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1 Introduction

A large-scale information cascade is a phenomenon in which attractive content (viral
content) spreads to a large number of online social network (OSN) users. The problem
of predicting the final size of a cascade when its size is small has been discussed for
more than 20 years, where the size is the total number of users who have shared infor-
mation. If this problem can be solved, then (1) the content delivery system (CDS) can
be made more efficient by moving viral contents to servers closer to the viewers, (2)
useful information (stock trading, product development, etc.) can be retrieved earlier
from viral contents, and (3) the forecasting technologies can then be applied to viral
marketing, which intentionally creates large-scale cascades.

Large cascades rarely occur, so available datasets for prediction are currently limit-
ing. Thus, it is not easy to apply machine learning techniques or to verify the statistical
validity for proposed methods. On the other hand, simulation-based forecasting research
is progressing. Bipolarization in the final size distribution of large information cascades
has been reported in [2], which emerged independent of OSN topology (small-world,
scale-free, and random), existence of various types of communities, and user behavior
(social reinforcement and user response times). This phenomenon occurs only when the
OSN size is finite, and was reproduced by the urn model, which is a simplified version
of Twitter-type information diffusion. This study mathematically formulates the model
to theoretically verify this novel discovery.

Fig. 1 (left) shows the urn model representing a tweet spread through followers. The
model repeats a trial, in which a ball is randomly extracted from the urn and then a ball
is returned to the urn, until p = 0, where p corresponds to the number of users who will
receive the tweet and its initial value f (≥ 1) corresponds to the number of followers.
There are N balls in the urn, and each is either black or white (the initial condition is
that all balls are white). A black (white) ball corresponds to a user who has (not) posted
a retweet. When a white ball is taken out of the urn, a black ball is returned to the urn
with retweet probability λ and p is increased by f − 1. In all the other cases, the ball
extracted is returned and p is decreased by one. The number of black balls B in the urn
at p = 0 corresponds to the final size of the cascade.
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Fig. 1. Left: The urn model. Right: One of the cases where Bτ = 5. Ik = [(k−1) f +1,k f ].

2 Formularisation

This section derives a stochastic process from the urn model. Let pn and Bn be p and B
immediately after the n-th trial, respectively. The stopping time τ of the trial is defined
as

τ = inf{n≥ 1|pn = 0}. (1)

The goal of this study is to verify the possibility of bipolarization using the probability
distribution of Bτ . Bτ is determined by Markov chain {Xn} given by X0 = (0, f ), Xn =
(Bn, pn), and Xn+1 = (Bn +∆n+1, pn +∆ ′n+1), where ∆n ∈ {0,1} and ∆ ′n ∈ {−1, f −1}
represent increases in B and p due to the n-th trial, respectively, {∆n = 0}= {∆ ′n =−1},
{∆n = 1}= {∆ ′n = f −1}, and

P(∆n+1 = 1|Bn = i) = 1−P(∆n+1 = 0|Bn = i) =
N− i

N
λ . (2)

Proposition 1 For any integers k, f > 0, {Bτ = k}= {τ = (k+1) f}.

Proof. As shown in Fig. 1(right), event {p = 0} occurs only at the end of one of in-
tervals I j, j = 1,2, . . ., where I j = [( j− 1) f + 1, j f ]. Bτ = k indicates that the trials
are not performed at intervals I j, j > k + 1. If p = 0 occurs at I j, j ≤ k, Bτ must be
smaller than k. Thus {Bτ = k} ⊂ {τ = (k+ 1) f}. If τ = (k+ 1) f , B(k+1) f = k. Thus
{Bτ = k} ⊃ {τ = (k+1) f}.

3 Calculation of P(Bτ)

3.1 Infinite User Size

As shown in Fig. 1(right), {Bτ = k} is determined by the first (k+1) f trials ∆1, . . . ,∆(k+1) f .
Because ∆n ∈ {0,1}, ω = (∆1, . . . ,∆(k+1) f ) takes one of 2(k+1) f different binary se-
quences. Let

( a
b c

)
be the number of events ω that satisfy the condition that a trials

generate b events {∆n = 1} and τ = c. Then, |{ω|Bτ(ω) = k}| =
(

(k+1) f
k (k+1) f

)
. If N (the

number of OSN users) is infinite, the right-hand side of (2) is limN→∞
N−i

N λ = λ , so
P(∆n+1|Bn) is constant λ regardless of Bn. Thus, by using X0 = (0, f ), P(Bτ = 0) =
P(B0 = 0)P(∆1 = 0|B0 = 0) · · ·P(∆ f = 0|B f−1 = 0) = (1−λ ) f and for k > 0,

P(Bτ = k) =
(

(k+1) f
k (k+1) f

)
λ

k(1−λ )(k+1) f−k. (3)



Proposition 2 For any integers k, f > 0,(
k f

k−1 k f

)
=

(
(k−1) f

k−1

)
−

k−2

∑
m=1

(
(k−1) f
k−1 m f

)
. (4)

Proof. Because pn becomes zero only at n = f ,2 f ,3 f , . . ., {Bk f = k− 1} = {Bk f =

k−1}∩
⋃k

m=1{τ =m f}. From Proposition 1, {Bτ = k−1}= {Bk f = k−1}∩{τ = k f};
therefore, {Bk f = k− 1} \ {Bτ = k− 1} = {Bk f = k− 1}∩

⋃k−1
m=1{τ = m f}. Because

|{Bk f = k− 1}| =
((k−1) f

k−1

)
, ∑

k−1
m=1

(
(k−1) f
k−1 m f

)
= |{Bk f = k− 1}∩

⋃k−1
m=1{τ = m f}|, and(

(k−1) f
k−1 (k−1) f

)
= 0, (4) holds.

