on un-selected} \\ \text{contact points} \\ \text{Constraint on static friction} \\ \text{Constraint on static friction} \\ \text{The margin between} \\ \text{contact forces and} \\ \text{friction cone} \\ \text{Limitation of joint torques} \end{cases}$$

S

Another Objective Function

Minimizing joint Torques

 $\min au_{\max}$

For less energy and less internal force

subject to

$$\begin{cases}
A^{T} f = \omega \\
T^{T} (I_{3} - B) f = 0 \\
ST^{T} f \leq 0 \\
e1 - N_{f}^{T} f \leq 0 \\
e1 - N_{b}^{T} f \leq x1 \\
- \tau_{\max} 1 \leq \tau \leq \tau_{\max} 1
\end{cases}$$

4. Numerical Examples

A case where we can obtain no solution by Omata's algorithm

Gravitational Force

Assumptions

- External disturbance $\boldsymbol{\omega}_{ext} = \begin{bmatrix} 0.0 & -1.0 & 0.0 \end{bmatrix}^T$
- Frictional coefficient: 0.5
- Approximated friction cone with 8 edges
- The origin at the center of the object
- The limitation of joint torques: $-2.0 \le \tau \le 2.0$

ISHF2007

Algorithm 1 Maximizing the margin *e*

$$e = 4.25, \qquad \tau = [-2.00, 2.00]^{\mathrm{T}}$$

<u>Algorithm 2</u> Minimizing joint torque τ

e = 0.1 (constant), $\tau = [-0.14, 0.14]^{T}$

We can calculate optimal joint torques successfully

5. Conclusions

• An optimization algorithm of joint torques

- Applicable to both grasping and graspless manipulation
- With modified constraint on virtual sliding
- Two kinds of objective functions available

Future Work

- Reduction of computation time
- Implementation of human-like skills using our joint torque optimization method