Proposition 3 For any integers k, f ,m satisfying 2≤ m < k, f > 0,(
k f

k m f

)
=

(
m f

m−1 m f

)(
(k−m) f
k−m+1

)
. (5)

Proof.
(

k f
k m f

)
is the number of binary sequences ω = (∆1, . . . ,∆k f ) that satisfy {τ =

m f}. The number of binary sequences (∆1, . . . ,∆m f ) satisfying {τ = m f} is
(

m f
m−1 m f

)
,

and the number of combinations in which events {∆n = 1} occur k− (m−1) times out
of sequences (∆m f+1, . . . ,∆k f ) is

((k−m) f
k−m+1

)
.

Propositions 2 and 3 indicate that
(

k f
k−1 k f

)
is obtained using

(
m f

m−1 m f

)
, m =

1,2, . . . ,k− 2, where
(

f
0 f

)
= 1. Therefore, from (3), P(Bτ = k) can be derived in

ascending order of k.

3.2 Finite User Size

Let us next consider the case N is finite and let λi =
N−i

N λ . Probability P(Bτ = k)
becomes a complicated equation when k is large, and its calculation time becomes long.
Thus, the upper and lower bounds of P(Bτ = k) are derived.

Proposition 4 Let C =
(

(k+1) f
k (k+1) f

)
∏

k−1
i=0 λi. P(Bτ = k) satisfies

C

(
k−1

∏
i=0

(1−λi)
f−1

)
(1−λk)

f < P(Bτ = k)<C(1−λk)
(k+1) f−k. (6)

Proof. Let ω∗ (ω∗) be one of ω values in {ω|Bτ(ω) = k} that maximizes (minimizes)

probability P({ω}). From (3),
(

(k+1) f
k (k+1) f

)
P(ω∗) < P(Bτ = k) <

(
(k+1) f

k (k+1) f

)
P(ω∗). In

the following, P(ω∗) and P(ω∗) are obtained. Assume that events {∆n = 1} occur k
times at n = n1,n2, . . . ,nk (n1 < n2 < · · ·). From (2), P(∆n1 = 1|Bn1−1 = 0) · · ·P(∆nk =

1|Bnk−1 = k− 1) = ∏
k−1
i=0 λi, which is independent of (n1, . . . ,nk). For any ω , P(ω) is

given as P(ω) = δ ∏
k−1
i=0 λi, where δ = ∏i∈W P(∆i = 0|Bi−1) and W = {1,2, . . . ,(k+

1) f} \ {n1, . . . ,nk}. From (2), for any ni ∈ {n1, . . . ,nk}, δ strictly decreases as ni in-
creases. Thus, δ is minimized (maximized) at (n1, . . . ,nk) = ( f , . . . ,k f ) ((n1, . . . ,nk) =
(1, . . . ,k)). Accordingly, ∏

k−1
i=0 (1−λi)

f−1(1−λk)≤ δ ≤ (1−λk)
(k+1) f−k.



Fig. 2. Left: P(Bτ ) at N =∞ and f = 50. Right: Linear approximation with slope α at f = 50. The
correlation coefficient of samples (logk, log(P(Bτ = k))), k ≥ 95, is less than −0.999999999.
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Fig. 3. Bounds of P(Bτ = k) at N = 100 and f = 50. Left: λ = 0.01. Center and right: λ = 0.035.

4 Numerical Results

Fig. 2 shows numerical results when N =∞. As shown in Fig. 2 (left), P(Bτ = k) strictly
decreases as k increases regardless of f λ , where f λ is the expected number of followers
who post retweets among f followers. If f λ > 1 ( f λ < 1), the cascade is expected
to grow forever (eventually stop growing). Fig. 2 (left) also indicates that P(Bτ = k)
decreases slowly only if f λ = 1. Fig. 2 (right) verifies that the tail of P(Bτ = k) follows
a power law P(Bτ = k)∝ k−1.5, which is similar to the result in [1]. Thus, Fig. 2 suggests
that f λ = 1 is the necessary condition for large-scale cascade emergence when N = ∞.

Fig. 3 shows the upper and lower bounds of P(Bτ = k). Fig. 3(left) suggests that
P(Bτ = k) is a decreasing function of k at a low retweet probability λ . In Figs. 3(center)
and (right), the upper bound shows bipolarization. These figures demonstrate that P(Bτ =
k) is not a decreasing function because the upper bound has a local minimum value
(0.0031) at k = 12 and the sum of the lower bound for all k ∈ {0,1, . . . ,100} is less than
0.3, so that P(Bτ = k) must be greater than 0.007 at least one k > 12. In other words,
P(Bτ = k) has at least one peak at k > 12. In summary, P(Bτ = k) monotonically de-
creases if N = ∞, while it does not if N is finite and f λ is large.
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